Geometrische Methoden zur Analyse dynamischer Systeme

Größe: px
Ab Seite anzeigen:

Download "Geometrische Methoden zur Analyse dynamischer Systeme"

Transkript

1 Geometrische Methoden zur Analyse dynamischer Systeme Markus Schöberl Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz KV Ausgewählte Kapitel der Regelungstheorie 2016 M. Schöberl (regpro - JKU ) / 12

2 Teil I Einführung in die Tensorrechnung M. Schöberl (regpro - JKU ) / 12

3 Riemannsche Mannigfaltigkeit I Wir betrachten eine Mannigfaltigkeit M mit Koordinaten (x i ), i = 1,...,n. Vektorfelder und Kovektorfelder haben die Form v = n v i (x) x i = v i (x) n x i, ω = ω i (x)dx i = ω i (x)dx i i=1 wobei hier die Einstein sche Summenkonvention verwendet wurde (über gleichlautende hoch/tiefgestellte Indizes wird summiert!) Eine Metrik ist nun eine symmetrische multilineare Abbildung i=1 g : T p M T p M R, g = g ij (x)dx i dx j mit g ij = g ji und [g ij ] > 0. Es gilt g(v,w) = g ij v i w j Eine Riemannsche Mannigfaltigkeit ist nun mit einer Metrik (Innenprodukt) ausgestattet. M. Schöberl (regpro - JKU ) / 12

4 Tensoren I Ein Tensor T von Typ (p,q) im Punkt x einer Mannigfaltigkeit M ist eine multilineare Abbildung T : TxM... TxM }{{} T x M... T x M R. }{{} p Ein Tensorfeld (kurz Tensor) ordnet nun jedem Punkt x M einen Tensor zu. In Koordinaten T = T j 1...j p i 1...i q (x 1,...,x n )dx i 1... dx iq x j 1... x jp mit Komponenten T j 1...j p i 1...i q (x 1,...,x n ). Beispiele: Die Metrik ist ein (0, 2) Tensor. Vektorfelder sind (1, 0) Tensoren und Kovektorfelder sind (0, 1) Tensoren. Die p Indizes heißen kontravariant und die q Indizes kovariant M. Schöberl (regpro - JKU ) / 12 q

5 Tensoren II Die Koordinatenwechsel übertragen sich nun direkt aus jenen für Vektorfelder und Kovektorfelder: Beispiel: Wir betrachten den Tensor T = T j il (x)dxi dx l x j und den Koordinatenwechsel z = φ(x) bzw. (x = ˆφ(z)). Dann gilt in neuen Koordinaten Es gilt sowie T = T a bc (z)dzb dz c z a, T(v,w,α) = v i w l α j T j il T bc a = φ a ˆφ i ˆφ l Tj il x j z b z c v T = T(v,, ) = v i T j il dxl x j M. Schöberl (regpro - JKU ) / 12

6 Differentialformen I Differentialformen sind nun alternierende Tensoren. Eine k-form ω ist nun ein (0, k) Tensor der schief-symmetrisch ist ω : T x M... T x M R }{{} k In Koordinaten schreibt man ω = ω i1...i k (x)dx i 1... dx i k mit dem Grassmannprodukt ( Wedge ). Für 1-Formen gilt beispielsweise α β = α β β α Es gilt ω(v 1...v c...v d...v k ) = ω(v 1...v d...v c...v k ). Volumensform auf einer Riemannschen Mannigfaltigkeit vol = det(g)dx 1... dx n M. Schöberl (regpro - JKU ) / 12

7 Differentialformen II Im R 3 mit kartesischen Koordinaten gilt zum Beispiel vol = dx 1 dx 2 dx 3 und somit vol(v 1,v 2,v 3 ) = dx 1 dx 2 dx 3 (v 1,v 2,v 3 ) und weiter und schließlich = (v 1 1dx 2 dx 3 v 2 1dx 1 dx 3 +v 3 1dx 1 dx 2 )(v 2,v 3 ) vol(v 1,v 2,v 3 ) = (v 1 1v 2 2dx 3 v 2 1v 1 2dx 3 +v 3 1v 1 2dx 2 v 1 1 v3 2 dx2 +v 2 1 v3 2 dx1 v 2 2 v3 1 dx1 )(v 3 ) vol(v 1,v 2,v 3 ) = v 1 1 v2 2 v3 3 v2 1 v1 2 v3 3 +v3 1 v1 2 v2 3 v1 1 v3 2 v2 3 +v2 1 v3 2 v1 3 v2 2 v3 1 v1 3 Ein Vergleich liefert det v1 1 v2 1 v3 1 v1 2 v2 2 v3 2 v1 3 v2 3 v3 3 = vol(v 1,v 2,v 3 ) M. Schöberl (regpro - JKU ) / 12

8 Differentialformen III Sei α = α i1...i k dx i 1... dx i k eine k-form. Dann gilt: Äußere Ableitung: mit dα = α i 1...i k x s dx s dx i 1... dx i k, (k +1) Form d(dα) = 0, d(α β) = dα β +( 1) k α dβ Inneres Produkt mit einem Vektorfeld v v α = α(v,w 2,...,w k ), (k 1) Form mit v (α β) = (v α) β +( 1) k α (v β) M. Schöberl (regpro - JKU ) / 12

9 Differentialformen IV Lie-Ableitung bezüglich einem Vektorfeld v L v (α) = v dα+d(v α) Diese Beziehung heißt Cartans Magic Formula Beispiel: Eine 1-Form α = α i dx i L v (α i dx i ) = (v i x i) α i x kdxk dx i +d(v i α i ) = v k α i x kdxi v i α i x kdxk +v i α i v i x kdxk +α i ( x kdxk = v k α i x k +α v s ) s x i dx i Des weiteren gilt: L v (α β) = L v (α) β +α L v (β) Kommutativität bzgl. Pull-back: Für x = φ(z) gilt d(φ (α)) = φ (dα). M. Schöberl (regpro - JKU ) / 12

10 Stokes Theorem und Divergenz Wir betrachten eine n-dimensionale Mannigfaltigkeit M mit positiv orientiertem Rand M sowie eine (n 1)-Form α. Dann gilt ˆ ˆ dα = α (1) M und man erkennt, dass diese Beziehung als Spezialfälle die Integralsätze von Green, Gauß und Stokes enthält. Betrachten wir ein Vektorfeld w auf M und die Volumsform vol, so gilt mit div(w) = M L w (vol) = div(w)vol 1 det(g) x i(wi det(g)) = wi x i +w i γik k Somit gilt für g ij = δ ij (kartesische Koordinaten) div(w) = wi x i M. Schöberl (regpro - JKU ) / 12

11 Divergenz Theorem I Dies folgt aus L w (vol) = d(w vol) = d(w i x i det(g)dx 1... dx n ) = x i(wi det(g))dx 1... dx n = 1 det(g)) x i(wi det(g))vol. Aus diesen Betrachtungen folgt aber unmittelbar da zusammen mit (1). ˆ M ˆ div(w)vol = M div(w)vol = L w (vol) = d(w vol) w vol (2) M. Schöberl (regpro - JKU ) / 12

12 Divergenz Theorem II Anmerkung: Klassische Schreibweise ˆ ˆ div(w)vol = M M w,n aera mit n einem Normalvektor auf das Flächenelement aera = da. Es gilt aber w dv= w,n da, bzw w vol = w,n aera Somit folgt, dass aera die Volumensform für die (n 1)-dimensionale Mannigfaltigkeit M ist. M. Schöberl (regpro - JKU ) / 12

Symplektische Geometrie

Symplektische Geometrie Symplektische Geometrie Def. Eine symplektische Form auf U R 2n ist eine geschlossene, nichtausgeartete 2-Differentialform. }{{}}{{} d.h. dω = 0 wird gleich definiert Wir bezeichnen sie normalerweise mit

Mehr

Hodge Theorie. Viktoria Vilenska. Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer

Hodge Theorie. Viktoria Vilenska. Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer Hodge Theorie Viktoria Vilenska Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer 1 Inhaltsverzeichnis 1 Einführung des Hodge -Operators 3 2 Hodge Theorie auf

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

4 Vektoranalysis. 4.1 Riemannsche Metriken

4 Vektoranalysis. 4.1 Riemannsche Metriken 4 Vektoranalysis 4.1 Riemannsche Metriken Zunächst etwas Lineare Algebra: Es seien r linear unabhängige Vektoren a 1,..., a r im R n gegeben, und V := R(a 1,..., a n sei der von ihnen aufgespannte Untervektorraum.

Mehr

Mannigfaltigkeiten und Integration I

Mannigfaltigkeiten und Integration I und Integration I Martin Jochum 16. Dezember 2008 und Integration I 16. Dezember 2008 1 / 28 Gliederung Definition Folgerungen Tangentialvektoren Differentialformen Euklidische Simplizes Definition Motivation

Mehr

Differentialformenkalkül

Differentialformenkalkül Differentialformenkalkül Nicole Weber Seminar: Differentialformen in Natur und Technik WS 2008/2009 02.12.08 Gliederung 1 Alternierende Differentialformen Alternierende Differentialformen Orientierungen

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung Vorlesung Mathematik für Physiker III Kapitel 3 Differentialformen 10. Differentialformen 1. Ordnung Sei V ein Vektorraum über R, V sein Dualraum. Zu einer k-dimensionalen Untermannigfaltigkeit M des R

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse. Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung.

Mehr

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

ω : V V V (Die Vertauschung zweier Vektoren liefert ein extra Minuszeichen.)

ω : V V V (Die Vertauschung zweier Vektoren liefert ein extra Minuszeichen.) Analysis 3, Woche 12 Differentialformen I 121 Multilineare Algebra Sei V ein Vektorraum über R Dann definiert man V als den Vektorraum der stetigen linearen Abbildungen L : V R Allgemeiner kann man multilineare

Mehr

Vom Spannungstensor zum Impulsstrom

Vom Spannungstensor zum Impulsstrom Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Analysis IV: Analysis auf Mannigfaltigkeiten

Analysis IV: Analysis auf Mannigfaltigkeiten : Analysis auf Mannigfaltigkeiten Prof. Dr. Harald Garcke Sommersemester 2017 18. Januar 2018 2 Analysis IV Inhaltsverzeichnis Vorwort 3 1 Mannigfaltigkeiten 7 1.1 Topologische Grundbegriffe.......................

Mehr

2. Mannigfaltigkeiten

2. Mannigfaltigkeiten 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

Hermitesche Metrik, Zusammenhang, Krümmung auf Vektorbündeln

Hermitesche Metrik, Zusammenhang, Krümmung auf Vektorbündeln Hermitesche Metrik, Zusammenhang, Krümmung auf Vektorbündeln Olga Eschenska Seminar über Differentialgeometrie Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. L. Schwachhöfer 1 Inhaltsverzeichnis

Mehr

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit

Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit Der Laplace-Operator auf einer Riemannschen Mannigfaltigkeit (Eine kurze Einführung im Rahmen des Seminars Spektraltheorie des Laplace-Operators, Sommersemester 2009) Inhalt: 1) Einführung 2) (Unter-)

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Allgemeine Mechanik Musterlo sung 10.

Allgemeine Mechanik Musterlo sung 10. Allgemeine Mechanik Musterlo sung 0. U bung. HS 03 Prof. R. Renner Kanonische Transformation Gegeben sei die Hamiltonfunktion des harmonischen Oszillators H(q, p) p + q. m. Berechne die Bewegungsgleichung

Mehr

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung 2.6 Flächenintegrale Die passenden Integranden für Flächenintegrale sind weder Vektorfelder noch 1-Formen, sondern sogenannte 2-Formen. 2.6.1 2-Formen In Abschnitt 2.3 haben wir gelernt, dass 1-Formen

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Integralsatz von Gauss und Greensche Formeln

Integralsatz von Gauss und Greensche Formeln Integralsatz von Gauss und Nicola Schweiger LM München Haslach am 13.12.2012 Nicola Schweiger Integralsatz von Gauss und 1/12 Integralsatz von Gauss Sei R n ein beschränktes Gebiet mit stückweise glattem

Mehr

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze.

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Übungsblatt 01 http://www.fluid.tuwien.ac.at/302.043 Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Im Folgenden stehen normal gedruckte Buchstaben ρ (x) für skalare Funktion die den R 3 nach

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Mathematisches Werkzeug für Theoretische Physik

Mathematisches Werkzeug für Theoretische Physik Mathematisches Werkzeug für Theoretische Physik Thomas Glomann thomas@glomann.de. November 2004 basierend auf der orlesung von Prof. Wettig kript bitte auf Fehler überprüfen und diese umgehend an mich

Mehr

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

Der allgemeine Satz von Stokes...

Der allgemeine Satz von Stokes... Der allgemeine Satz von Stokes...... in der Sprache der Differentialformen. dω Differentialformen... sind - vereinfacht gesagt - orientierte Differentiale. k-form im R n a i1,...,i k (x) dx i1... dx ik,

Mehr

Mathematische Physik: Vektoranalysis und Differentialgeometrie

Mathematische Physik: Vektoranalysis und Differentialgeometrie Mathematische Physik: Vektoranalysis und Differentialgeometrie September 2006 April 2007 Markus Penz Stichwörter. Mannigfaltigkeit, Karte, Atlas, Tangentialraum, Tangentialbündel, Dualraum (Kovektorraum),

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx)

Beispiele für Klausurfragen zur Vorlesung Vektoranalysis (xx.xx.xxxx) Beispiele für Klausurfragen zur orlesung ektoranalysis (xx.xx.xxxx) Im folgenden finden Sie eine Liste von Fragen, die bei vergangenen Prüfungsterminen zur orlesung ektoranalysis gestellt wurden (Prof.

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Florian Krämer 27.1.2009 Anwendungen in der Physik Phasen- und Zustandsraum Hamiltonsche Systeme Integralinvarianten Anwendungen

Mehr

X. Mehrfache Integrale

X. Mehrfache Integrale X. Mehrfache Integrale Definition (10.1). Sei I k = {x = (x 1,..., x k ) : a i x i b i, i = 1,..., k} eine k Zelle in R k. Weiters sei I j die j Zelle in R j definiert durch die ersten j Ungleichungen,

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

9 Tensoren. für jede Permutation π S q ; T heißt anti-symmetrisch, wenn T kπ(1)...k π(q) T k1...k q. = sgn(π) T k1...k q

9 Tensoren. für jede Permutation π S q ; T heißt anti-symmetrisch, wenn T kπ(1)...k π(q) T k1...k q. = sgn(π) T k1...k q Tensoren finden Anwendung in der Differentialgeometrie, in der Relativitätstheorie und in der Quantenmechanik. Wenn wir einen Vektor zunächst für praktische Zwecke als eine Liste von 3 (oder, in n Dimensionen,

Mehr

mit geeigneten a j (p) R.

mit geeigneten a j (p) R. 66 27. Differentialformen Vektorfelder und 1-Formen. Im folgenden sei M eine differenzierbare k dimensionale Mannigfaltigkeit im R n. 27.1. Definition. Für f : M C m schreibt man f C l M, l =0, 1, 2,...,,

Mehr

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) )

xj, ψ = ψk = ξ i ηj ψk x i ( xi(0) x j(0) p x i (0) x j ) = η x j x i(0) p +ξ i η j (0)ψ k (0) Γm jk x k +ξ i η j (0) 2 ψ k x i (0) ) 14. KRÜMMUNG 67 14. Krümmung Definition 14.1 zweite kovariante Ableitung). Sei M, g) eine Riemannsche Mannigfaltigkeit, sei M. Seien ξ T M η,ψ VM). Dann ist η ψ VM) 2 ξ,η ψ := ξ η ψ ξ ηψ T M heißt zweite

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Allgemeine Relativitätstheorie und Schwarze Löcher

Allgemeine Relativitätstheorie und Schwarze Löcher 1 Allgemeine Relativitätstheorie und Schwarze Löcher Christian Haderer 13.01.2010 2 KAPITEL 1 GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE Die allgemeine Relativitätstheorie (kurz ART) ist immer noch

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Symplektische Geometrie

Symplektische Geometrie 31. August 2005 Symplektische Vektorrume Wiederholung: Eine (schwach) symplektische Form auf einem Vektorraum V ist eine Bilinearform die schiefsymmetrisch ist, d.h. ω : V V R ω(w.v) = ω(v, w) für alle

Mehr

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher Grundstudium Mathematik Analysis III Bearbeitet von Herbert Amann, Joachim Escher Neuausgabe 2008. Taschenbuch. xii, 480 S. Paperback ISBN 978 3 7643 8883 6 Format (B x L): 17 x 24 cm Gewicht: 960 g Weitere

Mehr

Differentialformen, Integralsatz von Stokes und deren Anwendung in der Elektrodynamik

Differentialformen, Integralsatz von Stokes und deren Anwendung in der Elektrodynamik Differentialformen, Integralsatz von Stokes und deren Anwendung in der Elektrodynamik Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science vorgelegt von Philipp Varšo geboren am 15.04.1985

Mehr

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

Eine Einführung in die Differentialgeometrie

Eine Einführung in die Differentialgeometrie Eine Einführung in die Differentialgeometrie Nach einer Vorlesung von Prof. Helga Baum 1 Getippt haben Luise Fehlinger und Carsten Falk 4. Mai 2006 1 Der Inhalt dieses Skriptes beruht auf den Vorlesungen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom Übungsaufgaben 11. Übung WS 15/16: Woche vom 4. 1. - 8. 1. 2016 Integralsatz von Gauß 23.1, 23.3, 23.5 (a,g), 23.6 (a) Integralsatz von Stokes 23.7, 23.8 (a), 23.10 Zusatzaufgabe zu Gauß + Stokes in 2D

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Kählermannigfaltigkeiten

Kählermannigfaltigkeiten Kählermannigfaltigkeiten Nataliya Bitman Seminar über Kählermannigfaltigkeiten WS 2007/08 Mathematik VII Differentialgeometrie Veranstalter: Prof L Schwachhöfer 1 Inhaltsverzeichnis 1 Kählermannigfaltigkeiten

Mehr

Komplexe Geometrie D. Kotschick. 16. Oktober 2007

Komplexe Geometrie D. Kotschick. 16. Oktober 2007 Komplexe Geometrie D. Kotschick 16. Oktober 2007 In dieser Vorlesung geht es um komplexe Mannigfaltigkeiten, insbesondere Kähler Mannigfaltigkeiten, d. h. komplexe Mannigfaltigkeiten mit einer Kähler Metrik.

Mehr

Satz von Gauß. Satz von Gauß 1-1

Satz von Gauß. Satz von Gauß 1-1 atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Lineare Algebra 3. Ché Netzer

Lineare Algebra 3. Ché Netzer Lineare Algebra 3 Ché Netzer 29. November 2015 Inhaltsverzeichnis 1 Multilineare Algebra 1 1.1 Tensorprodukte.................................. 1 1.2 Symmetrische und alternierende Produkte...................

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet.

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Eine globale eingebettete Fläche nicht-standarde Definition: Def. Eine (globale eingebettete) Fläche ist eine Teilmenge M von R

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

16.1 Mannigfaltigkeiten und Abbildungen

16.1 Mannigfaltigkeiten und Abbildungen Kapitel 16 Mannigfaltigkeiten 16.1 Mannigfaltigkeiten und Abbildungen Wir orientieren uns am Vorlesungsmanuskript Analysis 3 von Prof. M. Lehn. Zunächst erinnern wir an den bekannten Begriff eines topologischen

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Die Geometrie von Eichfeldern

Die Geometrie von Eichfeldern Die Geometrie von Eichfeldern Dr. R. Grauer Institut für Theoretische Physik I Heinrich-Heine-Universität Düsseldorf WS 1994/95 Inhaltsverzeichnis 1 Differentialgeometrische Grundlagen 1 1.1 Mannigfaltigkeiten...................................

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 3 30. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 3 30. Oktober 2013 1 / 23 3. Erste Fundamentalform parametrisierten

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 4 6. November 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 4 6. November 2013 1 / 17 4. Zweite Fundamentalform parametrisierten

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren A Vektoren A. Symbolische und grafische Darstellung von Vektoren Vektoren unterscheiden sich von einfachen reellen Zahlen, die in dieser Systematisierung als Skalare bezeichnet werden. Vektoren besitzen

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Holonomiegruppen Riemannscher Mannigfaltigkeiten

Holonomiegruppen Riemannscher Mannigfaltigkeiten Holonomiegruppen Riemannscher Mannigfaltigkeiten Skript zum Seminarthema Holonomiegruppen von Überlagerungen und Riemannschen Produkten Sommersemester 2009 an der Humbol Universität zu Berlin. Daniel Schliebner

Mehr

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten)

Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Prof. Dr. Daniel Grieser 18.12.2008 Inhaltsverzeichnis Differentialgeometrie: Themenübersicht (Vorlesung Wintersemester 2008/2009) (Erster Teil: Kurven und Flächen, Untermannigfaltigkeiten) Untermannigfaltigkeiten

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

Die de Rham-Kohomologie - Differentialformen, de Rham-Komplex & Mayer-Vietoris-Sequenz.

Die de Rham-Kohomologie - Differentialformen, de Rham-Komplex & Mayer-Vietoris-Sequenz. Die de Rham-Kohomologie - Differentialformen, de Rham-Komplex & Mayer-Vietoris-Sequenz. Sebastian Hage 19.04.2004 Vortrag im Rahmen des Seminars De Rham-Kohomologie und harmonische Differentialformen von

Mehr

Differentialformen auf Mannigfaltigkeiten, Integration von Differentialformen, Satz von Stokes für Mannigfaltigkeiten, de Rham- Kohomologie

Differentialformen auf Mannigfaltigkeiten, Integration von Differentialformen, Satz von Stokes für Mannigfaltigkeiten, de Rham- Kohomologie Seminar über Kählermannigfaltigkeiten im Wintersemester 2007/2008 Thema: Differentialformen auf Mannigfaltigkeiten, Integration von Differentialformen, Satz von Stokes für Mannigfaltigkeiten, de Rham-

Mehr

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA

Der Spannungszustand. (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] Mechanik IA Der Spannungszustand σ na Spannungsvektor (traction vector) [N/mm²] k Volumskraftdichte [N/mm³] σ x σ x x + dx, y, z σ x x, y, z + σ x dx x x dx, y, z σ x x, y, z + σ x dx x etc df (R) = kdxdydz + σ x

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Anwendungen. Benjamin Rudig. Seminar Differentialformen in Natur und Technik WS 08/

Anwendungen. Benjamin Rudig. Seminar Differentialformen in Natur und Technik WS 08/ Anwendungen Benjamin Rudig 09.12.08 Seminar Differentialformen in Natur und Technik WS 08/09 Inhaltsverzeichnis 1 Bewegliche Koordinatensysteme in E 3 2 2 Zusammenhang zwischen orthogonalen und schiefsymmetrischen

Mehr

Hamilton-Jacobi-Formalismus I

Hamilton-Jacobi-Formalismus I Hamilton-Jacobi-Formalismus I 1 Hamilton-Jacobi-Formalismus I Johannes Berger Leonard Stimpfle 05.06.2013 Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

1 Distributionen und der Satz von Frobenius

1 Distributionen und der Satz von Frobenius 1 Distributionen und der Satz von Frobenius 1.1 Vorbemerkungen Definition 1.1. Sei M eine d-dimensionale Mannigfaltigkeit, sei (U, ϕ) ein Koordinatensystem auf M mit Koordinatenfunktionen x 1,..., x d.

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr