I = I 0 exp. t + U R
|
|
|
- Fritzi Kramer
- vor 10 Jahren
- Abrufe
Transkript
1 Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141
2 Dies ist eine Differentialgleichung in I und t mit der Lösung I = I 0 exp ( RL ) t + U R wobei I 0 aus den Anfangsbedingungen erhalten werden kann. Für den Einschaltvorgang ist I 0 = U 0 /R, beim Ausschaltvorgang I 0 = U 0 /R. StromstŠrke Zeit Offensichtlich ist in dem magnetischen Feld der Spule Energie gespeichert, die am ohmschen Widerstand in Wärme umgesetzt werden kann. Die gespeicherte Energie beträgt W magn = 1 2 LI2 Während im Kondensator die Energie durch eine Ladungstrennung gespeichert ist, ist in einer Spule ein Stromfluss notwendig, um die Energie zu speichern. Da bei Raumtemperatur jede Spule auch einen ohmschen Widerstand darstellt, nimmt die Stromstärke sehr schnell ab. Supraleitende Spulen dagegen können die Energie im Prinzip beliebig lange speichern. 142
3 Allgemein gilt für die Energiedichte des magnetischen Feldes: W magn V = µ 0 µ B2 Die Änderung der Induktivität einer in die Fahrbahn eingelassenen Leiterschleife wird ausgenutzt, um Fahrzeuge vor Ampeln zu erkennen. 5.5 Wechselstrom und Wechselspannung Sich zeitlich periodisch ändernde Spannungen und Ströme fasst man unter dem Begriff Wechselstrom und Wechselspannung zusammen. Die einfachste Form der Periodizität ist eine Sinusfunktion: U = U 0 sin(ωt ϕ 0 ), I = I 0 sin(ωt) Die Impedanz Wie wir bereits beim Einschaltvorgang an einer Spule gesehen hatten, können wir während des Einschaltens Strom und Spannung an der Spule messen, die einen unterschiedlichen zeitlichen Verlauf haben. Teilen wir die Momentanwerte der Spannung durch die des Stromes, so erhalten wir einen Widerstand, der sich zeitlich ändert. Ähnlich ist es beim Wechselstrom: R(t) = U(t) I(t) = U 0 sin(ωt + ϕ) I 0 sin ωt Das ist natürlich einigermassen unbefriedigend. U 0 I 0 Aus diesem Grund führt man als neue Grösse die Impedanz als komplexe Grösse ein. Wir wollen uns hier nur mit der Zeigerdarstellung dieser komplexen Grösse befassen. Die Länge des Zeigers entspricht dem Quotienten aus 143
4 den Amplituden von Spannung und Strom U 0 /I 0, der Winkel zur Abszisse dem Phasenwinkel ϕ zwischen Strom und Spannung. Für einen Ohmschen Widerstand sind Strom und Spannung stets in Phase, das heisst, es gilt stets ϕ = 0. Bei der Kapazität gilt: q = CU und damit du dt = 1 dq C dt = 1 C I Setzen wir für U und I die entsprechenden zeitabhängigen Grössen ein, so erhalten wir ωu 0 cos(ωt + ϕ) = 1 C I 0 sin(ωt) ωu 0 sin(ωt + ϕ + π/2) = 1 C I 0 sin(ωt) Daraus folgt für den Phasenwinkel ϕ = π/2 und für den Betrag der Impedanz (die Länge des Zeigers): Z C = U 0 I 0 = 1 ωc Bei einer Kapazität läuft der Strom der Spannung um 90 voraus Entsprechend erhalten wir für den Phasenwinkel der Induktivität (einer Spule) ϕ = π/2 sowie für den Betrag der Impedanz Z L = ωl Bei einer Induktivität folgt der Strom der Spannung mit einer Phasenverschiebung von 90 Graphisch kann man dieses Verhalten in einem Zeigerdiagramm darstellen: 144
5 U 0,L Z L U 0,R I 0 Z R Z C I 0 I 0 U 0,C Liegt eine Reihenschaltung mehrer Elemente vor, so kann man die Gesamtimpedanz leicht durch eine Vektoraddition ermitteln: Z L Z G Z R Z C Bei einer Parallelschaltung müssen entsprechend die Leitwerte, also die reziproken Impedanzen, addiert werden Die Leistung im Wechselstromkreis Was bedeuten eigentlich die 230 V, die angeblich aus unseren Steckdosen kommen? Ist damit die Amplitude gemeint? Betrachten wir die elektrische Leistung P = U I im Wechselstromkreis, so ist diese wiederum eine Funktion der Zeit: 145
6 Strom, Spannung, Leistung I_sin U_sin P_sin Zeit Die mittlere Leistung ehalten wir durch Integration über eine Periode: < P el >= 1 T T 0 U(t)I(t)dt Führen wir diese Integration aus, erhalten wir: < P el >= U 0I 0 2 cos ϕ = U 0 2 I 0 2 cos ϕ Die durch 2 geteilten Ampltuden von Strom bzw. Spannung nennen wir Effektivwerte. Sie entsprechen der Stromstärke, die ein Gleichstrom haben müsste, um die gleiche Wärmewirkung an einem ohmschen Widerstand zu erzielen wie ein Gleichstrom (analog für die Spannung). Weiterhin sehen wir, dass die mittlere Leistung in einem Stromkreis mit reiner Kapazität bzw. reiner Induktivität verschwindet Transformatoren Teilen sich zwei Spulen ein Magnetfeld, so kann über eine ein veränderliches Feld angelegt werden, das in der zweiten eine Spannung induziert 146
7 Eingangsspannung und Ausgangsspannung verhalten sich wie die Zahl der Windungen: U 1 U 2 = n 1 n 2 Da aufgrund der Energieerhaltung die Leistung nicht steigen kann, muss gelten U 1 I 1 = U 2 I 2 Die Stromstärken verhalten sich also umgekehrt proportional zur Zahl der Windungen Der elektrische Schwingkreis Eine Reihenschaltung von Spule, Kondensator und ohmschem Widerstand stellt einen elektrischen Schwingkreis dar. L R C Wenden wir die Maschenregel auf diesen Schwingkreis an, so erhalten wir U L di dt + 1 C q = RI 147
8 Leiten wir diese Gleichung nach der Zeit ab, folgt du dt = I Ld2 dt + RdI 2 dt + 1 dq C dt du dt = LÏ + R I + 1 C I Dies ist die Differentialgleichung einer erzwungenen gedämpften Schwingung, wie wir sie in der Mechanik kennengelernt hatten. Die Eigenfrequenz ist ω 0 = 1/ LC und die Dämpfungskonstante β = R/L usw. Analog zur periodisch angeregten gedämpften mechanischen Schwingung können wir auch den elektrischen Schwingkreis mit einer periodischen Spannung U = U 0 sin(ωt) anregen. Entspricht die Anregungsfrequenz der Eigenfrequenz, so kommt es zur Resonanz, also zur grössten Amplitude des Stromes. Auf der Anregungsseite steht jedoch die zeitliche Ableitung der Spannung! Aus diesem Grund wird die Amplitude des Stroms sowohl bei kleiner als auch grosser Frequenz zu Null! Das ist einleuchtend, denn bei kleiner Frequenz ist die Impedanz des Kondensators unendlich, bei grosser Frequenz die der Spule. Ohne periodische Anregung klingt die Schwingung exponentiell ab 148
9 Amplitude Phase ω ω 0 Auch die Phasenlage zwischen Anregung (Spannung) und Wirkung (Strom) ändert sich wie bei der mechanischen Resonanz. Bringen wir in einen Schwingkreis, an dem eine Gleichspannung anliegt, einen Widerstand ein, der bei hohen Stromstärken kleiner wird, so kann ein solcher Schwingkreis von selbst anschwingen. 5.6 Elektromagnetische Wellen Der Verschiebungsstrom Maxwell ( ) postulierte, dass, so wie eine zeitliche Änderung eines Magnetfeldes eine Spannung induziert, eine zeitliche Änderung eines elektrischen Feldes äquivalent zu einem Stromfluss sein muss. Laden wir einen Kondensator auf, so gilt für den Strom: I = dq dt = εε 0A de dt 149
10 Dieser Verschiebungsstrom muss nun wiederum zu einem Magnetfeld führen: s d Bd s = µµ 0 I = µµ 0 εε 0 Ed A dt A wobei A die von s berandete Fläche ist. Dieser Zusammenhang ist zunächst nicht offensichtlich und kann nur im Rahmen der speziellen Relativitätstheorie erklärt werden, die Maxwell noch nicht kennen konnte. Das zeitlich veränderliche elektrische Feld führt also zu einem zeitlich veränderlichen magnetischen, dieses wieder Die Maxwellschen Gesetze Die Maxwellschen Gesetze fassen folgende, uns schon teilweise bekannte Gesetze zusammen: Gauss sches Gesetz, Gesetz vm Fehlen magnetischer Monopole, Faradaysches Induktionsgesetz, Ampère Gesetz (mit Veschiebungsstrom) A A Ed A = q εε 0 Bd A =0 s s Ed s = d Bd A dt = d A dt Φ B d Bd s =µµ 0 (I + εε 0 Ed A) dt d = µµ 0 (I + εε 0 dt Φ E) A Die ersten beiden Gesetze beziehen sich auf die Quellen, die letzten beiden auf die Wirbel des elektrischen bzw. magnetischen Feldes. 150
11 5.6.3 Die Existenz elektromagnetischer Wellen Im Vakuum gibt es keine Ladungen, also nehmen die Maxwell-Gleichungen die Form an: Ed A =0 A Bd A =0 A Ed s = d Bd A s dt A d Bd s =µ 0 ε 0 Ed A dt s Diese Gleichungen sind fast symmetrisch bezüglich einer Vertauschung des elektrischen und magnetischen Feldes. Es lässt sich zeigen, dass diese Maxwellgleichungen bei geeigneter Wahl des Koordinatensystems und der Randbedingungen äquivalent mit den Differentialgleichungen A d 2 E x dz 2 d 2 B y dz 2 1 c 2 d 2 E x dt 2 =0 1 c 2 d 2 B y dt 2 =0 sind, wobei c 2 = 1 µ 0 ε 0 ist. Lösungen dieser Differentialgleichungen sind räumlich und zeitlich periodische Funktionen, nämlich ebene Wellen. Diese elektromagnetischen Wellen haben folgende Eigenschaften: Es sind transversale Wellen Die Phasengeschwindigkeit ist c = 1/ µ 0 ε 0 Das elektrische und das magnetische Feld stehen stets senkrecht aufeinander Energietransport in elektromagnetischen Wellen Energiedichte der elektromagnetischen Welle 151
12 5.6.5 Die Entstehung elektromagnetischer Wellen Im Prinzip führt jedes zeitlich veränderliche elektrische oder magnetische Feld zur Entstehung elektromagnetischer Wellen. Wie wir noch sehen werden, kann die Wellenlänge und die Frequenz elektromagnetischer Wellen über einen Bereich von über 20 Zehnerpotenzen variieren. Greifen wir zunächst als typisches Beispiel die Radiowellen heraus. Jeder kennt die Antennen, die an einem Handy zum Senden, also zur Abstrahlung elektromagnetischer Wellen dienen. Eine einfache Form einer solchen Antenne ist ein leitfähiger Stab. Im Prinzip ist so ein leitfähiger Stab eine Reihenschaltung aus ohmschem Widerstand, Kapazität und Induktivität. Die grösste Amplitude der Stromstärke auf dem Dipol und damit das stärkste elektromagnetische Feld erhalten wir, wenn wir den Schwingkreis bei seiner Resonanzfrequenz anregen. R C L 152
13 Das magnetische Feld wird jetzt stets Kreisförmig um den Dipol ausgerichtet sein. Das induzierte elektrische Feld steht senkrecht auf dem magnetischen. Beide Feldvektoren stehen stets senkrecht auf der Ausbreitungsrichtung, die elektromagnetischen Wellen sind also Transversalwellen. Als solche besitzen sie eine Polarisation. Als Richtung der Polarisation wird die Richtung des elektrischen Feldes angegeben, da dies auch die Richtung des Hertzschen Dipols ist. Darauf werden wir im Abschnitt Optik noch zurückkommen. Elektromagnetische Wellen überdecken einen über viele Grössenordnungen reichenden Bereich von Frequenzen und Wellenlängen. 153
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
1 Wechselstromwiderstände
1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt
18. Magnetismus in Materie
18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der
Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L
Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und
Wechselstromwiderstände
Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
Elektrische Messverfahren Versuchsvorbereitung
Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit
Aufgaben Wechselstromwiderstände
Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose
7.3 Anwendungsbeispiele aus Physik und Technik
262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit
U N I V E R S I T Ä T R E G E N S B U R G
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis
Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H
ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS
EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:
david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov [email protected] Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei
Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung
Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3
Wechselstromkreis mit verschiedenen Bauteilen
Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf
P = U eff I eff. I eff = = 1 kw 120 V = 1000 W
Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten
1 Allgemeine Grundlagen
1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die
4.12 Elektromotor und Generator
4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
WB Wechselstrombrücke
WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand
Praktikum Grundlagen der Elektrotechnik
raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.
2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n
2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht
Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.
Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......
A. Ein Kondensator differenziert Spannung
A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.
2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht
U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt
Rotierende Leiterschleife
Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische
Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:
Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:
Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.
Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien
Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)
Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen
Energieströme im elektromagnetischen Feld
πάντα ῥεῖ alles fließt Karlsruhe 28. März 2011 Energieströme im elektromagnetischen Feld Peter Schmälzle Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe [email protected] Elektrisches
3.5. Aufgaben zur Wechselstromtechnik
3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn
Hochpass, Tiefpass und Bandpass
Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt
Elektronenstrahloszilloskop
- - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop
Komplexe Zahlen und Wechselstromwiderstände
Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.
4 Kondensatoren und Widerstände
4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.
Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte
Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung
Praktikum GEE Grundlagen der Elektrotechnik Teil 3
Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch
=N 2. 10 Induktivität
10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung
Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.
Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn
Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge
Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
6 Wechselstrom-Schaltungen
für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele
6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten
Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen
Wärmeleitung und thermoelektrische Effekte Versuch P2-32
Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock
07.03.2015. Stromkreis aus Kondensator und Spule. U c =U L
1 Stromkreis aus Kondensator und Spule 0 U c =U L -1 1 2 Elektrischer Schwingkreis 1 0 Volt 0,5 U = L I& U = 1/ C Q 1/ C Q = L Q& Einheit 1 Volt Spule 1 Volt Kondensator 1 Volt Schwingungsgleichung 3 Schwingkreis
Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron
Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen
Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X
Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Elektrische Energie, Arbeit und Leistung
Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen
Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik
Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Vorbemerkung. [disclaimer]
Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel
1 Anregung von Oberflächenwellen (30 Punkte)
1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit
IIE4. Modul Elektrizitätslehre II. Transformator
IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten
Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1
3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife
Filter zur frequenzselektiven Messung
Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Strom - Spannungscharakteristiken
Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.
Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik
FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch
EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2
EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang
EO - Oszilloskop Blockpraktikum Frühjahr 2005
EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem
Lineare Differentialgleichungen erster Ordnung erkennen
Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)
3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung
Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.
!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen
2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende
Wechselstromwiderstände
Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer [email protected] B9 Assistent:
Anschauliche Versuche zur Induktion
Anschauliche Versuche zur Induktion Daniel Schwarz Anliegen Die hier vorgestellten Versuche sollen Schülerinnen und Schüler durch die Nachstellung von Alltagstechnik für das Thema Induktion motivieren.
1. Frequenzverhalten einfacher RC- und RL-Schaltungen
Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung
Fachbereich Physik Dr. Wolfgang Bodenberger
UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter
R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit
R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,
Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel
Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung
Oszillographenmessungen im Wechselstromkreis
Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf
PS II - Verständnistest 24.02.2010
Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:
Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.
Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.
Halbleiterbauelemente
Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten
Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?
Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz
12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker
12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
Wollen Sie einen mühelosen Direkteinstieg zum Online Shop der ÖAG? Sie sind nur einen Klick davon entfernt!
Wollen Sie einen mühelosen Direkteinstieg zum Online Shop der ÖAG? Sie sind nur einen Klick davon entfernt! Sehr geehrte(r) Geschäftspartner(in), Um Ihre Transaktionen schneller durchzuführen, bieten wir
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom
4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und
Elektrischer Widerstand
In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis
ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
4. Physiktest Kapitel 04 Der elektrische Strom Teil 1 Grundlagen Gruppe 1
4. Physiktest Kapitel 04 Der elektrische Strom Teil 1 Grundlagen Gruppe 1 1. (2) Ergänze: Bereits die alten wussten, dass man Elektrizität durch Reiben von Bernstein (griechisch ) an Wolle hervorrufen
Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte
Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
