Strahlungsdruck, Potentiale
|
|
|
- Marielies Reuter
- vor 9 Jahren
- Abrufe
Transkript
1 Übung 7 Abgabe: bzw Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich Strahlungsdruck, Potentiale 1 Der Brewsterwinkel (15 Pkt.) Als Nachtrag zu den Fresnel schen Reflexions- und Transmissionskoeffizienten beschäftigen wir uns in dieser Aufgabe mit einigen ihrer Eigenschaften und den daraus resultierenden Anwendungsmöglichkeiten. Praktisch sämtliche Materialien, die in der Natur vorkommen, sind im optischen Frequenzspektrum kaum magnetisierbar, so dass gilt µ = 1. Wir verwenden diesen Umstand während der gesamten Aufgabe. (a) (4 Pkt.) Zeigen Sie, dass für p-polarisiertes Licht beim Übergang von einem Medium mit Brechungsindex n 1 zu einem Medium mit Brechungsindex n 2 ein Einfallswinkel θ 1 = θ B = arctan (n 2 /n 1 ) existiert, unter dem keinerlei Intensität an der Grenzfläche reflektiert wird, so dass sämtliche Intensität in das Material mit Brechungsindex n 2 hineingebrochen wird. (b) (2 Pkt.) Man nennt den Winkel θ B den Brewsterwinkel. Der Brewsterwinkel wird ausgenutzt, um Laserstrahlen verlustfrei durch Glasfenster (beispielsweise von Einhausungen oder Vakuumkammern) zu führen. Unter welchem Winkel muss ein Glasfenster geschliffen sein, d.h. unter welchem Winkel müssen die beiden Oberflächen zueinander stehen, damit ein unter dem Brewsterwinkel für eine Luft-Glas-Oberfläche in das Fenster eintretender Laserstrahl unter dem Brewsterwinkel für eine Glas-Luft-Oberfläche wiederum reflexionsfrei aus dem Fenster austritt? (c) (5 Pkt.) Erstellen Sie (unter Verwendung eines geeigneten Computerprogrammes) einen Graphen für den Intensitätsreflexionskoeffizienten R s/p (θ) = r s/p (θ) 2 für s- sowie für p- polarisiertes Licht an einer Grenzfläche zwischen Luft n 1 = 1 und Wasser n 2 = 1.4. Markieren Sie den Brewsterwinkel, und beschriften Sie Ihre Achsen aussagekräftig und mit Einheiten. (d) Polarisierende Sonnenbrillen reduzieren die blendende Wirkung von an Wasseroberflächen oder nassen Fahrbahnen reflektiertem Sonnenlicht. Die Gläser solcher Brillen sind mit einem linearen Polarisationsfilter versehen. Verwenden Sie Ihren Graphen aus der vorhergehenden Aufgabe, um folgende Fragen zu beantworten. (a) (2 Pkt.) Sie fahren der Sonne auf regennasser Fahrbahn entgegen. Warum werden Sie durch Reflexionen an der Fahrbahn umso stärker geblendet, je tiefer die Sonne steht? 1
2 (b) (2 Pkt.) Unter welchem Winkel sollten die Polarisationsfilter auf Ihrer Sonnenbrille relativ zur Erdoberflächennormalen angebracht sein, um Blendung zu minimieren? Der Winkel gebe die Polarisationsrichtung an, die von dem Filter transmittiert wird. 2
3 2 Die Lorentzkraft auf einen stromdurchflossenen Draht (35 Pkt.) Elektromagnetische Strahlung übt Kräfte aus. In der Vorlesung haben wir diesen Umstand für zeitabhängige elektromagnetische Felder hergeleitet. Selbstverständlich gilt unsere Theorie auch im Limit verschwindender Frequenzen, also für elektrostatische Probleme. Um uns mit dem Formalismus des Maxwell schen Spannungstensors vertraut zu machen, betrachten wir in dieser Aufgabe die Kraft, die ein stromdurchflossener Draht in einem homogenen Magnetfeld verspürt. Wir betrachten einen Draht entlang der z-achse, in dem ein Strom I in positive z-richtung fliesse. Der Draht befinde sich in einem homogenen Magnetfeld mit Stärke H 0, das entlang der y-richtung zeige. H 0 I z y x (a) (5 Pkt.) Berechnen Sie mithilfe einer Maxwell schen Rotationsgleichung das Magnetfeld H ind (r), das durch den Strom generiert wird. (b) (4 Pkt.) Formulieren Sie das totale Magnetfeld H(r, φ) unter Verwendung kartesischer Einheitsvektoren als Summe des durch den Strom generierten Feldes und des externen Feldes. Hinweis: Es gilt für den Einheitsvektor n φ = sin φn x + cos φn y. (c) (10 Pkt.) Berechnen Sie den Maxwell schen Spannungstensor für das vorliegende Problem. (d) (12 Pkt.) Berechnen Sie die Kraft pro Einheitslänge, die auf den Draht wirkt. Integrieren Sie dazu den Maxwell schen Spannungstensor über die Oberfläche eines Zylinders mit Radius r um den Draht. (e) (4 Pkt.) Berechnen Sie nun die Lorentzkraft F = q(e + v B). (1) auf den stromdurchflossenen Draht und bestätigen Sie Ihr Ergebnis aus der vorherigen Teilaufgabe. 3
4 3 Elektromagnetische Welle im Medium (50 Pkt.) In der Vorlesung haben wir gefunden, dass zeitharmonische Felder in homogenen Medien ebenso wie im Vakuum als Superposition ebener Wellen geschrieben werden können, es ist lediglich die Dispersionsrelation durch den Brechungsindex n zu korrigieren. Dieser Umstand beruht auf der Tatsache, dass ein elektromagnetisches Feld in einem homogenen Medium eine Polarisation erzeugt, die wiederum elektromagnetische Felder abstrahlt. In dieser Aufgabe leiten wir die Dispersionsrelation im Medium (exemplarisch im Fall µ = 1) erneut her, indem wir explizit die Felder betrachten, die durch die zeitharmonische Polarisierung eines Mediums generiert werden. Wir beginnen mit den mikroskopischen Maxwell-Gleichungen, die lauten E = ρ tot /ε 0, (2) B = 0, (3) E = B, t (4) B = 1 c 2 t E + µ 0j tot. (5) Ausserdem verwenden wir das skalare Potential φ und das Vektorpotential A, aus denen sich die Felder berechnen lassen, wie in der Vorlesung behandelt. (a) (6 Pkt.) Verwenden Sie die Lorenzeichung, die Sie in der Vorlesung kennengelernt haben, um die folgenden Wellengleichungen für die Potentiale herzuleiten 2 A L 1 c 2 2 A L t 2 = µ 0 j tot, (6) 2 φ L 1 c 2 2 φ L t 2 = ρ tot /ε 0. (7) (b) (5 Pkt.) Wir führen nun den elektrischen Hertz-Vektor π e und den magnetischen Hertz-Vektor π m ein, die wir über folgende Gleichungen definieren φ L = π e, (8) A L = 1 c 2 π e t + π m. (9) Wir betrachten im Folgenden ein System ohne freie Ladungen (es existieren also lediglich Polarisationsladungen) und ohne freie Ströme und Leitungsströme (es existieren also lediglich Polarisationsströme und Magnetisierungsströme). Zeigen Sie, dass im betrachteten System die Hertz schen Vektoren π m und π e die inhomogenen Wellengleichungen erfüllen 2 π e 1 c 2 2 π e t 2 = 1 ε 0 P, (10) 2 π m 1 c 2 2 π m t 2 = µ 0 M. (11) 4
5 (c) (5 Pkt.) Zeigen Sie, dass sich die Felder aus den Hertz schen Vektoren und den Quellen berechnen nach E = π e π m t P ε 0, (12) B = π m + 1 c 2 π e t. (13) (d) (2 Pkt.) Wir können für zeitharmonische Felder zu komplexen Hertz schen Vektoren übergehen, so dass gilt π(r, t) = Re { π(r)e iωt}. Zeigen Sie, dass die komplexen Hertz schen Vektoren die inhomogenen Helmholtzgleichungen erfüllen mit der Wellenzahl im Vakuum k 0. 2 π e + k 2 0π e = 1 ε 0 P, (14) 2 π m + k 2 0π m = µ 0 M, (15) (e) (4 Pkt.) Für die zeitharmonischen Hertz schen Vektoren gilt also die inhomogene Helmholtzgleichung mit der Vakuumwellenzahl k 0. Sie kennen die Green sche Funktion G 0 (r, r ) der Helmholtzgleichung aus der Vorlesung. Wir beschränken uns für den Rest dieser Aufgabe auf ein Medium, das keinerlei Magnetisierung zeigt, so dass wir im Folgenden lediglich den elektrischen Hertz schen Vektor zu betrachten haben. Zeigen Sie, dass für den elektrischen Hertz schen Vektor gilt π e (r) = 1 4πε 0 dv e ik 0 r r r r P(r ). (16) (f) (8 Pkt.) Wir nehmen nun eine Polarisation in der Form einer in positive z-richtung propagierenden ebenen Welle bei Frequenz ω an. Die räumliche Periodizität der Polarisation sei bestimmt durch ihre (bislang unbekannte) Wellenzahl k, so dass gilt P(r) = P 0 e ikz. Ausserdem sei die Polarisation transversal, so dass der Polarisationsvektor P 0 senkrecht auf der Ausbreitungsrichtung steht. Unser Ziel im Folgenden ist, die Wellenzahl k in Abhängigkeit von der Frequenz ω (bzw. der Vakuumwellenzahl k 0 ) zu bestimmen. Verwenden Sie die Substitution R = r r = ρ 2 + (z z ) 2 um folgenden Ausdruck für den Hertz schen Vektor herzuleiten π e (r) = P 0e ikz 2ε 0 dz e ik(z z) z z dr e ik 0R. (17) (g) (2 Pkt.) Berechnen Sie das letzte Integral in Gl. (17), indem Sie folgenden Grenzwert betrachten lim dr e ik0r e λr. (18) λ 0 z z Hinweis: Diese Vorgehensweise ist mathematisch nicht völlig einwandfrei, führt aber in unserem Falle zuverlässig zum Ziel. (h) (10 Pkt.) Zeigen Sie, dass der elektrische Hertz sche Vektor lautet π e (r) = P 0e ikz ε 0 (k 2 k0 2 (19) ). 5
6 Hinweis: Spalten Sie das zu berechnende Integral geeignet auf, um den Betrag im Integranden loszuwerden. Wenden Sie weiterhin den Grenzwert aus Teilaufgabe (g) an. (i) (4 Pkt.) Berechnen Sie das elektrische Feld E(r) aus dem Hertz schen Vektor. Hinweis: Zeigen Sie, dass der Hertz sche Vektor π e divergenzfrei ist und verwenden Sie diese Tatsache zusammen mit der inhomogenen Helmholtzgleichung, um Ihre Rechnung zu vereinfachen. (j) (4 Pkt.) Nehmen Sie an, dass ein linearer Zusammenhang zwischen der Polarisation und dem elektrischen Feld besteht von der Form P = ε 0 χe. Zeigen Sie, dass damit für die Wellenzahl im Medium k gilt k 2 = (1 + χ)k 2 0. (20) Welcher Zusammenhang besteht folglich zwischen dem Brechungsindex n eines nicht magnetisierbaren Mediums und seiner Suszeptibilität χ? 6
Brewster-Winkel - Winkelabhängigkeit der Reflexion.
5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
5.9.301 Brewsterscher Winkel ******
5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:
Polarisation durch Reflexion
Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische
Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen
Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:
Elektrische Schwingungen und Wellen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16
POLARISATION. Von Carla, Pascal & Max
POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde
Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt }
Elektromagnetische Felder und Wellen: zur Klausur 202- Aufgabe ( 6 Punkte) Gegeben ist das H-Feld einer elektromagnetischen Welle als H = H 0 exp{i(ωt kz)} e y + ih exp{i(ωt kz)} e x Geben Sie die Polarisation
Formelsammlung Elektrodynamik
Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................
Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt
Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken
Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair
Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke
1 Anregung von Oberflächenwellen (30 Punkte)
1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit
6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation
Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.
Versuch Polarisiertes Licht
Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise
Polarisation des Lichts
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion
IO2. Modul Optik. Refraktion und Reflexion
IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.
Physik III Übung 1 - Lösungshinweise
Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen
Ferienkurs Experimentalphysik II Elektrodynamik. Übung zur Magnetostatik Musterlösung. 12. September 2011 Michael Mittermair
Ferienkurs Experimentalphysik II Elektrodynamik Übung zur Magnetostatik Musterlösung 12. September 211 Michael Mittermair Aufgabe 1 Bestimmen sie das B-Feld eines dünnen,(unendlich)langen, geraden Leiters,
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (7 Punkte) a)
Physik VI Plasmaphysik
Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im
Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel
Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin
Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)
TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele
10.1 Ampère sches Gesetz und einfache Stromverteilungen
1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte
Theoretische Physik II Elektrodynamik Blatt 9. k (
PDDr. S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 9 SS 29.6.29. Energie und Impuls elektromagnetischer Wellen. Eine transversale elektromagnetische 4Pkt.) Welle in einem nicht leitenden,
Formelsammlung: Physik II für Naturwissenschaftler
Formelsammlung: Physi II für Naturwissenschaftler 4 Eletrizität und Magnetismus 4.1 Ladung und Ladungserhaltung Ladung q = n(±e) mit Elementarladung 4.2 Coulomb-Gesetz e = 1, 6 10 19 C = 1, 6 10 19 As
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik (GPh) am 8.0.013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur
Experimentalphysik II
Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung
20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)
20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)
Wellenlänge, Wellenzahl, Lichtgeschwindigkeit
Das -Feld Wellenlänge, Wellenzahl, Lichtgeschwindigkeit Harmonische Welle: macht harmonische Schwingung sin[ωt + φ( r)] an jedem Punkt im Raum; variiert bei festem t sinusförmig entlang z Wellenfronten
Fresnelsche Formeln und Polarisation
Physikalisches Praktikum für das Hauptfach Physik Versuch 25 Fresnelsche Formeln und Polarisation Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer [email protected]
PS II - Verständnistest
Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Wellen an Grenzflächen
Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Optik und Licht. Jan Krieger. 2. März c 2005 by Jan Krieger.
Optik und Licht Jan Krieger 2. März 2005 1 INHALTSVERZEICHNIS 1 Elektromagnetische Wellen im Vakuum 2 1.1 Wellengleichung.................................... 2 1.2 Ebene Wellen......................................
Formelsammlung. für die Vorlesung. Elektromagnetische Felder und Wellen. Matthias Weber WS 2004/2005. zuletzt überarbeitet am 10.
Formelsammlung für die Vorlesung Elektromagnetische Felder und Wellen Matthias Weber WS 2004/2005 zuletzt überarbeitet am 10. März 2007 Alle Angaben ohne Gewähr Bei Fehlern, Kritik, Anregungen und Lob:
Hinweise zur mündlichen Prüfung Experimentalphysik
Hinweise zur mündlichen Prüfung Experimentalphysik Um ein Gefühl dafür zu bekommen, was von Ihnen in der mündlichen Examensprüfung erwartet wird, hat Herr Matzdorf für die Experimentalphysik II eine Zusammenstellung
1.4 Gradient, Divergenz und Rotation
.4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.
Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.
Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,
HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften
Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein
Magnetismus - Einführung
Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)
III Elektrizität und Magnetismus
20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche
Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses)
-1/17- Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) Quelle des Ursprungsbildes: D-Kuru/Wikimedia Commons -2/17- Was sieht man, wenn man......mit einer 3D-Kinobrille in den
3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.
- 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten
Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz.
Bergische Universität Wuppertal Fachbereich C Sommersemester 007 Physikalisches Praktikum 1 Versuch Mi 1 Mikrowellen Verfasser: Moritz Schubotz Betreuer: Sebastian Weber Abgabetermin: 0 Ausgangssituation
Polarisationsapparat
1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist
Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri [email protected]
Brechung des Lichtes Refraktion Prof. Dr. Taoufik Nouri [email protected] Inhalt Brechungsgesetz Huygenssches Prinzip planen Grenzfläche Planparallele-Parallelverschiebung Senkrechter Strahlablenkung Totalreflexion
1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird
Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)
Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, ([email protected]) 8. 7. 29 Aufgaben. In der Vorlesung
Ergänzungen zur Physik I: Wellen (Zusammenfassung)
Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2
T6 Elektrodynamik in Materie
T6 Elektrodynamik in Materie T6. Die phänomenologischen Maxwell Gleichungen Wir wollen hier den Einfluss von Materie auf makroskopische elektromagnetische Phänomene beschreiben. Wir betrachten zunächst
3.5. Fresnelsche Formeln
3.5 Fresnelsche Formeln 327 3.5. Fresnelsche Formeln Ziel Bestätigung der fresnelschen Formeln zur Reflexion und Transmission von elektromagnetischen Wellen an ebenen Grenzflächen. Betrachtet wird im Experiment
Fragen zur Vorlesung Licht und Materie
Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante
6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an.
6 Elektromagnetische Schwingungen und Wellen E y E(z=0) E 0 z E y E 0 t Abbildung 6.10: (a) E(z, t = t 1 ): Momentaufnahme für t = t 1. (b) E(z = z 1, t): Zeitabhängigkeit an festem Ort z = z 1. Polarisation
Polarisation durch Doppelbrechung
Version: 27. Juli 24 O4 O4 Polarisation durch Doppelbrechung Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene,
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O08 Polarisation (Pr_PhII_O08_Polarisation_7, 25.10.2015) 1. 2. Name Matr. Nr. Gruppe Team Protokoll ist ok O Datum
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
Wellenoptik II Polarisation
Phsik A VL41 (31.01.2013) Polarisation Polarisation Polarisationsarten Polarisatoren Polarisation durch Streuung und Refleion Polarisation und Doppelbrechung Optische Aktivität 1 Polarisation Polarisationsarten
Aufgabe Summe max. P Punkte
Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Übungsblatt 13. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik
Übungsblatt 3 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 7.07.2008 Aufgaben. DieDielektrizitätszahlvonWasserist8,diemagnetischeSuszeptibilitätbeträgt 0
Elektromagnetische Schwingungen und elektromagnetische Wellen im Vakuum
TU München Experimentalphysik 2 Ferienkurs WS 08/09 Felicitas Thorne Elektromagnetische Schwingungen und elektromagnetische Wellen im Vakuum Freitag, 27. Februar 2009 Inhaltsverzeichnis 1 Der elektromagnetische
PO Doppelbrechung und elliptisch polarisiertes Licht
PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................
Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik
Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
2 Elektromagnetische Wellen
2 Elektromagnetische Wellen 21 2 Elektromagnetische Wellen In diesem Kapitel tauchen wir erstmals tiefer ein in die Wellennatur des Lichts. Wir werden sehen, dass elektrische Felder sowohl von elektrischen
Elektromagnetische Wellen in Materie
Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden
Magnetisierung der Materie
Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und
1 Vorlesungen: und Vektor Rechnung: 1.Teil
1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg
Musso: Physik II Teil 30 Elektromagn. Welllen Seite 1
Musso: Phsik II Teil 30 Elektromagn. Welllen Seite 1 Tipler-Mosca Phsik ELEKTRIZITÄT UND MAGNETISMUS 30. Die Maxwell'schen Gleichungen - Elektromagnetische Wellen (Maxwell's equation and electromagnetic
5 Quasistationäre Felder. 5.1 Poyntingvektor
Das quasistationäre Feld 3 5 Quasistationäre Felder 5.1 Poyntingvektor 5.1 Für ein Koaxialkabel mit gegebenen Radien soll mit Hilfe des Poynting schen Vektors der Nachweis geführt werden, dass a) die transportierte
Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen
Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Frank Wilhelm-Mauch February 5, 013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 0. Februar
14.3 Berechnung gekrümmter Flächen
4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz
Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt am:
Ferienkurs Experimentalphysik II Elektrodynamik - Übungen
Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:
Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H
Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005
Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk
Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,
Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, ([email protected]) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
PS III - Rechentest
Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und
gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)
Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
Blatt 03.1: Scheinkräfte
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
