Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Größe: px
Ab Seite anzeigen:

Download "Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1"

Transkript

1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1

2 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S Die Glattheitsvoraussetzungen an F und S können abgeschwächt werden, indem man die Integrale über geeignete Grenzprozesse definiert. C Satz von Stokes 1-2

3 Beweisidee: Approximation von F durch ein stückweise lineares Vektorfeld auf einer Triangulierung von S Satz von Stokes 2-1

4 Beweisidee: Approximation von F durch ein stückweise lineares Vektorfeld auf einer Triangulierung von S Satz von Stokes 2-2

5 Beweisidee: Approximation von F durch ein stückweise lineares Vektorfeld auf einer Triangulierung von S Aufhebung der Arbeitsintegrale im Inneren Satz von Stokes 2-3

6 Beweisidee: Approximation von F durch ein stückweise lineares Vektorfeld auf einer Triangulierung von S Aufhebung der Arbeitsintegrale im Inneren nur ein Dreieck zu betrachten Satz von Stokes 2-4

7 R F P F = A x + b, bestimmt durch Werte an den Eckpunkten P, Q, R Q Satz von Stokes 2-5

8 R F P F = A x + b, bestimmt durch Werte an den Eckpunkten P, Q, R Q Zerlegung von A in einen symmetrischen und antisymmetrischen Anteil A = D + E, d j,k = 1 2 (a j,k + a k,j ), e j,k = 1 2 (a j,k a k,j ) Satz von Stokes 2-6

9 R F P F = A x + b, bestimmt durch Werte an den Eckpunkten P, Q, R Q Zerlegung von A in einen symmetrischen und antisymmetrischen Anteil A = D + E, d j,k = 1 2 (a j,k + a k,j ), e j,k = 1 2 (a j,k a k,j ) Der symmetrische Anteil G = D x + b besitzt ein Potential: U = 1 2 x (D x) + b x, grad U = G Satz von Stokes 2-7

10 R F P F = A x + b, bestimmt durch Werte an den Eckpunkten P, Q, R Q Zerlegung von A in einen symmetrischen und antisymmetrischen Anteil A = D + E, d j,k = 1 2 (a j,k + a k,j ), e j,k = 1 2 (a j,k a k,j ) Der symmetrische Anteil G = D x + b besitzt ein Potential: U = 1 2 x (D x) + b x, grad U = G null. Für den symmetrischen Anteil sin beide Seiten im Satz von Stokes Satz von Stokes 2-8

11 betrachte nur ein antisymmetrisches Feld h 3 h 2 x 1 H = h 3 h 1 x 2 h 2 h 1 x 3 = h x Satz von Stokes 2-9

12 betrachte nur ein antisymmetrisches Feld h 3 h 2 x 1 H = h 3 h 1 x 2 h 2 h 1 x 3 = h x (i) Linke Seite S rot H d S: Satz von Stokes 2-1

13 betrachte nur ein antisymmetrisches Feld h 3 h 2 x 1 H = h 3 h 1 x 2 h 2 h 1 x 3 = h x (i) Linke Seite S rot H ds: rot H = rot h 3 x 2 + h 2 x 3 h 1 x 3 + h 3 x 1 h 2 x 1 + h 1 x 2 = 2 h Satz von Stokes 2-11

14 betrachte nur ein antisymmetrisches Feld h 3 h 2 x 1 H = h 3 h 1 x 2 h 2 h 1 x 3 = h x (i) Linke Seite S rot H ds: rot H = rot h 3 x 2 + h 2 x 3 h 1 x 3 + h 3 x 1 h 2 x 1 + h 1 x 2 Normale: ( q p) ( r p)/ ( q p) ( r p), = 2 h Satz von Stokes 2-12

15 betrachte nur ein antisymmetrisches Feld h 3 h 2 x 1 H = h 3 h 1 x 2 h 2 h 1 x 3 = h x (i) Linke Seite S rot H ds: rot H = rot h 3 x 2 + h 2 x 3 h 1 x 3 + h 3 x 1 h 2 x 1 + h 1 x 2 = 2 h Normale: ( q p) ( r p)/ ( q p) ( r p), area S = 1 2 ( q p) ( r p) = rot H ds = h ( q r + r p + p q) S Satz von Stokes 2-13

16 (ii) Rechte Seite C H d r: Satz von Stokes 2-14

17 (ii) Rechte Seite C H d r: betrachte Teilrand C r : p + t( q p), t 1 Satz von Stokes 2-15

18 (ii) Rechte Seite C H d r: betrachte Teilrand C r : p + t( q p), t 1 Arbeitsintegral 1 h ( p + t( q p)) ( q p) dt = ( h p) q Satz von Stokes 2-16

19 (ii) Rechte Seite C H d r: betrachte Teilrand C r : p + t( q p), t 1 Arbeitsintegral 1 h ( p + t( q p)) ( q p) dt = ( h p) q (Der zweite Term verschwindet, da ( a b) b =.) Satz von Stokes 2-17

20 (ii) Rechte Seite C H d r: betrachte Teilrand C r : p + t( q p), t 1 Arbeitsintegral 1 h ( p + t( q p)) ( q p) dt = ( h p) q (Der zweite Term verschwindet, da ( a b) b =.) analoge Betrachtung für die Wege C p und C q H d r = ( h p) q + ( h q) r + ( h r) p C = ( p q) h + ( q r) h + ( r p) h aufgrund der zyklischen Invarianz des Spatproduktes Satz von Stokes 2-18

21 (ii) Rechte Seite C H d r: betrachte Teilrand C r : p + t( q p), t 1 Arbeitsintegral 1 h ( p + t( q p)) ( q p) dt = ( h p) q (Der zweite Term verschwindet, da ( a b) b =.) analoge Betrachtung für die Wege C p und C q H d r = ( h p) q + ( h q) r + ( h r) p C = ( p q) h + ( q r) h + ( r p) h aufgrund der zyklischen Invarianz des Spatproduktes Übereinstimmung mit dem Ergebnis aus (i) Satz von Stokes 2-19

22 Beispiel: Illustration des Satzes von Stokes für das Vektorfeld F = (z, x, y) t und die Halbkugelschale S : x 2 + y 2 + z 2 = 1, z Satz von Stokes 3-1

23 Beispiel: Illustration des Satzes von Stokes für das Vektorfeld F = (z, x, y) t und die Halbkugelschale S : x 2 + y 2 + z 2 = 1, z Rotation von F rot F = y y z x z z x y x x y z = Satz von Stokes 3-2

24 Beispiel: Illustration des Satzes von Stokes für das Vektorfeld F = (z, x, y) t und die Halbkugelschale S : x 2 + y 2 + z 2 = 1, z Rotation von F rot F = y y z x z z x y x x y z = vektorielles Flächenelement in Kugelkoordinaten d S = e r ds = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) t sin ϑ dϕdϑ Satz von Stokes 3-3

25 Beispiel: Illustration des Satzes von Stokes für das Vektorfeld F = (z, x, y) t und die Halbkugelschale S : x 2 + y 2 + z 2 = 1, z Rotation von F rot F = y y z x z z x y x x y z = vektorielles Flächenelement in Kugelkoordinaten ds = e r ds = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) t sin ϑ dϕdϑ Randkurve: C : t r(t) = (cos t, sin t, ) t, t [, 2π] Satz von Stokes 3-4

26 Linke Seite im Satz von Stokes: S rot F d S = π/2 2π = + + 2π (cos ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ) sin ϑ dϕdϑ [ ] 1 π/2 2 sin2 ϑ = π ϑ= Satz von Stokes 3-5

27 Linke Seite im Satz von Stokes: S rot F d S = π/2 2π = + + 2π (cos ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ) sin ϑ dϕdϑ [ ] 1 π/2 2 sin2 ϑ = π ϑ= Rechte Seite: C F d r = 2π cos t sin t sin t cos t } {{ } r (t) dt = 2π cos 2 t dt = π Satz von Stokes 3-6

28 gleiches Resultat für die Kreisscheibe r cos ϕ A : s(r, ϕ) = r sin ϕ, r 1, ϕ 2π, wegen des unveränderten Randes: Satz von Stokes 3-7

29 gleiches Resultat für die Kreisscheibe r cos ϕ A : s(r, ϕ) = r sin ϕ, r 1, ϕ 2π, wegen des unveränderten Randes: A rot F d A = 1 2π r dϕdr = π Satz von Stokes 3-8

30 gleiches Resultat für die Kreisscheibe r cos ϕ A : s(r, ϕ) = r sin ϕ, r 1, ϕ 2π, wegen des unveränderten Randes: A rot F d A = 1 2π (Polarkoordinaten: da = r dϕdr) r dϕdr = π Satz von Stokes 3-9

31 Beispiel: Fluss der Rotation des Vektorfeldes F (x, y, z) = nach außen durch den Zylindermantel yz xz z S : x 2 + y 2 = 1, z 1, Satz von Stokes 4-1

32 Beispiel: Fluss der Rotation des Vektorfeldes F (x, y, z) = nach außen durch den Zylindermantel yz xz z S : x 2 + y 2 = 1, z 1, Berechnung mit Hilfe des Satzes von Stokes als Arbeitsintegral über die Randkurven cos t cos( t) C u : r u (t) = sin t, C o : r o (t) = sin( t) 1 Satz von Stokes 4-2

33 Beispiel: Fluss der Rotation des Vektorfeldes F (x, y, z) = nach außen durch den Zylindermantel yz xz z S : x 2 + y 2 = 1, z 1, Berechnung mit Hilfe des Satzes von Stokes als Arbeitsintegral über die Randkurven cos t cos( t) C u : r u (t) = sin t, C o : r o (t) = sin( t) 1 (t [, 2π], entgegengesetzte Orientierung beachten) Satz von Stokes 4-3

34 Flussberechnung als Arbeitsintegral: F d r + C u C o F d r Satz von Stokes 4-4

35 Flussberechnung als Arbeitsintegral: F d r + C u C o F d r mit und C o F d r = C u F d r = 2π 2π sin( t) cos( t) 1 sin t cos t dt = sin( t) cos( t) } {{ } r o(t) dt = 2π Satz von Stokes 4-5

36 Flussberechnung als Arbeitsintegral: F d r + C u C o F d r mit und C o F d r = C u F d r = 2π 2π sin( t) cos( t) 1 sin t cos t dt = sin( t) cos( t) } {{ } r o(t) dt = 2π (sin 2 t + cos 2 t = 1) Satz von Stokes 4-6

37 Flussberechnung als Arbeitsintegral: F d r + C u C o F d r mit und C o F d r = C u F d r = 2π 2π sin( t) cos( t) 1 sin t cos t dt = sin( t) cos( t) } {{ } r o(t) dt = 2π (sin 2 t + cos 2 t = 1) = Fluss durch den Mantel gleich 2π Satz von Stokes 4-7

38 alternative direkte Berechnung: Satz von Stokes 4-8

39 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = Satz von Stokes 4-9

40 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = = Fluss durch den Mantel entspricht der negativen Summe der Flüsse durch Boden und Deckel Satz von Stokes 4-1

41 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = = Fluss durch den Mantel entspricht der negativen Summe der Flüsse durch Boden und Deckel n e z = nur z-komponente der Rotation relevant ( rot F ) = x( xz) y (yz) = 2z z Satz von Stokes 4-11

42 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = = Fluss durch den Mantel entspricht der negativen Summe der Flüsse durch Boden und Deckel n e z = nur z-komponente der Rotation relevant ( rot F ) = x( xz) y (yz) = 2z z Fluss durch den Boden (z = ) null Satz von Stokes 4-12

43 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = = Fluss durch den Mantel entspricht der negativen Summe der Flüsse durch Boden und Deckel n e z = nur z-komponente der Rotation relevant ( rot F ) = x( xz) y (yz) = 2z z Fluss durch den Boden (z = ) null Fluss durch den Deckel A (z = 1): ( 2) da = 2 area A = 2π A Satz von Stokes 4-13

44 alternative direkte Berechnung: Gesamtfluss durch die Zylinderoberfläche null wegen div rot F = = Fluss durch den Mantel entspricht der negativen Summe der Flüsse durch Boden und Deckel n e z = nur z-komponente der Rotation relevant ( rot F ) = x( xz) y (yz) = 2z z Fluss durch den Boden (z = ) null Fluss durch den Deckel A (z = 1): ( 2) da = 2 area A = 2π = Fluss durch den Mantel gleich 2π A Satz von Stokes 4-14

45 Beispiel: wirbelförmige Strömung um die z-achse y 1 F = f (ϱ) e }{{} ϕ, e ϕ = x ϱ F ϕ, ϱ = x 2 + y 2 Satz von Stokes 5-1

46 Beispiel: wirbelförmige Strömung um die z-achse y 1 F = f (ϱ) e }{{} ϕ, e ϕ = x ϱ F ϕ, ϱ = x 2 + y 2 Formel für die Rotation in Zylinderkoordinaten rot F = ( z F ϕ ) e ϱ + e ϕ + 1 ϱ ( ϱ(ϱf ϕ )) e z = f + ϱ 1 f Satz von Stokes 5-2

47 (i) Fluss von rot F durch die Kreisscheibe A: x 2 + y 2 R 2 nach oben: Satz von Stokes 5-3

48 (i) Fluss von rot F durch die Kreisscheibe A: x 2 + y 2 R 2 nach oben: Satz von Stokes Arbeitsintegral über die Randkurve ( ) R cos t C : r(t) =, t [, 2π], R sin t Satz von Stokes 5-4

49 (i) Fluss von rot F durch die Kreisscheibe A: x 2 + y 2 R 2 nach oben: Satz von Stokes Arbeitsintegral über die Randkurve ( ) R cos t C : r(t) =, t [, 2π], R sin t d.h. S rot F d S = = C 2π F d r ( ) sin t f (R) cos t }{{} e ϕ ( R sin t R cos t } {{ } d r ) dt = 2πR f (R) Satz von Stokes 5-5

50 (i) Fluss von rot F durch die Kreisscheibe A: x 2 + y 2 R 2 nach oben: Satz von Stokes Arbeitsintegral über die Randkurve ( ) R cos t C : r(t) =, t [, 2π], R sin t d.h. S rot F d S = = C 2π F d r ( ) sin t f (R) cos t }{{} e ϕ ( R sin t R cos t } {{ } d r ) dt = 2πR f (R) (ii) Fluss von rot F durch das Rechteck S = [ a, a] [ b, b] nach oben im Spezialfall f (ϱ) = ϱ: S rot F ds = S 2 1 ds = 8ab }{{} Satz von Stokes 5-6

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Fluss durch einen Zylindermantel

Fluss durch einen Zylindermantel Fluss durch einen Zylindermantel Der Fluss eines Vektorfeldes F = F ϱ e ϱ + F ϕ e ϕ + F z e z nach außen durch den Mantel eines Zylinders mit Randkurve ϱ = ϱ(ϕ) ist 2π z max z min F ϱ ϱ F ϕ ϕ ϱ dz dϕ.

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1

Potential. Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Potential 1-1 Potential Gilt F = grad U, so bezeichnet man U als Potential des Vektorfeldes F. Für ein solches Gradientenfeld

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben.

x + y + z = 6, x = 0, z = 0, x + 2y = 4, indem Sie das Volumen als Dreifachintegral schreiben. Übungen (Aufg. u. Lösungen) zur Ingenieur-Mathematik II SS 8 Blatt 1 3.7.8 Aufgabe 47: Berechnen Sie das Volumen des von den folgenden Flächen begrenzten Körpers x + y + z 6, x, z, x + y 4, indem Sie das

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

Weitere Aufgaben zu Mathematik C

Weitere Aufgaben zu Mathematik C Bergische Universität Wuppertal Fachbereich C PD Dr. Schuster Weitere Aufgaben zu Mathematik C A. Kurvenintegrale und Stammfunktionen. Das Vektorfeld F: R 3 R 3 sei gegeben durch F(x, y, z) = 2z(x + y)

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1 D-BAUG Analsis II FS 5 Dr. Meike Akveld Serie 8. Berechnen Sie für das Vektorfeld (siehe Abbildung ) 3 - -3 3 3 Abbildung : Aufgabe F : (, ) ( +, ) die Arbeit entlang der folgenden Wege C, wobei P = (,

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

auf U heisst die Divergenz von K.

auf U heisst die Divergenz von K. 11.5 Integralsat von Gauss im R 2 11.5 Integralsat von Gauss im R 2 Seien weiter K = K ( ) x =(K1,K y 2 ) ein C 1 -Vektorfeld auf einer offenen Teilmenge U R 2 und eine kompakte Teilmenge von U mit orientiertem

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Musterlösungen Serie 6

Musterlösungen Serie 6 D-MAVT D-MATL Analysis II FS 1 Prof. Dr. P. Biran Musterlösungen Serie 6 1. Frage 1 [Analysis Prüfung Winter1] Ein Vektorfeld v(x,y,z) mit Definitionsbereich erfüllediv( v) =. Was folgt? Es gibt eine Funktionf(x,y,z)

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

10. Übungsblatt zur Mathematik II für MB

10. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. och SS 1 1.6.1 1. Übungsblatt zur Mathematik II für MB Aufgabe 3 Arbeitsintegrale Berechnen Sie jeweils das Integral F dx für die Funktion F (x,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Termine. Höhere Mathematik III. Literatur. Übungen

Termine. Höhere Mathematik III. Literatur. Übungen Termine Höhere Mathematik III für aer, autip, verf, wewi, geod Christof Eck Wintersemester 28/9 Vorlesung: Mo 9.45 11.15 V 47.1 Mi 8. 9.3 V 47.1 Vortragsübungen: Fr 8. 9.3 V 47.1 Gruppenübungen: o 9.45

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2 Thomas Neukirchner 6. November 7 Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R Vorbemerkung: Sein Nt cos t, sin t und JNt sin t, cos t. Dann gilt: A X R konstant

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

8 Oberflächenintegrale

8 Oberflächenintegrale Mathematik für Physiker III, WS 22/23 reitag 8. $Id: flaechen.tex,v.6 23//8 6:4:9 hk Exp $ $Id: rot.tex,v.3 23//8 7:4:9 hk Exp hk $ 8 Oberflächenintegrale 8.2 lächenintegrale erster rt In der letzten Sitzung

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr D Castrigiano Dr M Prähofer Zentralübung 85 Oberfläche des Torus im R 4 TECHNICHE UNIVERITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis http://wwwmatumde/hm/ma924 2W/ Gegeben

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Matthias Mahr, Juni 4, Fachhochschule Friourg

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr