Rückblick auf die letzte Vorlesung
|
|
|
- Gert Schulze
- vor 8 Jahren
- Abrufe
Transkript
1 Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete 7. Pojizierbare Mengen Ausblick auf die heutige Vorlesung 1. Berechnung von Integralen 2. Schwerpunkt 3. Trägheitsmoment 4. Transformationssatz
2 Berechung von Integralen Satz Ist f (x) stetig auf einem Normalbereich = { (x, y) R 2 : a x b g(x) y h(x) } so gilt f (x)dx = b h(x) f (x, y)dydx a g(x) Projizierbare Mengen im R n Bemerkung Analoge Beziehungen gelten für höhere imensionen. Ist R n eine projizierbare Menge, so gilt f (x)dx = B ψ( x) ϕ( x) f (x)dx i d x
3 Berechnung von Integralen II Beispiel Gegeben sei die Funktion f (x, y) := x + 2y Berechne das Integral über der durch zwei Parabeln begrenzten Fläche := {(x, y) : 1 x 1 x 2 y 2 x 2 } Berechnung von Integralen III Beispiel ie Menge ist ein Normalbereich und f (x, y) ist stetig: 1 2 x 2 1 [ f (x, y)dx = (x + 2y)dy dx = xy + y 2 ] 2 x 2 1 x 2 1 x 2 dx = 1 (x(2 x 2 ) + (2 x 2 ) 2 x 3 x 4 )dx 1 = 1 1 ( 2x 3 4x 2 + 2x + 4)dx = 16 3
4 Berechnung von Integralen III Beispiel Zu berechnen ist das Volumen des Rotationsparaboloids: V = {(x, y, z) T : x 2 + y 2 1 x 2 + y 2 z 1}. arstellung von V als Normalbereich V = {(x, y, z) T : x 1 y 1 x 2 x 2 + y 2 z 1}. amit gilt: vol(v) = 1 1 x x 2 1 x 2 +y 2 dzdydx = x 2 (1 x 2 y 2 )dydx 1 x 2 Berechnung von Integralen IV Also hat man vol(v) = (1 x 2 ) 3/2 dx 1 pause = π 2.
5 Allgemeine Integrationsbereiche Sei R n eine kompakte und messbare Menge.Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und zusammenhängend sind und folgende Bedingungen gelten m j = und i j : i j =. j=1 Ferner heißt diam j := sup { x y : x,y } der urchmesser der Menge j und Z := max { diam j : j = 1,...,m } die Feinheit der allgemeinen Zerlegung Z. Riemannsche Summe für allgemeine Zerlegungen efinition Für eine stetige Funktion f : R definiert man die Riemannschen Summen R f (Z) = m f (x j )vol( j ) j=1 mit beliebigen x j j, j = 1,...,m.
6 Riemann Integral und allgemeine Zerlegungen Satz Für jede Folge (Z k ) k N allgemeiner Zerlegungen von mit Z k (k ) und für jede Folge zugehöriger Riemannschen Summen R f (Z k ) gilt: lim R f (Z k ) = f (x)dx k Anwendungen auf Berechnung von Schwerpunkten oder Trägsheitsmomenten A) Schwerpunkt einer Fläche oder eines Körpers: efinition Sei R 2 (bzw. R 3 ) eine messbare Menge, ρ(x), x, eine vorgegebene Massendichte. ann ist der Schwerpunkt der Fläche (bzw. des Körpers) gegeben durch x s := ρ(x)xdx ρ(x)dx as Zählerintegral (über eine vektorwertige Funktion) ist hierbei koordinatenweise zu berechnen.
7 Schwerpunkt einer Pyramide Beispiel Zu berechnen ist der Schwerpunkt der Pyramide P: { P = (x, y, z) T : max( y, z ) ax } 2h, x h. Unter der Annahme konstanter ichte berechnen wir das Volumen von P: vol(p) = h ax 2h ax 2h ax 2h ax 2h dzdydx = h ax 2h ax 2h ax h dydx = h ( ax h ) 2 dx = 1 3 a2 h Schwerpunkt einer Pyramide II Weiter gilt: h ax 2h ax 2h ax 2h ax 2h x y z dzdydx = = = h h ax 2h ax 2h a 2 x 3 h a2 h 2 ax 2 h axy h dx dydx
8 Schwerpunkt einer Pyramide III er Schwerpunkt von P liegt daher im Punkt x s = ( 3 4 h,, )T. Trägheitsmomente von Flächen und Körpern efinition (Trägheitsmoment bezüglich einer Achse) Sei R 2 (bzw. R 3 ) eine messbare Menge, ρ(x) bezeichne für x eine Massendichte und r(x) den Abstand des Punktes x von einer vorgegebenen rehachse. ann besitzt bezüglich dieser Achse das Trägheitsmoment Θ Achse := ρ(x)r 2 (x)dx
9 Trägheitsmomente von Flächen und Körpern II Beispiel Gegeben sei der homogene Zylinder Z: { } Z := (x, y, z) T : x 2 + y 2 r 2, l/2 z l/2 Wir berechnen das Trägheitsmoment bezüglich der x Achse: Θ x Achse = ρ(y 2 + z 2 )d(x, y, z) unter der Annahme konstanter ichte ρ. Z Trägheitsmomente von Flächen und Körpern III Es gilt: Θ x Achse = ρ (y 2 + z 2 )d(x, y, z) = ρ = ρ Z r r 2 x 2 l/2 r r 2 x 2 l/2 r r r 2 x 2 r 2 x 2 (ly (y 2 + z 2 )dzdydx 2 + l3 12 )dydx
10 Trägheitsmomente von Flächen und Körpern IV aher folgt Θ x Achse = ρ πlr2 12 (3r2 + l 2 ). Transformationssatz ies verallgmeinert die Substitutionsregel aus der Analysis II. Satz Sei Φ : U R n, U R n offen, eine C 1 Abbildung. U sei eine kompakte, messbare Menge, so dass Φ auf einen C 1 iffeomorphismus bildet. ann ist auch Φ() kompakt und messbar, und für jede stetige Funktion f : Φ() R gilt: f (x)dx = f (Φ(u)) detjφ(u) du Φ()
11 Transformationssatz II Bemerkung Man beachte, dass im Transformationssatz die Bijektivität von Φ nur auf dem inneren Bereich gefordert wird nicht jedoch auf dem Rand! Schwerpunkt Beispiel Berechne den Schwerpunkt eines homogenen Kugeloktanten: V = {(x, y, z, ) T : x 2 + y 2 + z 2 1 x, y, z } Hier ist es einfacher den Schwerpunkt in Kugelkoordinaten zu berechnen: x r cos ϕ cos ψ y = r sinϕcos ψ = Φ(r, ϕ, ψ) z r sinψ
12 Schwerpunkt II ie Transformation ist auf ganz R 3 definiert und mit [ = [, 1], π ] [, π ] 2 2 gilt Φ() = V. Weiter ist Φ auf der offenen Menge ein C 1 iffeomorphismus und detjφ(r, ϕ, ψ) = r 2 cos ϕ. Schwerpunkt III Nach dem Transformationssatz folgt vol(v) = dx = 1 π/2 π/2 r 2 cos ψdψdϕdr = π 6 V und vol(v) x s = xdx = 1 π/2 π/2 (r cos ϕ cos ψ)r 2 cos ψdψdϕdr V
13 Schwerpunkt IV 1 π/2 π/2 vol(v) x s = r 3 dr cos ϕdϕ cos 2 ψdψ = π 16 araus folgt x s = 3 8. Analog berechnet man y s = z s = 3 8. Trägheitsmomente Beispiel (er Steinersche Satz) Für das Trägheitsmoment eines homogenen Körpers K mit Gesamtmasse m gilt bezüglich einer vorgegebenen rehachse A Θ A = md 2 + Θ S Hierbei ist S die zu A parallele Achse durch den Schwerpunkt x s des Körpers K und d der Abstand des Schwerpunktes x s von der Achse A.
14 Trägheitsmomente Beispiel (er Steinersche Satz Herleitung) Idee zur Herleitung: Setze x := Φ(u) = x s + u. ann gilt: = ρ ( x,x x,a 2 )dx Θ A K = ρ ( x s + u,x s + u x s + u,a 2 )dx wobei := {x x s : x K} Ende 1. Vorlesung
Integration über allgemeine Integrationsbereiche.
Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und
Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.
Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das
mit 0 < a < b um die z-achse entsteht.
Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit
Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld
Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann
2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1
UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis
Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15
5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet
11. Übungsblatt zur Mathematik II für MB
Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 8.6.. Übungsblatt zur Mathematik für MB Aufgabe 5 ntervall im R egeben sei das ntervall { (x, y, z) R : π x π, y, z π}. Berechnen Sie x
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Analysis IV. Gruppenübungen
Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physiker (Analysis 3) I... Hinweise: II...
................ Note I II Name Vorname Matrikelnummer tudiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNICHE UNIVEITÄT MÜNCHEN Fakultät für Mathematik
φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.
Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Lösungen zu Übungsblatt 9
Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da
Termine. Höhere Mathematik III. Literatur. Übungen
Termine Höhere Mathematik III für aer, autip, verf, wewi, geod Christof Eck Wintersemester 28/9 Vorlesung: Mo 9.45 11.15 V 47.1 Mi 8. 9.3 V 47.1 Vortragsübungen: Fr 8. 9.3 V 47.1 Gruppenübungen: o 9.45
Abbildung 10.1: Das Bild zu Beispiel 10.1
Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
Integralrechnung für GLET
Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
(Gaußscher Integralsatz)
Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene
Faltung und Approximation von Funktionen
Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin
1 Das Prinzip von Cavalieri
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von
Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.
Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Differential- und Integralrechnung
Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er
Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck
Lebesgue-Integral und L p -Räume
Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
1 falls x 2. falls x = 1 und. 0 falls x > 1. eine Lebesgue-integrierbare Majorante. Somit können wir den Satz von Lebesgue anwenden:
Lösungsvorschläge zur Klausur 045 Maß- und Integrationstheorie WS 205/6 Lösungsvorschlag zu Aufgabe Sei f n der Integrant 0 falls x > 2 und f n x) falls x 2. 3+sin 2n)+x x 4n Sein punktweiser Grenzwert
Analysis II. Vorlesung 52. Diffeomorphismen
Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume
Übungsaufgaben zu Kapitel 7 und 8
Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
Die n-dimensionale Normalverteilung
U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
1 Integrale von Funktionen in mehreren Variablen
Mathematik für Ingenieure III, WS 9/ Montag 9. $Id: integral.te,v.6 9//9 4:7:55 hk Ep $ Integrale von Funktionen in mehreren Variablen.4 Flächen und Volumina Angenommen wir haben einen örper R 3 gegeben.
= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2
Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b
Lösungshinweise zu den Hausaufgaben:
P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
2.3 Gekrümmte Oberflächen
2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben
ein geeignetes Koordinatensystem zu verwenden.
1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
Klausur zu Analysis II - Lösungen
Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.
Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum
: Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
Klausur Mathematik I
Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:
Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Lösungen der Übungsaufgaben von Kapitel 3
Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
10.2 Kurven und Bogenlänge
10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene
Mehrdimensionale Integration
Prof. Dr. Michael Eisermann Höhere Mathematik 3 (vertieft) Kapitel C Mehrdimensionale Integration Wie machen wir s, daß alles frisch und neu Und mit Bedeutung auch gefällig sei? [...] Ein jeder sucht sich
Übungen zu Partielle Differentialgleichungen, WS 2016
Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
1.6 Implizite Funktionen
1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man
Blatt 4. Stoß und Streuung - Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )
b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt
28. Integralrechnung im Mehrdimensionalen
28. Integralrechnung im Mehrdimensionalen 355 28. Integralrechnung im Mehrdimensionalen Wir haben nun das Studium der Differenzierbarkeit in mehreren Veränderlichen beendet und werden uns als Nächstes
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt
Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
1 Mechanik starrer Körper
1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
Analysis 3 - Klausur - Lösung
Wintersemester 23/24, Universität Bonn Analysis 3 - Klausur - Lösung Aufgabe : Sigma-Algebren (4+6 Punkte) a) Sei X eine Menge. Sei F = {{} : X}. Bestimmen Sie σ(f). b) Sei X eine Menge, Sei S P(X). Zeigen
Kapitel 16 SATZ VON FUBINI UND DIE TRANSFORMATIONSFORMEL
Kapitel 16 SAT VON FUBINI UND DIE TRANSFORMATIONSFORMEL Im folgenden sind X und Y metrische Räume, oder allgemeiner topologische Hausdor räume, und sind Radon-Integrale auf X bzw. Y. Fassung vom 24. Januar
Lösung der Prüfung Sommer 2009
Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim
, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3
Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen
12. Übungsblatt zur Analysis II
Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Unabhängige Zufallsvariablen
Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition
Analysis III. Vorlesung 72. Korollar Es sei (M,A,µ) ein σ-endlicher Maßraum und v: M R n eine messbare Abbildung. Dann ist die Abbildung
Prof. Dr. H. Brenner Osnabrück WS 15/16 Analysis III Vorlesung 7 Korollar 7.1. Es sei (,A,µ) ein σ-endlicher aßraum und v: R n eine messbare Abbildung. Dann ist die Abbildung bijektiv und maßtreu. ϕ v
Skalarprodukte (Teschl/Teschl Kap. 13)
Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +
Mathematik 1 WS 2014/15
Mathematik 1 WS 214/15 AB Technische Mathematik Universität Innsbruck Mathematik 1,WS 214/15 AB Technische Mathematik, Universität Innsbruck p. 1 Integration von Funktionen mehrerer Variablen Mathematik
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
Übung (13) dx 3, 2x 1 dx arctan(x3 1).
Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v
1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9
8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position
Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016
Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)
3 Lineare Differentialgleichungen
3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,
Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom
Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R
0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5
4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit
Zusammenfassung der Lebesgue-Integrationstheorie
Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.
Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit
