C4.6: Oberflächenintegrale
|
|
|
- Klara Huber
- vor 9 Jahren
- Abrufe
Transkript
1 C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik: freie Ladung eines metallischen Leiters findet sich nur auf der Oberfläche; Gesamtladung = Flächenintegral Gesamtladung: Fläche: parametrisieren die Fläche Oberflächendadungsdichte (Ladung pro Flächenelement) - Erhaltungssäzte: z.b. Stromerhaltung: Gesamtladungszunahme in einem Volumenbereich V = Gesamtladungsfluss durch Oberfläche, (rein - raus) = Flächenintegral des Stroms, (rein - raus) Volumen Oberfläche Volumenelement (Ladungsdichte) gerichtetes Flächenelement Stromdichte = Ladung pro Zeitinterval pro Flächenelement Parametrisierung von Flächen Beispiel 1: Kugeloberfläche Kugelkoordinaten, mit Beispiel 2: "Gebirge" "Höhe" = eindeutige Funktion von ("keine Überhänge") Beispiel 3: Rotationsflächen sei eine beliebige Funktion:
2 Parametrisierung von Flächen in - allgemeine Formulierung 2D-Fläche in z.b. Oberfäche einer Kugel mit Radius R: Anmerkung: Jede Koordinatentransformationen in definiert eine Flächenschar, denn jede feste Wahl einer Koordinate liefert eine neue Fläche. Z.B: [siehe Beispiel 1 auf Seite b], Zurück zu (c.1), mit Notationsänderung: (um Anzahl der Indizes zu verringern) =konstant Koordinatenlinie (variere eine d. Variablen, halte andere fest) = Raumkurve - Koordinatenlinie:, - Koordinatenlinie:, Lokalen Kurvengeschwindigkeiten (siehe ZV5a) entlang Koordinaten: in -Richtung: in -Richtung:
3 Betrachte das Flächenelement aufgespannt durch und Es wird charakterisiert durch seine Fläche, und die Richtung eines stehenden Einheitsvektors zur Fläche (ortsabhängiger "Normalvektor") [vergleiche den rein 2-dim Fall, siehe (C4j.5); dort war, aber hier ist ortsabhängig!) Definition: gerichtetes Flächenelement [Verallgemeinerung von (C4j.3)] Betrag: Richtung: (legt auch "oben", "unten" fest) Größe der Fläche für : "Fläche über C": Lagrange-Identität (L4k.7): mit: Für krummlinig-orthogonale Koordinaten: somit: Betrag des Flächenelements: Richtung des Flächenelements: Fläche über C:
4 Beispiel 1: Kugeloberfläche Kugelkoordinaten (siehe ZV5b): (V5m.8-10): Einheitsvektoren sind orthonormal: Zur Erinnerung: (obwohl wir sie hier nicht explizit brauchen) Kugeloberfläche: Radius = Kugel Beispiel 2: Gebirge (hier sind Koordinaten nicht krummlinig!) "Höhe" (f.2) (, also ein nicht-orthog. Koordinatensystem) Über Bereich wie groß ist Gebirgsoberfläche?
5 Beispiel 3: Rotationskörper Orthogonal: Oberfläche des Rotationskörpers für den Bereich -Integral ist trivial, wegen Nutzung von Symmetrie! Verallgemeinerung: Flächenintegral einer Funktion über C: Sei eine Fläche (wie bisher), und eine Funktion (auf demselben Gebiet C definiert wie die Fläche) Definition: Integral von entlang der Fläche über dem Gebiet : Interpretation: Gewichtung jedes Punktes auf der Fläche (parametrisiert durch durch die Gewichtsfunktion [z.b. = Flächenladungsdichte, wie in (a.1) ] ) Beispiel Kugelfläche: Vergleiche (g.8) Anmerkung: ist unabhängig von der Wahl der Parametrisierung der Fläche! [Beweis: siehe z.b. Grossmann, Mathematischer Einführungskurs in für die Physik, 2004]
6 C4.7 Flussintegrale durch Flächen (siehe AD-Text, V4.2) Sei ein Vektorfeld. Wieviel "fliesst" durch die Oberfläche? sei gerichtetes Oberflächenelement am Ort : Zerlege in Anteile zum Flächenelement "Normalkomponente" fliesst durch Flächenelement hindurch "Tangentialkomponente fliesst am Flächenelement entlang Definition: "Fluss" durch Definition: "Fluss" durch die Fläche : Beispiel 1: Elektrisches Feld einer Punktladung Berechne Fluss durch Oberfläche einer Kugel mit Radius : Seite g: Fluss hängt nicht vom Radius ab (!). Das ist ein Beispiel vom Gauss-Gesetz der Elektrostatik: Der durch die Oberfläche eines Volumens hindurchtretende Fluss des elektrischen Feldes ist proportional zur gesamten in enthaltenen elektrischen Ladung:
7 Beispiel 2: Fluss eines Magnetfelds durch Zylinder Magnetfeld sei Fluss nach aussen durch den Boden: Deckel Mantel Boden Fluss nach aussen durch den Deckel: Fluss nach aussen durch den Mantel: Fluss nach aussen durch ganzen Zylinder: Beispiel für allgemeines Gesetz: Magnetfeldfluss durch geschlossene Fläche = 0! Zusammenfassung: V4.2 Flächen- und Flussintegrale Gerichtetes "Fluss" durch "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung: Fläche über C:
Kapitel 11: Oberflächen- und Flussintegrale
Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.
"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"
V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz
Zusammenfassung: Flächenintegrale
Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:
Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"
Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der
V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:
V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach
V5.1 Definition eines Koordinatensystems Ein Koordinatensystem ist eine "glatte" Abbildung von Vektoren auf Koordinaten
V5 Krummlinige Koordinatensysteme Übersicht / Vorschau: Motivation: Symmetrien des Systems ausnutzen, um Beschreibung zu vereinfachen! Beispiel Stromdurchflossener Leiter: Stärke des Magnetfelds hängt
2.3 Gekrümmte Oberflächen
2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben
Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir
Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen
Felder und Wellen WS 2016/2017
Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
2 Gauss Gesetz. 2.1 Elektrischer Fluss
2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld
11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik
2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0
Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der
(Gaußscher Integralsatz)
Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene
Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung
Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes
Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung
Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):
C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei
Integralrechnung für GLET
Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten
11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld
Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung
Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination
Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation
Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.
142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition
3. Die Divergenz und die Quellen des elektrischen Feldes
3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,
Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form
155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten
Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.
Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q
Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r
Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
Blatt 12: Satz von Gauss, Satz von Stokes
Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes
1 Vektoralgebra (3D euklidischer Raum R 3 )
Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition
1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle
Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze
Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen
Mathematischer Einführungskurs für die Physik
Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt
1 Mathematische Hilfsmittel
Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich
X. Elektrostatik und Magnetostatik in Materie
X. Elektrostatik und Magnetostatik in Materie Dieses Kapitel befasst sich mit den elektromagnetischen Feldern in Materie im stationären Regime, d.h. wenn die mikroskopischen und makroskopischen Felder
6.4.2 Induktion erzeugt Gegenkraft ******
V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2
Teil 8. Vektoranalysis
Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
Blatt 13.5: Oberflächenintegrale,
Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/
V: Vektor-Kalkulus. Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER:
V: Vektor-Kalkulus Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER: Differenzen v. Punkten sind Vektoren: V1 Kurven V1.1 Definition einer Kurve Intervall:
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
ein geeignetes Koordinatensystem zu verwenden.
1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.
Rechenübungen zum Physik Grundkurs 2 im SS 2010
Rechenübungen zum Physik Grundkurs 2 im SS 2010 1. Klausur (Abgabe Mi 2.6.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID1) ist: 122 Hinweise: Studentenausweis: Hilfsmittel:
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität
Theoretische Physik: Elektrodynamik
Ferienkurs Theoretische Physik: Elektrodynamik Übungsblatt Technische Universität München Fakultät für Physik Verifikation des Stokesschen Satzes Verifizieren Sie den Stokeschen Satz für das Vektorfeld:
Satz von Gauß. Satz von Gauß 1-1
atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
3.7 Das magnetische Feld in Materie
15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,
12. Elektrodynamik. 12. Elektrodynamik
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei
Blatt 14.2: Integralsätze von Gauß und Stokes
Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/
I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9
I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:
Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,
Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum
: Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt
Einführung in die theoretische Physik II Sommersemester 2015
Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #5 am 27.04.2007 Vladimir Dyakonov Frage des Tages Kupfermünze hat die Masse 0.003 kg Atomzahl
4 Grenzflächen, Leiter und das elektrostatische Randwertproblem
4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten
10.1 Ampère sches Gesetz und einfache Stromverteilungen
1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte
Inhalt. Kapitel 3: Elektrisches Feld
Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
6.4.8 Induktion von Helmholtzspulen ******
V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment
Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)
Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches
Magnetostatik. B( r) = 0
KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die
Mathematische Methoden
Institut für Theoretische Physik der Universität zu Köln http://www.thp.uni-koeln.de/~berg/so/ http://www.thp.uni-koeln.de/~af/ Johannes Berg Andrej Fischer Abgabe: Montag,. Juni Mathematische Methoden.
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben
Physik-Department Ferienkurs zur Experimentalphysik 2 - Aufgaben Daniel Jost 26/08/13 Technische Universität München Aufgabe 1 Gegeben seien drei Ladungen q 1 = q, q 2 = q und q 3 = q, die sich an den
Polarisierung und Magnetisierung
Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische
Repetitorium Analysis II für Physiker
Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:
Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:
(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.
13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene
11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker
11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter
Grundzüge der Vektoranalysis
KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................
1.4 Krummlinige Koordinaten I
15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie
Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.
Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen
6.4 Oberflächenintegrale 1. und 2. Art
6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
Theoretische Elektrodynamik
Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...
L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt
Theoretische Physik: Elektrodynamik
Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht
Klassische Theoretische Physik: Elektrodynamik
Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l
Mathematischer Einführungskurs für die Physik
Teubner Studienbücher Physik Mathematischer Einführungskurs für die Physik Bearbeitet von Prof. em. Dr. Siegfried Großmann erweitert, überarbeitet 2012. Taschenbuch. xvii, 407 S. Paperback ISBN 978 3 8351
Parametrisierung und Integralsätze
Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene
Elektrischer Feldvektor, Skalarfeld/Vektorfeld, Elektrische Feldlinien
Telekommunikation/lektrotechnik, Physik /2, T. Borer Übung 7-2005/06 Übung 7 lektrisches Feld lektrischer Feldvektor, Skalarfeld/Vektorfeld, lektrische Feldlinien Lernziele - den Zusammenhang zwischen
Kräfte zwischen Ladungen: quantitative Bestimmung
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #3 am 25.04.2007 Vladimir Dyakonov Kräfte zwischen Ladungen: quantitative Bestimmung Messmethode:
Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015
Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen
Physik für Naturwissenschaften (HS 2016) Lösungen
Physik für Naturwissenschaften (HS 2016) Lösungen students4students [email protected] 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................
