Vom Spannungstensor zum Impulsstrom

Größe: px
Ab Seite anzeigen:

Download "Vom Spannungstensor zum Impulsstrom"

Transkript

1 Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin

2 Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen Größen zusammen? Gibt es (formale) Einwände gegen die Verwendung der Größe im Schulunterricht?

3 Vom Spannungstensor zum Impulsstrom Übersicht Allgemeines zu Tensoren Spannungstensor Impulsbilanz - Impulsstrom

4 >> Allgemeines zu Tensoren << Tensoren sind koordinatenunabhängige Größen die sich auf Richtungen beziehen Beispiel 1: Skalare oder Tensoren 0. Stufe Beispiel 2: Vektoren oder Tensoren 1. Stufe v = v 1 b 1 + v 2 b 2 = 2 i=1 v i b i Maßzahlen / Koordinaten: v 1, v 2 Basisvektoren : b 1, b 2 Vereinfachung: Verwendung kartesischer Basisvektoren e i => kein Unterschied zwischen ko- und kontravarianten Größen => nur noch Indizes unten

5 >> Allgemeines zu Tensoren << Operationen mit Tensoren: 1. Vektoraddition für gleichartige Tensoren gleicher Stufe T III n = α T I (n) + β T II (n) 2. Tensorprodukt T III n + m = T I n T II m Beispiel: r 1 r 2 = α e 1 + β e 2 γ e 1 + δ e 2 = αγ e 1 e 1 + αδ e 1 e 2 + βγ e 2 e 1 + βδ e 2 e 2 Tensor 2. Stufe α β Matrixdarstellung Beispiel αγ αδ γ δ = βγ βδ Tensor 2. Stufe a 11 a 12 a 21 a = (a ij ) 22

6 Operationen mit Tensoren: 27. Karlsruher Didaktik-Workshop >> Allgemeines zu Tensoren << 3. Verjüngung / Spurbildung (Summation über Diagonalelemente) VJ T I n + 2 = T II n Beispiele: VJ T 2 Sp(a ij ) = a 11 + a 22 Sp r 1 r 2 = αγ + βδ Skalarprodukt von r 1 und r 2 VJ T 2 r Sp jk a ij b k = a 11b 1 + a 12 b 2 a 21 b 1 + a 22 b 2 = a 11 a 12 a 21 a 22 b 1 b 2 Mit Tensorprodukt und Verjüngung können koordinatenunabhängige Abhängigkeiten zwischen richtungsbezogenen Größen dargestellt werden

7 >> Spannungstensor << Materie durch innere Kräfte zusammengehalten

8 >> Spannungstensor << F 1 l 2 Materie wird durch innere Kräfte zusammengehalten Fläche mit Normalen n 1 und dem Flächeninhalt l 2 l 3 = f n 1 l 3 Kraft F(n 1 ), die durch die Fläche wirkt Im allgemeinen sind n 1 und F(n 1 ) nicht parallel zueinander Der Spannungstensor S verknüpft F(n 1 ) mit n 1 f: F n 1 = S n f, f beliebig klein

9 Darstellung in x, y, z-koordinaten 27. Karlsruher Didaktik-Workshop >> Spannungstensor << F 1 n 1 e x F I = + * (, ) n 1 e x F II e y * (, ) + n 1 e y e z * (, ) n 1 e z F III

10 >> Spannungstensor << Matrixdarstellung in x, y, z-koordinaten S f S xx S xy S xz S yx S yy S yz f = S zx S zy S zz S xx f S xy f S xz f S yx f S yy f S yz f S zx f S zy f S zz f = F xx F xy F xz F yx F yy F yz F zx F zy F zz

11 >> Spannungstensor << im Allgemeinen gilt: F 1 F 2 F 1 n S ist ein Tensorfeld n F 2 Weitere Eigenschaft: S ist symmetrisch, d.h. S xy = S yx, S xz = S zx, S yz = S zy! (z.b. Feynman Vorlesungen, Kapitel 31)

12 >> Impulsbilanz Impulsstrom << Impulsbilanz: d dt πdv + π v ndf + S ndf + ρf dv = 0 Impulsänderung p im Raumgebiet Spannungen Strom durch Oberfläche Konvektion Strom durch Oberfläche Volumenkräfte Senken oder Quellen im Raumgebiet

13 >> Impulsbilanz Impulsstrom << Impulsbilanz: Impulsänderung im Raumgebiet Strom von Impuls durch Oberfläche Quelle oder Senke von Impuls im Raumgebiet + + = 0 daher: negativer Spannungstensor S = Impulsstromdichte j und Impulsstromstärke I = j ndf

14 >> Impulsbilanz Impulsstrom << Impulsbilanz: d dt πdv + j ndf = p + I = 0 Vergleich mit p = F ergibt I = F

15 >> Impulsbilanz Impulsstrom << Projektion von I auf e 1 1-Komponten I 1 von I I 1 = F 1 = j ndf e 1 Impulsstromdichte Impulsstromstärke 1-Komponente der Impulsstromstärke Operation 1 Operation 2 Verjüngung mit ndf und Integration Verjüngung mit e 1

16 >> Impulsbilanz Impulsstrom << Projektion von I auf e 1 1-Komponten I 1 von I I 1 = F 1 = j ndf e 1 Impulsstromdichte Impulsstromstärke 1-Komponente der Impulsstromstärke Operation 1 Operation 2 Verjüngung mit ndf und Integration Verjüngung mit e 1 Da j = S ein symmetrischer Tensor ist, sind die Operationen vertauschbar!

17 >> Impulsbilanz Impulsstrom << Projektion auf e 1 d dt πdv + j ndf e 1 = d dt π e 1 dv + j n e 1 df = d dt d dt π e 1 dv + j e 1 ndf = π 1 dv + j 1 ndf = 0 (1) mit: p 1 = π 1 dv

18 >> Impulsbilanz Impulsstrom << Impulsbilanz: Änderung von p 1 im Raumgebiet + + Senke von p 1 = 0 Strom von p 1 durch Oberfläche Quelle oder im Raumgebiet daher: j 1 = j e 1 ist Impulsstromdichtevektor I 1 = F 1 = j 1 ndf ist 1-Komponente der Impulsstärke j 1 und e 1 sind allgemein nicht parallel d dt π 1 dv + j 1 ndf = p 1 + I 1 = 0

19 >> Impulsbilanz Impulsstrom << Impulsstromdichtevektor

20 >> Impulsbilanz Impulsstrom << Impulsstromdichtevektor

21 Impulsstromdichte= -Spannungstensor Tensorfeld, Feldgröße: Tensor 2. Stufe geht in Bilanzgleichung ein 27. Karlsruher Didaktik-Workshop Tensorfelder, Feldgröße: Tensor 1. Stufe = Vektor gehen in Bilanzgleichungen ein Verjüngung mit e 1 Impulsstromdichtevektor 1 Verjüngung mit e 2 Impulsstromdichtevektor 2 Verjüngung mit e 3 Impulsstromdichtevektor 3 legt fest, e 1 e 2, e 1 e 3, e 2 e 3 Verjüngung mit infinitesimalen, orientiertem Flächenelement df=ndf und Integration Verjüngung (=Skalarprodukt) mit infinitesimalen, orientiertem Flächenelement df=ndf und Integration legt fest, e 1 e 2, e 1 e 3, e 2 e 3 Impulsstromstärke= -Kraft Tensor 1. Stufe = Vektor Verjüngung mit e 3 Verjüngung mit e 2 Verjüngung mit e 1 Komponente 3 der Impulsstromstärke Komponente 2 der Impulsstromstärke Komponente 1 der Impulsstromstärke Tensor 0. Stufe = Skalar

22 Ende

23 Bronstein Taschenbuch der Physik ergänzende Kapitel, Kapitel 8.3.: Viele physikalische und geometrische Größen haben einerseits eine vom Koordinatensystem unabhängige Bedeutung, anderseits kann man ihnen in jedem Koordinatensystem gewisse Maßzahlen zuordnen, die sich im allgemeinen von Koordinatensystem zu Koordinatensystem ändern. Die allgemeine Tensorrechnung untersucht die Eigenschaften solcher sich ändernder Maßzahlen.

24 Vektoren oder Tensoren 1. Stufe v = v 1 b 1 + v 2 b 2 + v 3 b 3 = 3 i=1 v i b i (1) Maßzahlen / Koordinaten: v 1, v 2, v 3 Basisvektoren : b 1, b 2, b 3

25 Transformation von Basisvektoren und Koordinaten: 3 v = v i b i (2) i=1 3 v = v i b i (3) i=1 3 b i = A j i b j (4) j=1 (4) in (2) und Vertauschung der Summation: v = v i b i = v i A j i b j = v i j A i b j (5) i=1 i=1 j=1 j=1 i=1 Koeffizientenvergleich rechte Seite von (5) und (3) liefert: 3 v j = v i j A i (6) i=1

26 Verwendung kartesischer Basisvektoren => keine Unterscheidung von ko- und kontravarianten Größen => nur noch Indizes unten Tensor n-ter Stufe: m i 1 i n =1 dyadisches Produkt T n = a i1 i n e i1 e i2 e in Operationen mit Tensoren a. Tensorprodukt T III n + m = T I n T II m. a i1 i n j 1 j m e i1 e i2 e in e j1 e jm =. a i1 i n e i1 e i2 e in a j1 j m e j1 e j2 e jm =. a i1 i n a j1 j m e i1 e i2 e in e j1 e jm

27 b. Verjüngung (Spurbildung). a i1 i k i l i n e i1 e i2 e ik e il e in m a i1 i k i l i n e i1 e i2 e ik 1 e ik+1 e il 1 e il+1 e in = i k,i l,i k =i l. a i1 i k 1 i k+1 i l 1 i l+1 i n e i1 e i2 e ik 1 e ik+1 e il 1 e il+1 e in c. Überschiebung = Tensorprodukt + Verjüngung

28 >> Spannungstensor << Materie wird durch innere Kräfte zusammengehalten F II (n y ) n y x z Fläche mit Normalen n y und dem Flächeninhalt x z = f (beliebig klein) Kraft F II (n y ), die durch die Fläche wirkt Im allgemeinen sind n y und F II (n y ) nicht parallel zueinander! Spannungsvektor: S II n y = F II (n y ) x z analog: S I n x = F I (n x ), S y z III n z = F III (n z ) x y

29 >> Spannungstensor << S = S I n x n x + S II n y n y + S III n z n z S xi S yi S zi S xii S yii S zii S xiii S yiii = S ziii

30 >> Spannungstensor << S n in Matrixdarstellung

31 >> Impulsbilanz Impulsstrom << Impulsbilanz: d dt πdv S ndf + Volumen dv = 0 Impulsänderung p Impulsquelle oder -senke Strom durch Oberfläche daher: negativer Spannungstensor S = Impulsstromdichte j und Impulsstromstärke I = j ndf

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA Der Spannungszustand σ na Spannungsvektor (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] σ x σ x x + dx, y, z σ x x, y, z + σ x dx x x dx, y, z σ x x, y, z + σ x dx x etc df (R) = kdxdydz + σ x

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Tensoranalysis Mai 2010

Tensoranalysis Mai 2010 Tensoranalysis Mai 2010 Einführung Der Tensor ist ein mathematisches Objekt aus der Algebra und Differentialgeometrie. Der Begriff wurde ursprünglich in der Physik eingeführt und später mathematisch präzisiert.

Mehr

Elastizität und Bruchmechanik

Elastizität und Bruchmechanik Technische Universität Berlin 1 Institut für Mechanik 6. Juni 2008 Kräftegleichgewicht Spannungstensor Satz von Gauss Vertauschung Massenmittelpunktsbeschleunigung Zusammenfassung erstes Bewegungsgesetz

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze.

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Übungsblatt 01 http://www.fluid.tuwien.ac.at/302.043 Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Im Folgenden stehen normal gedruckte Buchstaben ρ (x) für skalare Funktion die den R 3 nach

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

2. Verzerrungszustand

2. Verzerrungszustand 2. Verzerrungszustand Ein Körper, der belastet wird, verformt sich. Dabei ändern die Punkte des Körpers ihre Lage. Die Lageänderung der Punkte des Körpers wird als Verschiebung bezeichnet. Ist die Verschiebung

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik

2.Übung Werkstoffmechanik Prof. K. Weinberg Universität Siegen Lehrstuhl für Festkörpermechanik Hookesches Gesetz.Übung Werkstoffmechanik Aus der lastostatik ist das Hookesche Gesetz im -dimensionalen Raum bekannt. σ = ε Wobei σ die Spannung, das lastizitätsmodul und ε die Dehnung oder allgemeiner

Mehr

1 Krummlinige Koordinatensysteme

1 Krummlinige Koordinatensysteme 1 Krummlinige Koordinatensysteme 1.1 Ebene Polarkoordinaten Ebene Polarkoordinaten sind für zweidimensionale rotationssymmetrische Probleme geeignet. Die Länge der gedachten Verbindungslinie eines Punktes

Mehr

Aufgaben zu Kapitel 22

Aufgaben zu Kapitel 22 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

1. Raum und Koordinatensysteme

1. Raum und Koordinatensysteme 1 1. Raum und Koordinatensysteme Messgrößen in der Physik Messen geschieht zunächst durch Vergleich mit einem Maßstab. Messbare Grundgrößen der klassischen Mechanik sind räumliche Abstände, zeitliche Abstände

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften

7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften 7.4: Zusammenfassung / Merkpunkte zu Kapitel 7: Mechanische Eigenschaften Der Zugversuch ergibt einefülle von Materialeigenschaften: Unterscheidung spröde - duktil - gummiartig usw.; und damit auch elastische

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Kapitel 2 Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Zusammenfassung Die in der Kontinuumsmechanik betrachteten Größen sind Skalare, Vektoren und Tensoren, oder allgemeiner Tensoren

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

Geometrische Methoden zur Analyse dynamischer Systeme

Geometrische Methoden zur Analyse dynamischer Systeme Geometrische Methoden zur Analyse dynamischer Systeme Markus Schöberl markus.schoeberl@jku.at Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz KV Ausgewählte Kapitel

Mehr

Teil 2. Vektorrechnung

Teil 2. Vektorrechnung Teil 2 Vektorrechnung 17 18 2.1 Koordinaten Kartesisches Koordinatensystem in der Ebene und im Raum senkrecht schneidende Zahlengeraden (Achsen), orientiert gemäß der Rechten-Hand-Regel Ü ¹ Å ØØ Ð Ò Ö

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Daniel Wachter. Der Mohr sche Kreis

Daniel Wachter. Der Mohr sche Kreis Daniel Wachter Der Mohr sche Kreis 1 Haftungshinweis Diese Angaben basieren auf den Vorlesungen von Prof. Dr. Jürg Dual und Prof. Dr. Edoardo Mazza an der ETH Zürich. Für die Richtigkeit wird keine Garantie

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya

Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 4. Dez. Kreisel + Reibung Alle Informationen zur orlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Statisches und dynamisches Ungleichgewicht Feste Drehachse

Mehr

Antwort der Gutachter auf die Kritik seitens der Theoretikergruppe

Antwort der Gutachter auf die Kritik seitens der Theoretikergruppe Antwort der Gutachter auf die Kritik seitens der Theoretikergruppe Matthias Bartelmann Frankfurt, 10. Januar 2014 Der KPK-Impulsstrom Der KPK-Impulsstrom entspricht: I KPK = T e x. T hat die Komponenten

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 8 Name des Übungsgruppenleiters und Gruppenbuchstabe: Namen

Mehr

Vektorrechnung. Mathematik-Repetitorium

Vektorrechnung. Mathematik-Repetitorium Vektorrechnung 2.1 Definition 2.2 Multiplikation Vektor und Skalar 2.3 Summe und Differenz 2.4 Komponentendarstellung 2.5 Lineare (Un-)Abhängigkeit 2.6 Skalares Produkt 2.7 Vektorielles Produkt 2.8 Mehrfachprodukte

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

3.1.1 Anes Koordinatensystem im Raum

3.1.1 Anes Koordinatensystem im Raum 3 Einführung von Koordinaten 3. Ane Koordinaten 3.. Anes Koordinatensystem im Raum Tafelskizze Im dreidimensionalen euklidischen Anschauungsraum E 3 wählen wir einen Punkt O, den Koordinatenursprung und

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Einführung zu P01 Elastostatik

Einführung zu P01 Elastostatik Praktikum Simulationssoftware (SiSo) Einführung zu P01 Elastostatik Ulrich Simon, rank Niemeyer, Martin Pietsch Ulmer Zentrum für Wissenschaftliches Rechnen (UZWR) www.uni-ulm.de/uzwr Statik starrer Körper

Mehr

Ferienkurs Elektrodynamik

Ferienkurs Elektrodynamik Ferienkurs Elektrodynamik Zusammenfassung Zeitabhängige Maxwellgleichungen Erhaltungsgrößen Retardierte Potentiale 7. März Bernhard Frank Bisher sind in der Elektro- und Magnetostatik folgende Gesetze

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

9 Tensoren. für jede Permutation π S q ; T heißt anti-symmetrisch, wenn T kπ(1)...k π(q) T k1...k q. = sgn(π) T k1...k q

9 Tensoren. für jede Permutation π S q ; T heißt anti-symmetrisch, wenn T kπ(1)...k π(q) T k1...k q. = sgn(π) T k1...k q Tensoren finden Anwendung in der Differentialgeometrie, in der Relativitätstheorie und in der Quantenmechanik. Wenn wir einen Vektor zunächst für praktische Zwecke als eine Liste von 3 (oder, in n Dimensionen,

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags Uhr, erstmalig am Klausur: ,

Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags Uhr, erstmalig am Klausur: , Festkörpermechanik/Organisation Gemeinsame Übungen zu den Vorlesungen inführung in die Werkstoffphysik und Festkörpermechanik : Zeit: Dienstags 4.45 6.5 Uhr, erstmalig am 8.0.008 Ort: Seminarraum P4 Klausur:

Mehr

FB 13, FG Kontinuumsmechanik Dipl.-Ing. J. FRISCHMANN

FB 13, FG Kontinuumsmechanik Dipl.-Ing. J. FRISCHMANN Klausur Tensorrechnung Wintersemester 015/16 Prof Dr-Ing C TSAKMAKIS FB 13, FG Kontinuumsmechak Dipl-Ing J FRISCHMANN 0704016 Name, Vorname: Studiengang: Matrikel-Nr: Bearbeitungshinweise: Benutzen Sie

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Spannungszustand

Spannungszustand 1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor

Mehr

A Einführung in die kartesische Tensorrechnung

A Einführung in die kartesische Tensorrechnung A Einführung in die kartesische Tensorrechnung Für das Verständnis dieses Lehrbuches wird eine gewisse Kenntnis der Tensorrechnung vorausgesetzt. Wir beschränken uns dabei auf kartesische Tensoren, denn

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

4 Matrixdarstellung von Symmetrieoperationen

4 Matrixdarstellung von Symmetrieoperationen 4 MATRIXDARSTELLUNG VON SYMMETRIEOPERATIONEN 4 Konsistenz der minimalen Symmetrieanalyse: fehlende Symmetrieelemente? Beispiel 3: Punktgruppe D h Im Schema (3.1) wird die Punktgruppe D h durch Auffinden

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Spannungs- und Verzerrungstensoren

Spannungs- und Verzerrungstensoren 10 Spannungs- und Verzerrungstensoren Spannungs- und Verzerrungstensoren 4 2 Motivation / Einführung Spannungsvektor im Stab ist abhängig von Orientierung des fiktiven Schnitts. Spannungsverteilung ist

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 212-5-7 Noch Kapitel III: Transformationen 2D Rotation um freies Rotationszentrum y α P(p x, p y ) Ziel: Rotiere Punkte r i um Winkel α um P und erhalte

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

, 2 f N, f M f n f m dx 0 sin xx x3 3! x 5 5! a n x n n0 N f N x a n x n n0 a,ba * x b x a * y b y a * z b z aa x 2 a y 2 a z 2, * r,tr,td 3 r, * d 3 r * * d 3 r, *, * d 3 r * d 3 r, * d 3 r * * d 3 r

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

9 Der Riemann sche Krümmungstensor

9 Der Riemann sche Krümmungstensor 9 Der Riemann sche Krümmungstensor Bevor wir weitere physikalische Ergebnisse der ART wie Gravitationswellen oder die Verwirbelung der Raumzeit durch rotierende Massen diskutieren, wollen wir uns in den

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

1 Übungen zum Indexkalkül

1 Übungen zum Indexkalkül mpuls- & Energiebilanzen Energiemethoden 01. Übungsblatt, WS 2012/13, S. 1 1 Übungen zum ndexkalkül a Vektoren können in ndexschreibweise über einen freien ndex notiert werden. Also zum Beispiel als v

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Der Maxwell'sche Spannungstensor in Vakuum und Materie

Der Maxwell'sche Spannungstensor in Vakuum und Materie Der Maxwell'sche Spannungstensor in Vakuum und Materie 26. April 2011 Verknüpfung mit vorherigem Vortrag Grenzfälle der Gröÿenordnung bei der optischen Pinzette: Rayleigh-Regime: Punkt-Dipol (Objekt sehr

Mehr

Lineare Algebra - Übungen 1 WS 2017/18

Lineare Algebra - Übungen 1 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 1 WS 017/18 Aufgabe P1: Vektoren Präsenzaufgaben 19. Oktober 017 a) Zeichnen Sie die folgenden Vektoren: (0,0) T, (1,0) T,

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr