Elektromagnetische Feldtheorie 2
|
|
|
- Benjamin Gerstle
- vor 8 Jahren
- Abrufe
Transkript
1 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, , 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript zur Vorlesung Elektromagnetische Feldtheorie oder Elektrodynamik der Fachschaft EI 5 Blätter DIN A4 mit eigenen handschriftlichen Aufzeichnungen, keine Kopien oder Drucke Mathematische Formelsammlung Bitte verwenden Sie für jede Aufgabe einen eigenen Bogen! Geben Sie auf jedem Bogen Name, Vorname und Matrikelnummer an! Ergebnisse ohne Herleitung oder Begründung werden nicht gewertet. Die mit einem Stern * gekennzeichneten Teilaufgaben können unabhängig gelöst werden.
2 1. Aufgabe (12 Punkte) Gegeben ist eine Anordnung aus drei ideal leitenden Elektroden. Die Elektroden haben die Breite a in x-richtung und die Tiefe b in y-richtung. Zwischen Platte 1 und 2 befindet sich ein homogenes Dielektrikum mit der Permittivität ε 1 = ε 0 und zwischen den Platten 2 und 3 befindet sich ein in x-richtung veränderliches (inhomogenes) Dielektrikum mit der Permittivität: ( ) a + x ε 2 (x) = ε 0 a Die Platten 1 und 2 beziehungsweise 2 und 3 bilden jeweils eine Kondensatoranordnung A bzw. B mit dem Plattenabstand h. Über drei Schalter S 1, S 2, S 3 lassen sich die drei Platten jeweils einzeln auf das Potential V 1 bzw. V 2 bzw. V 3 klemmen oder erden (V i = 0). Nehmen Sie an, dass sich die beiden Kondensatoranordnungen A und B nicht gegenseitig beeinflussen. Streufelder an den Kondensatorberandungen können in allen Rechnungen vernachlässigt werden. *a) Welche Bedingungen müssen erfüllt sein, damit die Streufelder der Kondensatoren vernachlässigt werden können? *b) Berechnen Sie die Kapazitätsmatrizen C A ij (i, j = 1, 2) und C B ij (i, j = 2, 3) der beiden Kondensatoranordnungen A und B. c) Stellen Sie die Kapazitätsmatrix (3 3 -Matrix) des Gesamtsystems auf. Für die folgenden Teilaufgaben gelte nun V 1 = V 3 = U und V 2 = 0 V. d) Bestimmen Sie mit Hilfe der Kapazitätsmatrix des Gesamtsystems die in den beiden Kondensatoren gespeicherte elektrische Feldenergie und erklären Sie das erhaltene Ergebnis. e) Berechnen Sie den Betrag und die Richtung der Volumenkraftdichte innerhalb des Dielektrikums zwischen den Platten 2 und 3.
3 2. Aufgabe (8 Punkte) In einem verlustfreien Medium mit verschwindender Leitfähigkeit σ=0, der homogenen magnetischen Permeabilität µ und der homogenen elektrischen Permittivität ǫ breitet sich eine harmonische elektromagnetische Welle aus. Diese ist gegeben durch ihren elektrischen Feldstärkevektor E 1 (z, t) E 1 (z, t) = E 0 cos(kz ωt) e x. *a) Berechnen Sie einen Ausdruck für die zu E 1 (z, t) gehörende magnetische Feldstärke H 1 (z, t). *b) Berechnen Sie die elektromagnetische Energiedichte w 1elmg (z, t). c) Leiten Sie die Bedingung her, der k und ω genügen müssen, damit der Energieerhaltungssatz für die durch E 1 (z, t) gegebene elektromagnetische Welle erfüllt ist. *d) Bestimmen Sie diejenigen z-koordinaten, für die die Feldstärke E 1 (z, t) zum Zeitpunkt t = t 1 den positiven Maximalwert erreicht. Geben Sie das Resultat in Abhängigkeit von der Wellenlänge λ 1 und den Materialparametern an. In diesem Medium sei zusätzlich folgende Welle gegeben: E 2 (z, t) = E 0 cos(kz ωt + ϕ) e y *e) In welche Richtung breitet sich E 2 (z, t) aus? Unter welchen Bedingungen für ϕ ist die Überlagerung von E 1 (z, t) und E 2 (z, t) rechts- bzw. linkszirkular polarisiert? Hinweis: Rechts- bzw. linkszirkular polarisiert bedeutet, dass sich der elektrische Feldstärkevektor im Uhr- bzw. Gegenuhrzeigersinn kreisförmig dreht, wenn der Welle hinterher geschaut wird.
4 3. Aufgabe (16 Punkte) Gegeben ist eine in x und y Raumrichtung unendlich ausgedehnte, ladungsfreie Schicht A mit 0 z d. Diese Schicht ist umgeben von Vakuum mit der Leitfähigkeit σ = 0, der Raumladungsdichte ρ = 0, der elektrischen Dielektrizitätskonstanten ǫ 0 und der magnetischen Permeabilität µ 0. Für z 0 breitet sich eine elektromagnetische harmonische ebene Welle in positiver z Richtung aus. Ihre elektrische Feldstärke beträgt E( r, t) = E 0 sin( k 0 r ω 0 t) e x für z 0 mit der Kreisfrequenz ω 0, dem reellen Vakuumwellenvektor k 0 und der Amplitude E 0. Die Wellenlänge im Vakuum betrage λ 0 mit λ 0 = d/100. Die Frequenz sei f 0 = 4000 Hz. TEIL 1: In Gebiet A gelte µ A = µ 0, σ A = 0. Die Dielektrizitätskonstante ǫ A in der Schicht A ist zeitveränderlich mit ǫ A (t) = ǫ 0 (1 + t t 0 ) 2, t 0 = 1s und t 0 Die Zeitkonstante t 0 der Änderung von ǫ A kann als sehr groß im Vergleich zur Periode T 0 = 2π/ω 0 von E( r, t) in der Schicht A angenommen werden. *a) Welcher Zusammenhang gilt zwischen der Kreisfrequenz ω A in der Schicht A und der Kreisfrequenz ω 0 im Vakuum? *b) Welcher Zusammenhang gilt zwischen der Kreiswellenzahl k 0 und der Kreisfrequenz ω 0 im Vakuum? Berechnen Sie den Wellenvektor k A (t) in der Schicht A in Abhängigkeit von k 0. c) Welcher Zusammenhang gilt zwischen der Wellenzahl k 0 und der Wellenlänge λ 0 im Vakuum? Berechnen Sie die Wellenlänge λ A (t) in der Schicht A in Abhängigkeit der Vakuumwellenlänge λ 0.
5 d) Schreiben Sie jeweils einen Ansatz für den elektrischen Feldstärkevektor der elektromagnetischen Welle E( r, t) für 0 z d und z d auf. Bestimmen Sie die Amplituden und Phasen in den beiden Gebieten aus den Stetigkeitsbedingungen für E( r, t) bei z = 0 und z = d. e) Zeichnen Sie E( r, t) für d z d + 2λ 0 zu den Zeitpunkten t = 0, t = 2, 5 ms und t = 5 ms in getrennte Grafiken. Beschriften Sie die Achsen. TEIL 2: In der Schicht A gelte nun ǫ A = ǫ 0 und µ A = µ 0. Das Medium in der Schicht A werde im Laufe der Zeit zunehmend leitfähiger mit der spezifischen Leitfähigkeit σ A (t) σ A (t) = 2 ω 0 µ 0 (1 + t t 0 ) 2, t 0 = 1s, t 0 und t 0 T 0 = 2π/ω 0 *f) Berechnen Sie das Dämpfungsmaß α für (d.h. 2π/t 0 ω 0 σ A (t)/ǫ 0 ). mäßig kleine Frequenzen g) Zeichnen Sie E( r, t) für 0 z 2λ 0 zu den Zeitpunkten t = 0, t = 2, 5 ms und t = 5 ms in eine Grafik. Beschriften Sie die Achsen. Viel Erfolg!
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige
Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997
Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel
5.9.301 Brewsterscher Winkel ******
5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert
Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik
Strahlungsquellen Laser-Messtechnik Thermische Strahlungsquellen [typ. kont.; f(t)] Fluoreszenz / Lumineszenzstrahler [typ. Linienspektrum; Energieniv.] Laser Gasentladungslampen, Leuchtstoffröhren Halbleiter-Dioden
Ubungsbuch Elektromagnetische Felder
Manfred Filtz Heino Henke Ubungsbuch Elektromagnetische Felder Mit 162 Abbildungen Springer Inhaltsverzeichnis 1. Elektrostatische Felder 1 Zusammenfassung wichtiger Formeln 1 Grundgleichungen im Vakuum
Ingenieurmathematik für Maschinenbau, Blatt 1
Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau
Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology
Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an [email protected]. Verwenden Sie MatrikelNummer1
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-18 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m 2 Ausblick: Ladung der Quarks & Hadronen
Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik
FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch
Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)
TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele
Ein Geräusch: " Plopp"
Ein Geräusch: " Plopp" Zielsetzung: Das Ziel dieses Experiments ist es die Druckveränderungen zu untersuchen, die auftreten, wenn ein Zylinderkolben aus einer kleinen Spritze gezogen wird und die Eigenschaften
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (7 Punkte) a)
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
U N I V E R S I T Ä T R E G E N S B U R G
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis
Probeklausur Sommersemester 2000
Probeklausur Sommersemester 2000 1. in Mensch, der 50 kg wiegt, schwimmt im Freibad. Wie viel Wasser verdrängt er? 500 l 7,5 m³ 75 l 150 l 50 l 2. urch ein lutgefäß der Länge 1 cm fließt bei einer ruckdifferenz
Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:
20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie
Komponenten eines MRT- Systems
Komponenten eines MRT- Systems Komponenten eines MRT- Systems starker Magnet zur Erzeugung des statischen homogenen Magnetfeldes (0,1-4,0 Tesla; zum Vergleich: Erdmagnetfeld 30 µt - 60 µt) Hochfrequenzanlage
Mathematische Hilfsmittel
Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:
1 Anregung von Oberflächenwellen (30 Punkte)
1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit
Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht
Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische
6 Wechselstrom-Schaltungen
für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert
Signale und Systeme. A1 A2 A3 Summe
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?
Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1)
Lehrstuhl für Organisation und Führung Institut für Unternehmensführung Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1) Sommersemester 2012, 27. August 2012 Name, Vorname:...
Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte
Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung
Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.
Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit
Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A
Bildverarbeitung Herbstsemester 2012. Fourier-Transformation
Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie
1 Allgemeine Grundlagen
1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die
c f 10. Grundlagen der Funktechnik 10.1 Elektromagnetische Wellen
10.1 Elektromagnetische Wellen Ein Strom mit einer Frequenz f größer als 30kHz neigt dazu eine elektromagnetische Welle zu produzieren. Eine elektromagnetische Welle ist eine Kombination aus sich verändernden
SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang:
SS 2003 Klausur zum Praktikum ETiT III Mess- und Sensortechnik 16.07.2003 90 min Vorname, Name:, Matrikelnummer: Studiengang: ETiT / Fb. 18 WiET / Fb. 1 Aufgaben: #1 #2 #3 #4 Kurzfragen Summe Punkte: /
P = U eff I eff. I eff = = 1 kw 120 V = 1000 W
Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten
Feldlinien charakterisieren das elektrische Feld...
Feldlinien charakterisieren das elektrische Feld... Eisen- Feldlinien-Bilder kann man z.b. durch feilspäne sichtbar machen... Einige wichtige Regeln: Durch jeden Punkt verläuft genau eine Feldlinie, d.h.
Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H
ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke
Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten
Prüfung GET Seite 1 von 8 Hochschule München FK 03 Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten F. Palme Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt Matr.-Nr.:
PO Doppelbrechung und elliptisch polarisiertes Licht
PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich
Abschlussklausur am 12. Juli 2004
Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Grundkonzeptionen der Finanzierungstheorie (ABWL / Finanzierung) Dr. Stefan Prigge Sommersemester 2004 Abschlussklausur
I = I 0 exp. t + U R
Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist
6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation
Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.
ELECTROMAGNETISM BEISPIELE
BEISPIELE 1. Globale Darstellung des elektrischen Feldes 2. Verwendung der Grafiken und des CSV Exportes in Excel 3. Helmholtzkonfiguration 4. Plattenkondensator 5. Verteilung von Eisenspänen um eine Spule
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert SW0 Schwingende Saite am Monochord (Pr_PhI_SW0_Monochord_6, 08.09.009)
Optische Bauelemente
Optische Bauelemente (Teil 2) Matthias Pospiech Universität Hannover Optische Bauelemente p. 1/15 Inhalt 1. Akusto-Optische Modulatoren (AOMs) 2. Faraday Rotator (Faraday Effekt) 3. Optische Diode Optische
Modul. Elektrotechnik. Grundlagen. Kurs 1
Berner Fachhochschule BFH Hochschule für Technik und Informatik HTI Fachbereich Elektro- und Kommunikationstechnik EKT Modul Elektrotechnik Grundlagen Kurs 1 Inhaltsverzeichnis und Sachwortregister STR
K L A U S U R D E C K B L A T T
K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 16.04.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:
Abschlussklausur. Verteilte Systeme. Bewertung: 25. November 2014. Name: Vorname: Matrikelnummer:
Abschlussklausur Verteilte Systeme 25. November 2014 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und dass ich mich gesund und prüfungsfähig
=N 2. 10 Induktivität
10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung
ÜBUNGSBEISPIELE Beispiel 1.
ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 a) Wieviele K + Ionen sind dies pro m 2?? Eine typische Zelle
Lösungsskizzen zur Abschlussklausur Betriebssysteme
Lösungsskizzen zur Abschlussklausur Betriebssysteme 24. Januar 2013 Name: Vorname: Matrikelnummer: Studiengang: Hinweise: Tragen Sie zuerst auf allen Blättern (einschlieÿlich des Deckblattes) Ihren Namen,
Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden.
5. Diagramme mit MATHCAD Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5.. Erstellen eines Diagramms Das Erstellen eines Diagramms verläuft in mehreren
!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen
2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende
Vorbemerkung. [disclaimer]
Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle
Studiengang (Zutreffendes bitte ankreuzen):
Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur
Hochschule Bremerhaven
Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3
Modulklausur Konstruktion und Analyse ökonomischer Modelle
Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator
Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.
Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov [email protected] Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei
Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung
Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche
Einführung in die Informatik und Medieninformatik
Name, Vorname Matrikelnummer Klausur zur Vorlesung Einführung in die Informatik und Medieninformatik LVNr. 36 600, WS 2012/13, im Studiengang Medieninformatik Dienstag, 12. Februar 2013 16:00 18:00 Uhr
07.03.2015. Stromkreis aus Kondensator und Spule. U c =U L
1 Stromkreis aus Kondensator und Spule 0 U c =U L -1 1 2 Elektrischer Schwingkreis 1 0 Volt 0,5 U = L I& U = 1/ C Q 1/ C Q = L Q& Einheit 1 Volt Spule 1 Volt Kondensator 1 Volt Schwingungsgleichung 3 Schwingkreis
Physik & Musik. Wie funktioniert ein KO? 1 Auftrag
Physik & Musik 1 Wie funktioniert ein KO? 1 Auftrag Physik & Musik Wie funktioniert ein KO? Seite 1 Wie funktioniert ein KO? Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Einleitung
Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF
Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle
Bearbeiten Sie vier der fünf Aufgaben!
Master-Kursprüfung West-East Trade Theory SS 2014 Pflichtmodul Internationale VWL (M.Sc. IVWL) Schwerpunktmodul Außenwirtschaft (M.Sc. VWL) 6 Kreditpunkte Bearbeitungsdauer: 90 Minuten 16.7.2014 Prof.
Führen von blinden Mitarbeitern
125 Teamführung Führungskräfte sind heutzutage keine Vorgesetzten mehr, die anderen autoritär ihre Vorstellungen aufzwingen. Führung lebt von der wechselseitigen Information zwischen Führungskraft und
1. Frequenzverhalten einfacher RC- und RL-Schaltungen
Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung
Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.
Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung
Klausur zur Vorlesung E1 Mechanik (6 ECTS)
Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.
IU3. Modul Universalkonstanten. Lichtgeschwindigkeit
IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir
Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach
1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Internationale Finanzierung Sommersemester 2011 (1. Prüfungstermin) Bearbeitungszeit: 60 Minuten Zur Beachtung: 1. Die Klausur
Aufgabenheft. Fakultät für Wirtschaftswissenschaft. Modul 32701 - Business/IT-Alignment. 26.09.2014, 09:00 11:00 Uhr. Univ.-Prof. Dr. U.
Fakultät für Wirtschaftswissenschaft Aufgabenheft : Termin: Prüfer: Modul 32701 - Business/IT-Alignment 26.09.2014, 09:00 11:00 Uhr Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe 1 2 3 4 Summe
Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms
Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit
Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997
In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.
Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar
Klausur zur Vorlesung Organisationstheorie und Change Management Sommersemester 06, Termin 1, 18.07.06
Institut für öffentliche Wirtschaft und Personal AB Organisation und Prof. Dr. Jetta Frost Klausur zur Vorlesung Organisationstheorie und Sommersemester 06, Termin 1, 18.07.06 Name, Vorname: Matrikelnummer:
Rotierende Leiterschleife
Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische
Aufgabenbeschreibung Oszilloskop und Schaltkreise
Aufgabenbeschreibung Oszilloskop und Schaltkreise Vorbereitung: Lesen Sie den ersten Teil der Versuchsbeschreibung Oszillograph des Anfängerpraktikums, in dem die Funktionsweise und die wichtigsten Bedienungselemente
Physik 4, Übung 8, Prof. Förster
Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Der Energietransport durch elektrische Ströme und elektromagnetische Felder
Der Energietransport durch elektrische Ströme und elektromagnetische Felder Dem Andenken an Prof. Dr. Klaus Schäfer gewidmet Udo Backhaus Praxis der Naturwissenschaften/Physik 36/3, 30 (1987) Vor kurzem
Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung
Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 8333 München Email: [email protected] Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph
Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.
Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner
U C = U o -U R = U o (1 - e - t
43 VERSUCH 6: KONDENSATOR UND INDUKTIVITÄT - WECHSELSTROM 6A Ein- und Ausschaltvorgänge Wird ein Kondensator der Kapazität C ü- ber einen Widerstand R mit einer konstanten Spannung U o verbunden, so lädt
Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 16. Juli 2005 Dr. Alfons Huhn, Timotheus Preisinger
Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 16. Juli 2005 Dr. Alfons Huhn, Timotheus Preisinger Informatik II Hinweise: Die Bearbeitungszeit beträgt 90 Minuten.
my f lyer.ch Datenblätter für Register DIN A4 mit 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 Blättern Wählen Sie bitte die passende Blattzahl aus.
Datenblätter für DIN A mit / / / / 9 / 0 / / Blättern Wählen Sie bitte die passende Blattzahl aus. DIN A, Blatt 9, 9 ( 0) (z. B. DIN A, x 9 mm) DIN A, Blatt 9, 9 ( 0) (z. B. DIN A, x 9 mm) DIN A, Blatt,
Versuch 15. Wechselstromwiderstände
Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung
SYNCHRONISATION VON HERZ UND ATMUNG
SYNCHRONISATION VON HERZ UND ATMUNG Vortrag von Benjamin Klima Inhaltsverzeichnis 1. 2. 3. Jules Antoine Lissajous 4. Die Lissajous Figur 5. 6. 7. Unsere Daten 8. Unsere Auswertung und Veranschaulichung
Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13)
Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13) (Prof. Dr. Jochen Michaelis) Persönliche Angaben Vorname: Nachname: Matrikel-Nr.: Studiengang: Punkteverteilung Aufgabe 1 2 3 oder 4 Bonus Punkte /20
- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor
Praktikumsaufgabe Pk 2: R, L, C bei Wechselstrom Versuchsziel:.- - Festigung und Vertiefung der Kenntnisse zum Wechselstromverhalten von R,L,C-Schaltungen - Erwerb von Fertigkeiten bei der meßtechnischen
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige
Versuch: RCL Induktivität und Kapazität, Aufgabe 1 und 2. Inhalt dieser Datei. Gesamtauftrag für den Versuch Induktivität und Kapazität
Versuch: Induktivität und Kapazität, Aufgabe 1 und 2 Gruppe: A Team: 1 Datum: 11.03.2013 Name Schmitz Vorname Josef Inhalt dieser Datei Tabellenblatt Beschreibung Auftrag Anleitung Messdaten1 Messdaten2
Versuch pl : Polarisation des Lichts
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch pl : Polarisation des Lichts 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck ÁÒ ÐØ
Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz.
Bergische Universität Wuppertal Fachbereich C Sommersemester 007 Physikalisches Praktikum 1 Versuch Mi 1 Mikrowellen Verfasser: Moritz Schubotz Betreuer: Sebastian Weber Abgabetermin: 0 Ausgangssituation
Wiederholungsklausur zur Vorlesung Informationsökonomik
Prof. Dr. Isabel Schnabel Johannes Gutenberg-Universität Mainz Wiederholungsklausur zur Vorlesung Informationsökonomik Sommersemester 2011, 15.08.2011, 13:00 14:30 Uhr Hinweise zur Klausur Die Klausur
GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...
E-Mail: Homepage: [email protected] schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines
PS II - Verständnistest 24.02.2010
Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:
Elektrizitätslehre 3. Elektromagnetische Felder Feldenergie und -kräfte
Elektrizitätslehre 3 Elektromagnetische Felder Feldenergie und -kräfte Martin Schlup, Prof. 3. August 2015 Inhaltsverzeichnis 1. Einleitung 2 2. Feldenergie 2 2.1. Energiedichte des elektrischen Felds.........................
Grundlagen der Multimedia-Anwendungen, Bildverarbeitung, Computergraphik 17.07.2001 Name (bitte in Blockschrift) Matrikelnummer
Musterlösung Teilfachprüfung: Grundlagen Multimedia (1) Grundlagen der Multimedia-Anwendungen, Bildverarbeitung, Computergraphik 17.07.2001 Name (bitte in Blockschrift) Matrikelnummer Unterschrift Hinweise:
