2.6 Der endliche Potentialtopf

Größe: px
Ab Seite anzeigen:

Download "2.6 Der endliche Potentialtopf"

Transkript

1 .6 Der endliche Potentialtopf W E Ψ ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Beim Übergang vom unendlichen zum endlichen Potentialtopf ändern sich die Lösungen qualitativ. Eine wichtige Rolle spielen die Stetigkeitsbedingungen.

2 .6 Der endliche Potentialtopf W E Ψ ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Wir haben schon gefordert, dass - im unendlichen Potential die Wellenfunktion ψ verschwindet. Begründung: * ( ψ ) ( ) ( ) m V + ψ ist sowas wie eine Energiedichte. Wenn V divergiert und ψ ungleich Null ist, dann divergiert auch die Energiedichte. Dies erscheint unsinnig.

3 .6 Der endliche Potentialtopf W E Ψ ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Wir haben auch schon gefordert, dass - die Wellenfunktion stetig ist. Begründung: ψ * ( ) j ψ ( ) ist sowas wie eine Impulsdichte (proportional zum Strom). Wenn ψ unstetig ist, dann divergiert diese Dichte. Dies erscheint ebenso unsinnig.

4 .6 Der endliche Potentialtopf W E Ψ ev V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm - Formaler Zugang: Wie sieht die Wellenfunktion ψ() an einer Sprungstelle aus? Ausgehend von der S-Glg.: + V( ) ψ( ) = Wψ( ) integrieren rund um m : Integration der S-Glg. von -δ bis + δ : ( ψ '( + δ) ψ '( δ) ) + V( ) ψ( ) d = Wψ( ) d m + δ + δ δ δ

5 Der endliche Potentialtopf: Randbedingungen E W 3.38 ev Ψ 3 V() Ψ 1.5 ev Ψ 1.38 ev L = 1 nm + V( ) ψ( ) Wψ( ) = m Integration der S-Glg. von - Wie sieht die Wellenfunktion ψ() an einer Sprungstelle aus? ψ '( + δ) ψ '( δ) + V( ) ψ( ) d Wψ( ) d m = δ δ -δ bis + δ : ( ) + δ + δ ψ ist stetig differenzierbar falls V endlich, sonst nur stetig für δ ( falls V endlich) für δ

6 Der endliche Potentialtopf: Struktur der Lösungen V() Die übliche Darstellung des Potentialtopfes: V( ) L : > = L V : - lokalisierte, gebundene Zustände, die so ähnlich aussehen wie beim Potentialtopf mit unendlich hohen Wänden (Wellenfunktion verschwindet im Unendlichen) -ebene Wellen, die irgendwie durch den Topf in ihrer Ausbreitung gestört werden (sehr delokalisiert, ähnlich dem freien Elektron) -V -L/ L/ Wir vermuten zwei qualitativ unterschiedliche Lösungsarten:

7 V() Der endliche Potentialtopf: Struktur der Lösungen V( ) L : > = L V : -V -L/ L/ Wir vermuten zwei qualitativ unterschiedliche Lösungsarten: - lokalisierte, gebundene Zustände, die so ähnlich aussehen wie beim Potentialtopf mit unendlich hohen Wänden -ebene Wellen, die irgendwie durch den Topf in ihrer Ausbreitung gestört werden (ähnlich dem freien Elektron)

8 Der endliche Potentialtopf: Gebundene Lösungen Gebundene Lösungen klassisch: -Gesamtenergie < - Teilchen läuft wie Ping-Pong-Ball im Topf hin und her V() -L/ L/ Gebundene Lösung quantenmechanisch: - Energieeigenwert < - Wellenfunktion verschwindet im Unendlichen I II III -V -C Der Ansatz, der (fast) immer funktioniert: + ψ ( ) = A ep( jk) + A ep( jk) II II Aber: Die gebundene Wellenfunktion muss im Unendlichen verschwinden, ebene Wellen kommen also nicht in Frage! Ein solcher Ansatz ergibt gebundene Lösungen, falls k=jκ imaginär ist und der Eponent negativ ist.

9 Der endliche Potentialtopf: Gebundene Lösungen V() -L/ L/ I II III Ansatz für die Wellenfunktionen im Aussenbereich: ψ ( ) = A ep( κ ) I III I ψ ( ) = A ep( κ ) III -V -C Einsetzen in S-Glg. für Bereich I: = = m m ep( ) ep( ) ep( ) A κ Aκ κ WA κ I I I κ = mw mw - bzw. κ= - Es gibt also zunächst einmal im Aussenbereich unendlich viele Lösungen von eponentiell abfallenden Wellenfunktionen.

10 Der endliche Potentialtopf: Gebundene Lösungen -Damit ist die Struktur der Lösungen im Aussenraum klar zerfallende Eponentialfunktionen W in ev 1.5 I II III Ψ W Was ist los im Bereich II? Beispiele: 1 Der bewährte Ansatz lautet:.5 Ψ W1 + ψ ( ) = A ep( jk) + A ep( jk) mit k = II mw ( + V ) II in nm -L/ L/ Die Lösung lautet also: AI ep( κ ) : L/ + -L L ψ ( ) = AII ep( jk) + AII ep( jk) : < < AIII ep( κ ) : L/

11 Der endliche Potentialtopf: Gebundene Lösungen Die diskrete Natur der Lösungen ergibt sich jetzt wieder aus den Stetigkeitsbedingungen: ψ ( L/ ) = ψ ( L/ ) ψ '( L/ ) = ψ '( L/ ) I II I II ψ ( L/) = ψ ( L/) ψ '( L/) = ψ '( L/) II III II III W in ev Ψ W 4 Gleichungen für die 4 Unbekannten + A, A, A, A (mit k bzw. κ als Parameter) I III II II.5 Ψ W in nm Gleichungssystem hinschreiben Determinanten = setzen kl κ = k tan für symm. (cosinusartig) ψ kl κ = kcot für antisymm. ψ (sinusartig) Bedingungen für k bzw. κ mv Weiterhin gilt: κ +k = = C

12 Der endliche Potentialtopf: Gebundene Lösungen Visualisierung durch graphische Darstellung: - es eistiert auf jeden Fall eine symmetrische Lösung C -nur ab einer bestimmten Mindestgröße von V bzw. C gibt es eine antisymmetrische Lösung -je größer V, desto mehr Schnittpunkte und desto mehr Lösungen eistieren C kl κ = k tan für symm. (cosinusartig) ψ kl κ = kcot für antisymm. ψ (sinusartig) mv Weiterhin gilt: κ +k = = C

13 Der endliche Potentialtopf: Gebundene Lösungen Symmetrische (gerade) Lösungen: cos( ) L A k für ug( ) = L L Acos( k )ep κ( ) L für > W in ev 1.5 Ψ W Antisymmetrische (ungerade) Lösungen: L Bsin( k) für L L L uu( ) = Bsin( k )ep ( ) für κ > L L L Bsin( k )ep κ ( ) für < -Stetigkeitsbedingungen werden nur für -diskrete k erfüllt: endliche Anzahl von Eigenfunktionen mit diskreten Energieeigenwerten 1.5 Ψ W in nm -L/ L/ -im Gegensatz zur klassischen Lösung endliche Aufenthaltswahrscheinlichkeit ausserhalb des Topfes!! Quantenmechanischer Tunneleffekt Teilchen tunnelt aus dem Topf heraus

14 Eigentliche und Uneigentliche Lösungen Seit Anfang der Vorlesung verfolgen uns schon die uneigentlichen Lösungen, z.b. freien Elektron. In den meisten Fällen gibt es eigentliche und uneigentliche Eigenzustände. W in ev 1.5 Ψ W Eigentliche Zustände sind normierbar: 1 * 1 für m=n ψ ( ) ψ ( ) d = = δ sonst m n mn.5 Ψ W in nm Uneigentliche Zustände sind nicht normierbar: * für k'=k ψk' ( ) ψk( ) d = = δ( k' k) sonst

15 Kontinuumslösungen beim Potentialtopf Klassisch für W>: Teilchen rauscht über den Topf hinweg (wird beschleunigt und dann wieder abgebremst) V() -L/ L/ Quantenmechanik für W>: -V -C + Wieder der Ansatz, der (fast) immer funktioniert: ψ ( ) = A ep( jk) + A ep( jk) Periodische Lösungen auch ausserhalb des Topfes. Qualitatives Bild der Lösungen: -grössere kinetische Energien entsprechend kleineren Wellenlängen im Bereich des Topfes

16 Kontinuumslösungen beim Potentialtopf Ansatz für die Lösung also: + AI ep( jk) + AI ep( jk) : L / + ψ ( ) = AII ep( jk ' ) + AII ep( jk ' ) : -L/ < < L/ + AIII ep( jk) + AIII ep( jk) : L / R T ergibt eine üble Rechnerei. 1 V() -L/ L/ Typischere Situation: Elektron kommt nur einer Seite: Ebene Welle läuft von links nach rechts Die Rechnerei ist damit immer noch heftig. -V -C Was interessiert uns denn eigentlich? Ähnlich zur Elektrodynamik sind die Refleions- und der Transmissionskoeffizienten (die Ströme) relevant. (R+T=1)

17 Potentialtopf: W>, Kontinuumslösungen Klassisch für W>: Teilchen rauscht über den Topf hinweg (wird beschleunigt und dann wieder abgebremst) V() -L/ L/ Quantenmechanisch für W>: L L Aus ψgedämpft ( ) = Bsin( k )ep κ( ) wird ψ Kontinuum L L ( ) = Bsin( k )sin( k'( )) Periodische Lösungen auch ausserhalb des Topfes. wobei mv -C -V κ= k Qualitatives Bild der Lösungen:

18 Potentialtopf: W>, Kontinuumslösungen T TW ( > ) = 1+ T(W) + III AI = A ; R = A + + I AI sin ( mw ( + V )/ a) 4( W / V)( W / V + 1) 1 I 1 R V() II a T -V III W Resonanzen für k ' = nπ a also immer dann, wenn die halbe Materiewellenlänge (oder ein ganzzahliges Vielfaches in den Potentialtopf hineinpasst)

19

20 Potentialtopf: W>, Kontinuumslösungen Ähnliches Verhalten wie beim Durchgang von Licht (=elektromagnetische Welle) durch ein Fabry-Perot-Interferometer: Funktionsprinzip eines Fabry-Perot-Etalons. Quelle: Durchlässigkeit eines Fabry-Perot-Etalons für verschiedene Güten.

21 Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V für < V( ) = ± V für a für > a

22 Potentialbarriere W<V : Tunneleffekt in Reinkultur denn: T V Klassisch würde das Elektron an der Barriere mit 1%iger Wahrscheinlichkeit reflektiert werden. Quantenmechanisch durchtunnelt es mit einer gewissen Wahrscheinlichkeit die Barriere 1.8 TW ( < V ) = 1+ sinh ( mv ( W)/ a) 4( W / V)(1 W / V) E [ev] (V =3eV)

23

24 Anwendung von Potentialbarriere: Die Tunneldiode Für die Stromdichte gilt dann: Metall-Isolator-Tunneldiode Tunneldiode in Mikrowellenschaltkreisen Sehr starke Feldabhängigkeit, hohe Nichtlinearität des Bauelementes

25 Anwendung von Potentialtopf und -barriere: Die Tunneldiode Für die Stromdichte gilt dann: - sehr starke Spannungsabhängigkeit, - hohe Nichtlinearität des Bauelementes

26 Anwendung von Potentialtopf und -barriere: Die resonante Tunneldiode

27 Anwendung von Potentialtopf und -barriere: Die resonante Tunneldiode statt normaler Diodenkennlinie -Bereich mit negativem differentiellen Widerstand

28 Anwendung von Potentialbarrieren: Das Rastertunnelmikroskop

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

2.6. Der endliche Potentialtopf

2.6. Der endliche Potentialtopf .6. Der endliche Potentialtopf Anhand des unendlichen Potentialtopfes können nahezu alle grundsätzlichen Eigenschaften von elektronischen Eigenzuständen diskutiert werden. Aufgrund der Einfachheit der

Mehr

Der unendlich hohe Potentialtopf. Es muss aber auch erfüllt werden: + + In Matrixform: exp( jkl) exp( jkl)

Der unendlich hohe Potentialtopf. Es muss aber auch erfüllt werden: + + In Matrixform: exp( jkl) exp( jkl) Der unendlich hohe Potentialtopf Wiederholung! Ende 8.4.5 Es muss aber auch erfüllt werden: ψ()=ψ(l)= V e - + + ψ () = A exp( jk) + A exp( jk) = A + A = A = A + + ψ ( L) = A exp( jkl) + A exp( jkl) = Lineares

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Meßwerte in der Quantenmechanik

Meßwerte in der Quantenmechanik Meßwerte i der Quatemechaik w a s m i s s t m a d e e i g e t l i c h a e i e m W e l l e p a k e t?? 4. Postulat der Quatemechaik: (. Teil W e eie igefuktio zum Operator F ist, da führt die Messug vo

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

ist (ϕ,a,b reell), gibt es die beiden Wurzeln e iϕ/2 = a+ib

ist (ϕ,a,b reell), gibt es die beiden Wurzeln e iϕ/2 = a+ib UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

8. Eindimensionale (1D) quantenmechanische Probleme. 8.1 Potentialtopf mit endlich hohen Wänden:

8. Eindimensionale (1D) quantenmechanische Probleme. 8.1 Potentialtopf mit endlich hohen Wänden: 08. 1D Probleme Page 1 8. Eindimensionale (1D) quantenmechanische Probleme 8.1 Potentialtopf mit endlich hohen Wänden: alle realen Potentialtöpfe haben endlich hohe Wände 1D Potentialtopf mit U = 0 für

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,

Mehr

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische

I. Grundlagen der Quantenphysik I.1 Einleitung I.2 Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfunktion I.5 Das freie quantenmechanische I. Grundlagen der Quantenphysi I.1 Einleitung I. Historisches I.3 Die Schrödinger-Gleichung I.4 Die Wellenfuntion I.5 Das freie quantenmechanische Eletron I.6 Erwartungswerte Quantenmechanische Erwartungswerte

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 3 Eindimensionale Potentialprobleme 3.1 Problemstellung Fragestellung. Es soll die quantenmechanische Beschreibung eines Teilchens in einer Dimension, das ein Potential V sieht (Abbildung 3.1),

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0 Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

3. Klausur in K2 am

3. Klausur in K2 am Name: Punkte: Note: Ø: Profilfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am 4.3. 05 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h =

Mehr

Lösungsvorschlag Übung 9

Lösungsvorschlag Übung 9 Lösungsvorschlag Übung 9 Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit a Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.: phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene Lösungsvorschlag Übung 10 Aufgabe 1: Ein Teilchen im eindimensionalen Kasten a Die Energiedifferenz zwischen zwei aufeinanderfolgenden Energie-Eigenwerten ist E n,n+1 = E n+1 E n ml n + 1 n 1.1 n + 1.

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

6.5 Stückweise konstantes Potential: Potentialtopf

6.5 Stückweise konstantes Potential: Potentialtopf Skript zur 8. Vorlesung Quntenmechnik, Freitg den 3. Mi,. 6.5 Stückweise konstntes Potentil: Potentiltopf Wir betrchten nun ds stückweise konstnte Potentil < V() = V < < > V V Aus den llgemeinen Bemerkungen

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 3. Vorlesung Pawel Romanczuk WS 2017/18 1 Zusammenfassung letzte VL Quantenzustände als Wellenfunktionen (Normierung) Operatoren (Orts-, Impuls

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

1.3. Wellenfunktionen

1.3. Wellenfunktionen 1.3. Wellenfunktionen 1.3.1. Materiewellen Die Welleneigenschaften von Materie legen die Suche nach einer Wellengleichung nahe. Randbedingen für Wellen sind eine Ursache für das Auftreten der Quantisierung.

Mehr

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I

Der Tunneleffekt Jan Lukas Becker. Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Der Tunneleffekt Jan Lukas Becker Vorgetragen am im Rahmen der Veranstaltung Nanostrukturphysik I Übersicht 1) Herleitung des Tunneleffekts 2) Der Tunneleffekt in Metallen 3) Einzel-Elektronen-Tunneln

Mehr

Lösungsvorschlag zum Übungsblatt Nr.3

Lösungsvorschlag zum Übungsblatt Nr.3 ösungsvorschlag zum Übungsblatt Nr.3 ufgabe 19 a. Wie wir schon kennengelernt haben, ist die Energie in der Quantenmechanik gequantelt; sie nimmt also nur bestimmte diskrete aber keine beliebigen kontinuierlichen

Mehr

Eindimensionale Probleme. Teilchen in der Box: Quantisierung für gebundene Teilchen. x L. gesucht: Lösungen der zeitunabhängigen Schrödingergleichung

Eindimensionale Probleme. Teilchen in der Box: Quantisierung für gebundene Teilchen. x L. gesucht: Lösungen der zeitunabhängigen Schrödingergleichung indimensionale Probleme Teilchen in der Box: Quantisierung für gebundene Teilchen x 0 V ( x ) 0 0 x L x L 0 L p d Hxp ( ) Vx ( ) Vx ( ) m m dx gesucht: Lösungen der zeitunabhängigen Schrödingergleichung

Mehr

Repetitorium zur Vorlesung Festkörperelektronik SS 2004

Repetitorium zur Vorlesung Festkörperelektronik SS 2004 Repetitorium zur Vorlesung Festkörperelektronik SS 004 1. Grundlagen der Quantenmechanik 1.1. Einleitung 1.. Historisches Effekte, die mit klassischer Mechanik und Elektrodynamik nicht zu erklären sind:

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr

Probeklausur zu Physikalische Chemie II für Lehramt

Probeklausur zu Physikalische Chemie II für Lehramt Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 13. Vorlesung 11.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell Vorlesung 9: Roter Faden: Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Festkörperelektronik 2008 Übungsblatt 3

Festkörperelektronik 2008 Übungsblatt 3 Lichttechnisches Institut Universität Karlsruhe TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 3. Übungsblatt 9. Mai 8 Musterlösungen

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Quantenphysik. von Stephen Gasiorowicz 9., vollständig überarbeitete und erweiterte Auflage

Quantenphysik. von Stephen Gasiorowicz 9., vollständig überarbeitete und erweiterte Auflage Quantenphysik von Stephen Gasiorowicz 9., vollständig überarbeitete und erweiterte Auflage 1 Die Entstehung der Quantenphysik 1 1.1 Die Strahlung des schwarzen Körpers 1 1.2 Der Photoeffekt 6 1.3 Der Compton-Effekt

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik

Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik Name:... Vorname:... Matrikelnummer:. geb. am:... in:... Wiederholungsklausur zur Vorlesung Physikalische Chemie II: Aufbau der Materie / Kinetik WS 27/28 am 5.4.28 Zugelassene Hilfsmittel: Taschenrechner.

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik

Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 03.05.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 09.05.2018

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Was sind Quantenobjekte?

Was sind Quantenobjekte? Quantenobjekte Was sind Quantenobjekte? Die Quantentheorie beschreibt das Verhalten von Quantenobjekten in Raum und Zeit. Als Quantenobjekte oder Mikroteilchen werden in der Physik Objekte bezeichnet,

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Ferienkurs Quantenmechanik Sommer 2009

Ferienkurs Quantenmechanik Sommer 2009 Physikdepartment Technische Universität München Max Knötig Blatt 4 Ferienkurs Quantenmechanik Sommer 009 Quantenmechanik mit Näherungsmethoden Mehrteilchensystem(** Zwei identische Bosonen werden in einem

Mehr

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die

Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: elke.scheer@uni-konstanz.de Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.

Mehr

Ballistischer Transport von Elektronen durch Nanostrukturen

Ballistischer Transport von Elektronen durch Nanostrukturen Ausarbeitung des Seminarvortrags Ballistischer Transport von Elektronen durch Nanostrukturen Frederik Edens gehalten am 10. Februar 016 Inhaltsverzeichnis 1. Motivation. Einführendes Beispiel - Streuung

Mehr

Glanz und Farbe der Metalle

Glanz und Farbe der Metalle https://www.itp.uni-hannover.de/zawischa.html Glanz und Farbe der Metalle Dietrich Zawischa ITP, Leibniz University Hannover, Germany Ausgehend von den Maxwellgleichungen soll das Reflexionsvermögen von

Mehr

6.3.1 Das Modell freier Elektronen

6.3.1 Das Modell freier Elektronen 6.3. DIE SCHRÖDINGER GLEICHUNG 3 6.3. Ds Modell freier Elektronen Ein Elektron mit der Msse m befindet sich im potentilfreien Rum. Die Wellenfunktion Ψ des Elektrons ist eine Lösung der Schrödinger-Gleichung

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Das Rutherfordsche Atommodelle

Das Rutherfordsche Atommodelle Dieses Lernskript soll nochmals die einzelnen Atommodelle zusammenstellen und die Bedeutung der einzelnen Atommdelle veranschaulichen. Das Rutherfordsche Atommodelle Entstehung des Modells Rutherford beschoss

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation eine Einführung in die Quantenmechanik 1) Die Hohlraumstrahlung: Geburt der Quantenmechanik Die kosmische Hintergrundstrahlung

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy

Mehr