Mathematik für Ingenieure A III Wintersemester 2008

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Ingenieure A III Wintersemester 2008"

Transkript

1 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III

2 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln Rechenregeln und Eigenschaften von Div und Rot

3 3 / 35 Orientierung von Flächen Eine Fläche S R 3 heißt zweiseitig oder orientierbar, wenn man eindeutig von einer Ober- und Unterseite bzw. einer inneren und äußeren Seite sprechen kann. Für glatte Flächen legt man die Orientierung durch die Flächennormale fest: n := ± x u x v x u x v n heißt auch der Normaleneinheitsvektor.

4 4 / 35 Orientierung von Flächen Umlaufsinn einer geschlossenen doppelpunktfreien Kurve K S: Rechtsschraube oder Linksschraube bezüglich n. Eine stückweise glatte Fläche heißt zweiseitig oder orientierbar, wenn sich die Oberseiten der glatten Flächenstücke S i so festlegen lassen, dass sich der Umlaufsinn über die Kanten S i S j hinweg stetig fortsetzt.

5 Orientierung von Flächen 5 / 35

6 Der Gaußsche Integralsatz Satz: G R 3 sei ein regulärer Bereich mit der Oberfläche S. Die Parameterdarstellungen x(u, v) der Flächenstücke seien so gewählt, dass die Flächennormale n = ± x u x v x u x v bezüglich des Bereichs G nach außen zeigt. Ist V : G R 3 ein Vektorfeld, das auf einer offenen Menge G G stetige partielle Ableitungen erster Ordnung besitzt, so gilt (div V)dV = ( V n)ds G S 6 / 35

7 7 / 35 Beispiel 1 S sei die Oberfläche der Halbkugel. und G = x y z R 3 x 2 + y 2 + z 2 1,z V(x,y,z) = 3xz 2 + y 3 y 3 + xz 3x 2 z y

8 8 / 35 Beispiel 1 Zu berechnen ist das Flächenintegral ( V n)ds = V dds S S Wegen div V = 3z 2 + 3y 2 + 3x 2 folgt aus dem Gaußschen Integralsatz ( V n)ds = (div V)dV S = 3 G G (x 2 + y 2 + z 2 )d(x,y,z)

9 9 / 35 Beispiel 1 Mit Kugelkoordinaten x = r sinψ cosϕ y = r sinψ sinϕ z = r cosψ erhält man nach der Substitutionsregel r 1, ψ π 2, ϕ 2π

10 Beispiel 1 1 π 2 2π ( V n)ds = 3 r 2 r 2 sin ψ dϕdψdr S = 6π 1 π 2 1 = 6π r 4 dr r 4 sin ψdψdr = 6π 5 1 / 35

11 11 / 35 Beispiel 2 Für die Kugeloberfläche x S = y R 3 x 2 + y 2 + z 2 = 1 z soll das Oberflächenintegral f ds mit dem Skalarfeld S f (x,y,z) = (x + y + z) 2 berechnet werden.

12 12 / 35 Beispiel 2 Den Gaußschen Integralsatz kann man anwenden, wenn man das Skalarfeld in der Form f = V n mit der Flächennormale der Kugeloberfläche darstellen kann. Wie bei der Parameterdarstellung der Sphäre schon früher berechnet, ist x u x v und damit n ein Vielfaches des Ortsvektors x so, dass n = 1. Da aber x auf der Oberfläche der Einheitskugel liegt, ist x = 1 und damit n = x.

13 Beispiel 2 Für das Vektorfeld V muss also gelten oder V n = V x = f ( x) V n = V 1 x + V 2 y + V 3 z = (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2xz + 2yz = (x + 2y)x + (y + 2z)y + (z + 2x)z 13 / 35

14 14 / 35 Beispiel 2 Das Vektorfeld mit der Divergenz V(x,y,z) = x + 2y y + 2z z + 2x erfüllt diese Bedingung. div V = = 3

15 Beispiel 2 Nach dem Gaußschen Integralsatz gilt daher f ds = V nds = 3dV = 3 dv S S G Das Volumen der Einheitskugel ist G dv = 4π 3 und damit fds = 4π. S G 15 / 35

16 16 / 35 Der Satz von Stokes In der Strömungslehre heißt das Integral V dk eines Geschwindigkeitsfelds V längs einer geschlossenen Kurve K die Zirkulation des Feldes längs K. Physikalische Bedeutung: Wegen V dk = V TdK S S S wird die skalare Tangentialkomponente von V längs K aufintegriert.

17 17 / 35 Der Satz von Stokes S V dk = S (rot V n)ds

18 Der Satz von Stokes Satz: (Stokesscher Integralsatz) S R 3 sei eine stückweise glatte zweiseitige Fläche. Der Rand S von S sei eine stückweise glatte geschlossene Kurve ohne Doppelpunkte. Der Umlaufsinn sei so gewählt, dass beim Durchlaufen des Randes die Fläche S links liegt und dass er mit dem Normaleneinheitsvektor eine Rechtsschraube bildet. Ist V : G R 3 ein Vektorfeld, das auf einer offenen Menge G R 3 mit S G stetige partielle Ableitungen 1. Ordnung besitzt, so gilt V dk = (rot V n)ds S S 18 / 35

19 Beispiel 1 Das Geschwindigkeitsfeld einer turbulenten Strömung auf dem Zylinder x 2 + y 2 = 1 sei V(x,y,z) = y 3 x 3 z 3 Zu berechnen ist die Zirkulation von V längs der Schnittkurve S des Zylinders mit der Ebene x + y + z = / 35

20 Beispiel 1 Die zugehörige Fläche S ist die Menge der Punkte (x,y,z) mit x 2 + y 2 1 und x + y + z = 1: S = { x y 1 x y (x,y) G} mit dem Einheitskreis G = {(x,y) x 2 + y 2 1}. 2 / 35

21 21 / 35 Beispiel 1 1. Methode: Direkte Berechnung des Kurvenintegrals. Der Rand S besitzt die Parameterdarstellung S = { k(t) = cost sint 1 cost sint t 2π} Also ist S V 2π dk = V( k(t)) k(t)dt

22 Beispiel 1 2. Methode: Anwendung des Satzes von Stokes. Die Fläche S ist ein Graph mit h(x,y) = 1 x y und dem Normalenvektor x x x y = h x h y 1 = der in die richtige Richtung zeigt. Ferner ist rot V = V = 3 x 2 + y / 35

23 23 / 35 Beispiel 1 Folglich ist V dk = S = (rot V n)ds S G rot V ( x x x y )d(x,y) = 3 (x 2 + y 2 )d(x,y) G = 3 2 π

24 24 / 35 Beispiel 2 Zu berechnen ist (rot V n)ds, über die Oberfläche der S Halbkugel S = und das Vektorfeld x y z R 3 x 2 + y 2 + z 2 = 1,z V(x,y,z) = y 2z 3x wobei die Flächennormale n = x nach oben zeigt.

25 25 / 35 Beispiel 2 Der Rand besitzt die Parameterdarstellung cost S = k(t) = sint t 2π

26 26 / 35 Beispiel 2 Nach dem Stokesschen Integralsatz ist S (rot V n)ds = = = V 2π dk = V( k(t)) k(t)dt S 2π 2π = 1 2 = π sint 3cost ( sin 2 t)dt = 1 2 sint cost 2π dt (1 cos(2t))dt [t 12 ] 2π sin(2t) = 1 2 2π

27 27 / 35 Beispiel 2 Bei diesem speziellen Beispiel gibt es noch eine einfachere Berechnungsmethode. Der Stokessche Satz besagt nämlich, dass der Wert des Flächenintegrals nur vom Rand S und den Werten des Vektorfeldes auf dem Rand abhängt. Für zwei Flächen S 1 und S 2 mit gleichem Rand S und gleicher Orientierung gilt nämlich (rot V n)ds = S 1 S V dk = (rot V n)ds S 2

28 Beispiel 2 Anstelle des Flächenintegrals über die Halbkugeloberfläche kann man ersatzweise das Flächenintegral über die Einheitskreisscheibe in der x-y-ebene berechnen: S 2 = { x(x,y) = x y (x,y) G} mit Es ist x x = 1 G = {(x,y) R 2 x 2 + y 2 1}, x y = 1, x x x y = 1 = n 28 / 35

29 29 / 35 Beispiel 2 und daher S 2 rot V nds = = G G V 2 x V 1 y 1 1 = 1 d(x,y) = π G 1 d(x,y) d(x,y) denn d(x, y) ist die Fläche der Einheitskreisscheibe. G

30 3 / 35 Der Greensche Integralsatz Der Greensche Integralsatz beinhaltet eine Aussage über zweidimensionale Bereiche und Kurven in der x-y-ebene. Für das Kurvenintegral im R 2 verwenden wir das für den R 3 definierte Kurvenintegral, wobei z = und dz = gesetzt wird.

31 Der Greensche Integralsatz Satz: (Greenscher Integralsatz) G R 2 sei ein regulärer Bereich, dessen Rand G R 2 eine stückweise glatte geschlossene Kurve ohne Doppelpunkte ist. Die Kurve G werde so durchlaufen, dass das Innere von G zur Linken von K liegt. V(x,y) = V 1 (x,y) V 2 (x,y) sei ein Vektorfeld, das auf einer offenen Menge G G stetige partielle Ableitungen 1. Ordnung besitzt. Dann gilt G ( V2 x V ) 1 d(x,y) = V dk y G 31 / 35

32 32 / 35 Der Greensche Integralsatz Beweis: Die Aussage lässt sich auf die des Stokesschen Integralsatzes zurückführen: rot V = x y z V 1 V 2 n = = 1 V 2 x V 1 y

33 33 / 35 Der Greensche Integralsatz Dem Bereich G R 2 entspricht die Fläche x S = y (x,y) G so dass G V dk = S rot V nds = G ( V2 x V ) 1 d(x, y) y

34 34 / 35 Beispiel Für das Vektorfeld 1 3 (y3 x 3 )x 2 V(x,y) = x 3 y 2 und die nebenstehend abgebildete Kurve berechne man V dk K

35 35 / 35 Beispiel Mit und ergibt sich G = {(x,y) R 2 1 x 1, 1 y 1} K V 2 x = 3x2 y 2, V 1 y = x2 y 2 V dk = = 2 2x 2 y 2 d(x,y) G 1 ( = [ x y x 2 y 2 dx 1 ] 1 dy 1 ) dy = y 2 dy = 8 9

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 76 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 12.11.28 2 / 76 Wiederholung Glatte Flächen Wiederholung Vektorprodukt Definition Flächeninhalt

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Klausur Mathematik III für Bauingenieure

Klausur Mathematik III für Bauingenieure TU Dresden 9. Juli 5 Institut für Analysis Doz. Dr. N. Koksch Klausur Mathematik III für Bauingenieure Name: Vorname: Jahrgang: Matrikel-Nr.: Studiengang: Übungsgruppe: Aufgabe 4 5 6 Ges. Punkte max. 6

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Höhere Mathematik Vorlesung 7

Höhere Mathematik Vorlesung 7 Höhere Mathematik Vorlesung 7 Mai 2017 ii Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt. Albert Einstein 7 Flächenintegrale Flächen Reguläre Flächen: ei D R 2 regulär. Unter einer Fläche

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

Integralsatz von Gauss und Greensche Formeln

Integralsatz von Gauss und Greensche Formeln Integralsatz von Gauss und Nicola Schweiger LM München Haslach am 13.12.2012 Nicola Schweiger Integralsatz von Gauss und 1/12 Integralsatz von Gauss Sei R n ein beschränktes Gebiet mit stückweise glattem

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

) sei stückweise stetige differenzierbare Kurve in

) sei stückweise stetige differenzierbare Kurve in . Integration.. urvenintegrale. Art Neben urvenintegralen. Art [9..] existieren auch urvenintegrale. Art. Def.. ( () = (), (), () x t x t x t x t Parameterdarstellung und v( x) v ( x) v ( x) v ( x) v:

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III WiSe 04/05 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter Vorder- und Rückseite

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik Höhere Mathematik 3 Prof. Dr. Norbert Knarr F Mathematik Wintersemester 23/4 2. Integration von Funktionen in drei Variablen 2.. Integration über Flächenstücke im Raum 2... Denition. Es sei D R 2 eine

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r

Satz von Stokes. P(x,y)dx+Q(x,y)dy +R(x,y)dz. rot F = F = ± r. v r. u r Sat von Stokes F (,) = (P(,),Q(,),R(,)) rot F n o d = P(,)d+Q(,)d +R(,)d R P Q rot F = F = Q = P R Q R P Links steht der Fluss des Vektorfeldes rot F durch die Fläche (Oberflächenintegral), rechts ein

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Oberflächenintegrale

Oberflächenintegrale KAPITEL Oberflächenintegrale. Integration über Flächen im Raum.................. 36.2 Flächeninhalt.............................. 366.3 Oberflächenintegrale. und 2. Art.................. 369 Lernziele

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2017/18 1. Integration von Funktionen in zwei Variablen 1.1. Integral auf Rechtecken Wir betrachten ein beschränktes Rechteck

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Ferienkurs Analysis 3

Ferienkurs Analysis 3 Ferienkurs Analysis 3 Vektoranalysis Zensen Carla, Heger aniel, Kössel Fabian, Ried Tobias 21. ärz 21 Inhaltsverzeichnis 1 Untermannigfaltigkeiten des R n 3 1.1 Charakterisierung von Untermannigfaltigkeiten...............

Mehr

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit)

Mathematik C (ET) UE WS 2014/ Übungsblatt. 7+t Berechnen Sie das Kurvenintegral (die physikalische Arbeit) Mathematik (ET) UE WS 2014/2015 1. Übungsblatt 1. Berechnen Sie (a) die Bogenlänge der Kurve : x(t) = (b) den Gradient von f(x,y,z) = 4x y 2 +5z. ( t 7+t 2 ) mit 1 t 3, 2. Berechnen Sie das Kurvenintegral

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Musterlösungen Serie 6

Musterlösungen Serie 6 D-MAVT D-MATL Analysis II FS 1 Prof. Dr. P. Biran Musterlösungen Serie 6 1. Frage 1 [Analysis Prüfung Winter1] Ein Vektorfeld v(x,y,z) mit Definitionsbereich erfüllediv( v) =. Was folgt? Es gibt eine Funktionf(x,y,z)

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt Institut für Analsis SS7 P r. Peer Christian Kunstmann 6.6.7 ipl.-math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung Phsik

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

1 Lösungsskizzen zu den Übungsaufgaben

1 Lösungsskizzen zu den Übungsaufgaben Lösungsskizzen zu den Übungsaufgaben. Lösungen zu den Aufgaben zum Kapitel.. Tutoraufgaben. Man stellt fest: fx, y x, y G. omit ist f beschränkt auf G a Da f auf G beschränkt, ist f auf G Riemann-Integrabel

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Inhaltsverzeichnis. I Vektoranalysis g

Inhaltsverzeichnis. I Vektoranalysis g I Vektoranalysis g 1 Vektorfunktionen und Raumkurven JJ 1.1 Vektorfunktionen n 1.2 Ableitung einer Vektorfunktion 12 1.3 Bogenlänge und Tangenteneinheitsvektor 16 1.4 Hauptnormale und Krümmung 19 1.5 Binormale

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Ferienkurs in Vektoranalysis

Ferienkurs in Vektoranalysis Zentrum athematik echnische Universität ünchen Dipl. ath. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Vektoranalysis Aufgabe. Sei U R n offen und f : U R m stetig differenzierbar. Zeige dass der Graph

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät für Physik R: Rechenmethoden für Physiker, Wie 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

Mathematik II Lösung 9. Lösung zu Serie 9

Mathematik II Lösung 9. Lösung zu Serie 9 D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Vektoranalysis, Funktionentheorie, Transformationen

Vektoranalysis, Funktionentheorie, Transformationen Rainer Schark Theo Overhagen Vektoranalysis, Funktionentheorie, Transformationen Verlag Harri Deutsch Inhaltsverzeichnis I Vektoranalysis 9 1 Vektorfunktionen und Raumkurven 11 1.1 Vektorfunktionen 11

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Satz von Gauss, Fluss und Divergenz

Satz von Gauss, Fluss und Divergenz Satz von Gauss, Fluss und Divergenz F - - - 4 - - L Das Vektorfeld F beschreibe die Geschwindigkeit in einer Flüssigkeit, die über die Ebene fließt. Der Fluss von F über L ist die in Einheitszeit fließende

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1 D-BAUG Analsis II FS 5 Dr. Meike Akveld Serie 8. Berechnen Sie für das Vektorfeld (siehe Abbildung ) 3 - -3 3 3 Abbildung : Aufgabe F : (, ) ( +, ) die Arbeit entlang der folgenden Wege C, wobei P = (,

Mehr