(Gaußscher Integralsatz)
|
|
|
- Benedikt Zimmermann
- vor 9 Jahren
- Abrufe
Transkript
1 Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene Fläche den Nettodurchsatz von F durch das von der Fläche umschlossene Volumen. Bei der Behandlung der Divergenz betrachteten wir einen kleinen Quader um einen Punkt P und zeigten, dass F ungefähr den Nettodurchfluss von F durch den Volumsbereich beschreibt. Fügt man nun an einer Seitenfläche des einen Quaders einen zweiten Quader hinzu, so trägt der Fluss durch die Berührungsfläche der beiden Quader nichts bei, da er ja beim einen Quader positiv ist und beim anderen negativ und sich daher aufhebt. Also sind nur die Außenflächen wichtig. Denkt man sich ein (endliches) Volumen V als aus vielen kleinen Quadern aufgebaut vor, erscheint die folgende wichtige Aussage zumindest plausibel. Satz. (Gaußscher Integralsatz) V F dv = S= V F n da Dabei ist F ein Vektorfeld und S = V bezeichnet den Rand von V, die Fläche, welche V umschließt. Genauer gesagt müssen folgende Voraussetzungen erfüllt sein. (a) Die Fläche S muß stückweise glatt sein (wie etwa die Begrenzungsfläche eines Quaders), d.h. sie setzt sich aus endlich vielen Flächenstücken zusammen, welche stetig partiell differenzierbare Parameterdarstellungen besitzen. Dies bedeutet, dass auf diesen Flächenstücken ein Normalenvektor n existiert, der so gewählt wird, dass er nach außen zeigt, also weg vom umschlossenen Bereich. (b) Das Vektorfeld F (x 1, x, x 3 ) ist in V und auf S definiert und stetig differenzierbar. Punkte, wo das nicht gilt, müssen durch geeignete Loch-Definition (siehe anschließendes Beispiel) ausgeschlossen werden. 1
2 (c) Falls es im umschlossenen Gebiet Löcher gibt, müssen diese bei der Bestimmung des Randes mitberücksichtigt werden. Beispiel. Betrachte für r = (x 1, x, x 3 ) das Feld F = r. Dann ist F = F 1 x 1 + F x + F 3 x 3 = 3 und folglich S r n da = V r dv = 3 V dv = 3V V = 1 3 S r d A Für eine Kugelfläche mit Mittelpunkt im Ursprung und Radius R erhalten wir r n = R und S r nda = R π S da = R π R sin ϑdϑdφ = 4R 3 π, also V = 4 3 R3 π. φ= ϑ= Beispiel. Wir betrachten das Vektorfeld E( r) = q e r r für r (Feld einer elektrischen Punktladung im Ursprung mit Ladungsstärke q). 1 Mit der früheren Formel (ψ e u1 ) = h u1 h u h u3 u 1 (ψh u h u3 ) und h u1 = h r = 1, h u = h θ = r, h u3 = h φ = r sin ϑ gilt E = 1 r sin ϑ r Damit ist auch V E dv =. ( q r r sin ϑ ) = für r. bei Kugelkoordinaten Berechnen wir nun das Oberflächenintegral über eine Kugelfläche S, die den Ursprung erhält, dann ist n = e r, also E n = q r und das Flächenelement ist da = r sin ϑ dϑdφ. Folglich ist S E n da = q S r r sin ϑ dϑdφ = 4πq. Die Nichtgültigkeit des Gaußschen Satzes rührt daher, dass durch die Annahme einer punktförmigen Ladung im Ursprung eine Singularität vorliegt. Diese kann allerdings durch die richtige Berücksichtigung der Punktladung beseitigt werden.
3 Ersetzen wir die Punktladung durch eine kleine, homogen geladene Kugel Ṽ vom Radius R, deren Gesamtladung q sei. Dann herrscht außerhalb dieser Kugel weiterhin das Feld E( r) = q r e r. Innerhalb der Kugel hat das elektrische Feld hingegen die Form E( r) = qr R e 3 r. Dort gilt E = 1 Ṽ E dv = 3q R 3 Ṽ r sin ϑ r ( qr R 3 r sin ϑ ) = 3q R 3 dv = 4πq. und somit ist Außerhalb der geladenen Kugel liefert das Volumsintegral keinen Beitrag, und damit ist das Volumsintegral über ein beliebiges, die geladene Kugel enthaltendes Volumen stets 4πq. Dies ist genau der frühere Wert des Oberflächenintegrals. Bemerkung. Eine elegante Möglichkeit, Punktladungen zu behandeln, ist durch die Verwendung der Diracschen Deltafunktion möglich. Folgerung. Für ein Skalarfeld Φ und ein Vektorfeld F gelten (1) V Φ(x 1, x, x 3 ) dv = S(V ) Φ(x 1, x, x 3 ) n da () V F (x 1, x, x 3 ) dv = S(V ) n F (x 1, x, x 3 ) da Beweis. zu (1): Sei a ein beliebiger konstanter Vektor. Wegen ( aφ) = a Φ erhalten wir a V Φ dv = V ( aφ) dv = S(V ) ( aφ) n da = a S(V ) Φ n da [ Folglich ist a V Φ dv ] S(V ) Φ n da =. Weil a beliebig ist, gilt damit (1). zu (): Sei wiederum a beliebig und konstant. Mit ( F a) = a ( F ) und n ( F a) = a ( n F ) gilt dann a V ( F ) dv = V ( F a) dv = 3
4 = S(V ) n ( F a) da = a S(V ) ( n F ) da und weiters [ a V ( F ) dv S(V ) ( n F ] ) da = Daraus folgt (). Beispiel. Betrachte Φ(x 1, x, x 3 ) = x 1 x x 3 und das von den Flächen r = (x 1, 16 x 1, x 3), x 3 =, x 3 = 5, x 1 =, x = begrenzte Volumen (ist das Viertel eines Zylinders). Mit Φ = (x x 3, x 1 x 3, x 1 x ) und Einführung von Zylinderkoordinaten erhalten wir 5 V ΦdV = π/ 4 x 3 = φ= ρ= ρ x 3 ρ sin φ x 3 ρ cos φ ρ sin φ cos φ dρdφdx 3 = 8/3 8/3 16 Nun berechnen wir S(V ) Φ n da. Auf den Flächen x 1 =, x =, x 3 = verschwindet Φ und damit auch das Integral. Auf der Viertelkreisfläche x 3 = 5 ist n = (,, 1). Mittels Zylinderkoordinaten gilt S(V ) 5x 4 π/ 1x n da = 5ρ cos φ sin φ ρdφdρ = ρ= φ= 1 16 Auf x 1 + x = 16 ist n = (cos φ, sin φ, ). Ferner ist Ferner ist da = 4dφdx 3 und Φ = 16x 3 sin φ cos φ. Damit ist 5 π/ cos φ 16x 3 sin φ cos φ sin φ 4dφdx 3 = x 3 = φ= 4
5 = 5 π/ x 3 = φ= 64x 3 sin φ cos φ sin φ cos φ dφdx 3 = 8/3 8/3. Nun betrachten wir (zumindest) zweimal differenzierbare Funktionen u, v und die Identitäten (u v) = u v + u v, (v u) = v u + v u Differenzbildung ergibt u v v u = (u v v u). Mit F = u v v u erhalten wir mit Hilfe des Gaußschen Satzes den sogenannten Integralsatz von Green : V (u v v u) dv = S(V ) (u v v u) n da 5
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Felder und Wellen WS 2016/2017
Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro
Krummlinige Koordinaten
Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere
Grundzüge der Vektoranalysis
KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz
Satz von Gauß. Satz von Gauß 1-1
atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt
Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).
KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve
Divergenz und Rotation von Vektorfeldern
Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren
Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.
Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q
5 Der Gaußsche und Stokes sche Integralsatz
HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung
Parametrisierung und Integralsätze
Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene
Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt
Zusammenfassung: Flächenintegrale
Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:
2.3 Gekrümmte Oberflächen
2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben
2 Gauss Gesetz. 2.1 Elektrischer Fluss
2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des
6.4 Oberflächenintegrale 1. und 2. Art
6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich
Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form
155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten
Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir
Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen
1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
6 Methoden zur Lösung des elektrostatischen Randwertproblems
6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung
Integralsatz von Gauss und Greensche Formeln
Integralsatz von Gauss und Nicola Schweiger LM München Haslach am 13.12.2012 Nicola Schweiger Integralsatz von Gauss und 1/12 Integralsatz von Gauss Sei R n ein beschränktes Gebiet mit stückweise glattem
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"
V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz
Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.
142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition
Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1
Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares
Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum
: Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt
1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle
Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als
Theoretische Physik: Elektrodynamik
Ferienkurs Theoretische Physik: Elektrodynamik Übungsblatt Technische Universität München Fakultät für Physik Verifikation des Stokesschen Satzes Verifizieren Sie den Stokeschen Satz für das Vektorfeld:
Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3
. Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n
3. Die Divergenz und die Quellen des elektrischen Feldes
3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
C4.6: Oberflächenintegrale
C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze
Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen
1 Vektoralgebra (3D euklidischer Raum R 3 )
Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Kapitel 11: Oberflächen- und Flussintegrale
Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.
Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1
Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine
Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)
Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,
Die Maxwell-Gleichungen
Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen
Integralrechnung für GLET
Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten
Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung
Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.
13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene
12 Der Gaußsche Integralsatz
12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:
Analysis IV. Gruppenübungen
Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen
31 Die Potentialgleichung
3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.
Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen
Satz von Gauss, Fluss und Divergenz
Satz von Gauss, Fluss und Divergenz F - - - 4 - - L Das Vektorfeld F beschreibe die Geschwindigkeit in einer Flüssigkeit, die über die Ebene fließt. Der Fluss von F über L ist die in Einheitszeit fließende
φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.
Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz
5 Harmonische Funktionen
5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
5. Grundgleichungen der Magnetostatik
5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,
Teil 8. Vektoranalysis
Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele
Höhere Mathematik III
Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)
Analysis III für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.
11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld
Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung
Fluss durch einen Zylindermantel
Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.
PROBEPRÜFUNG MATHEMATIK I UND II
PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3
Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung
2.4 Eigenschaften des Gradienten
2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von
Integralrechnung für Funktionen mehrerer Variabler
Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen
Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund
Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,
Theoretische Physik: Elektrodynamik
Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht
12 Integralrechnung, Schwerpunkt
Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden
Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"
Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der
Polarisierung und Magnetisierung
Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische
2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1
UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis
Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld
Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann
11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld
11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik
Theoretische Elektrodynamik
Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:
Lösung zu Kapitel 5 und 6
Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig
6.5. Satz von Gauss 107
6.5. Satz von Gauss 7 6.5 Satz von Gauss nter einem Vektorfeld F, definiert auf einer offenen Teilmenge D R n, versteht man eine Zuordnung, die jedem Punkt p D einen Vektor F(p) R n zuordnet. Das Vektorfeld
Rotation 1 E1. Ma 2 Lubov Vassilevskaya
Rotation 1 E1 Abb. 1 1: Turbulenz Leonardo da Vinci 1 E2 Definition und Eigenschaften der Rotation Abb. 1 2: Fließendes Wasser in einem Kanal Es wird das Geschwindigkeitsfeld einer stationären Strömung
Lösungsvorschlag Klausur MA9802
Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37
Mathematische Grundlagen für die Vorlesung. Differentialgeometrie
Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie
1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.
1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)
Lösung für Blatt 7,,Elektrodynamik
Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert
x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.
Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das
Abbildung 10.1: Das Bild zu Beispiel 10.1
Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,
Integration über allgemeine Integrationsbereiche.
Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei
2 Extrema unter Nebenbedingungen
$Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen
2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0
Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der
Cauchys Integralsatz und Cauchys Integralformel
Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine
