Mathematische Formeln
|
|
|
- Adolph Kappel
- vor 6 Jahren
- Abrufe
Transkript
1 Mathematische Formeln Vektorfeld E(r ), skalares Feld f(r ) Kartesische Koordinaten x, y, Ortsvektor r =(x, y, ) =xe x + ye y + e = re r Linienelement: ds = dx e x + dy e y + d e Volumenelement dv = dx dy d Nabla, = = d x = y, x = dr x = x f Gradient (Steigung) f = y f f ( f) i = i f Divergen (Quellstärke) E = x E x + y E y + E = i ie i y E E y Rotation (Wirbelstärke) E = E x x E x E y y E x Laplace 2 = 2 x + 2 y + 2 = 2 f = 2 xf + 2 yf + 2 f = f Kugelkoordinaten: Betrag r, Polarwinkel θ, imuthwinkel ϕ Koordinaten r 2 = x 2 + y 2 + 2, tan θ = x 2 + y 2 /, x r sin θ cos ϕ tan ϕ = y/x Ortsvektor r = y = r sin θ sin ϕ r cos θ sin θ cos ϕ cos θ cos ϕ sin ϕ Einheitsvektoren e r = sin θ sin ϕ e θ = cos θ sin ϕ e ϕ = +cosϕ cos θ sin θ Linienelement: ds = dr e r + rdθe θ + r sin θdϕe ϕ Volumenelement dv = r 2 sin θdrdθdϕ Gradient f = e r r f + e θ r θf + e φ r sin θ φf Divergen E = r 2 r (r 2 E r )+ ( r sin θ φe φ + θ (sin θe θ )) Laplace f = r 2 r (rf)+ r 2 sin 2 θ sin θ θ (sin θ θ f)+ 2 φ f) 73
2 Zylinderkoordinaten: bstand ur chse R, imuth ϕ, Höhe Koordinaten R 2 = x 2 + y 2 tan ϕ = y/x x r cos ϕ Ortsvektor r = y = r sin ϕ cos ϕ sin ϕ Einheitsvektoren e R = sin ϕ, e ϕ = +cosϕ, e = Linienelement: ds = dr e R + Rdϕ+ d e Volumenelement dv = RdRdϕd Gradient f = e R R f + e φ R φf + e f Divergen Laplace E = R R(RE R )+ R φe φ + E f = R R(R R f)+ R 2 2 φ f + 2 f bleitungs-identitäten r =3, r = e r, r = ( f) = 2 f ( f) = ( E)= ( E)= ( E) 2 E (fe)=f( E)+( f) E Integralsäte: Gradientensat Gauß scher Integralsat Stokes scher Integralsat Komplexe Zahlen: b a V ( f) ds = f( b) f(a ) ( E) dv = Ed geschlossene Fläche um Volumen V Orientierung (d)nachaußen ( E) d = SEds geschlossene Linie S um Rand der Fläche Orientierung (d, ds) nachrechterhandregel i =, i 2 =, /i = i e iϕ =cosϕ + i sin ϕ, e iπ/2 = i = a + ib = e iϕ = (cos ϕ + i sin ϕ) (a, b, ϕ reell) = a ib, 2 = 2 = =(Re()) 2 +(Im()) 2, tan ϕ = Im() /Re() Re() =a = cos ϕ, Im() =b = sin ϕ 74
3 B Formeln um Elektromagnetismus Konstanten µ =4π 7 N 2 =, N 2 = µ = 7 2 c 2 4πc 2 N Elementarladung e =, C e = q p = q e 2 C2 =8, Nm 2 Massen Elektron: m e =5KeV Proton: m p =938MeV Strom u. Ladung I = t q Strom- u. Ladungsdichte I = j d q = dr Ladungserhaltung j = t j d = t q Maxwell-Gleichungen Gauß für E E = E d = q Gauß für B B = B d = Faraday-Henry E = t B Eds= t Bd mpere-maxwell B = µ (j + te) Bds = µ (I + t Lorent-Kraft F = q E + v B Ed ) Energiedichte w Dielektrikum Magnetismus w = 2 ED+ 2 BH D = E + P = r E B = µ ( H + M)=µ µ r H Potentiale B = E = ϕ t Eichtransformation = + λ ϕ = ϕ t λ Superpositionsprinip E = i E i B = i B i ϕ = i ϕ i = i i 75
4 Elektrostatik 2 Potentielle Energie W p = F ds ϕ= W p q Potential ϕ E = ϕ ϕ = E ds Spannung U U = ϕ(r 2 ) ϕ(r ) Punktquelle q E q = 4π r e 2 r ϕ = q 4π r Dipol-Feld ±q p = q d ( q +q) ϕ p cos θ 4π r 2 Dipol-Energie E pot = p E M = p E Plattenkondensator E σ = n C = q/u W = 2 CU2 Poisson-Gleichung ϕ = / Elektrische Leitung Stromdichte j = v = µ E = σ el E Ohm sches Geset R = U/I = σ el L U = Ed C = r d Stromkreise Masche: U emk = a U a Knoten: a I a = Widerstände Reihe: R ges = R + R 2 Parallel: R = R + R 2 Magnetostatic Biot-Savart B = µ 4π I d L r r 3 B-Feld eines Leiters Kreisbahn B = µ I 2πR e ϕ P T = qbr Spule Kraft auf Leiter Kraft wischen Leitern B = µ ni F = I d l B F = µ I 2 L 2πR magnetischer Dipol m = I B = µ m 2πr 3 auf der chse Dipol-Energie E pot = m B M = m B Hall Effekt U H = vbb Vektor-Potential = µ 4π j r dv 76
5 Induktion induierte Spannung Selbstinduktion Spule U ind = t U ind = L t I L = µ o µ r n 2 V B Schaltkreise Einschaltvorgänge τ t I + I = I I(t) =I ( e t/τ ) Zeitkonstanten τ = RC τ = L/R Wechselspannung U = U e iωt T = ν = 2π ω Leistung P = UI P = T komplexe Widerstände U = Z I T UIdt= 2 U I cos(ϕ U ϕ I ) Z R = R Z L = iωl Z C =/(iωc) RCL-Reihenschwingkreis t U = R t I + C I + L 2 t I Z = R + iωc + iωl ω =/ LC R LC = L/C RCL-Parallelschwingkreis Z = R + Z LC Z LC = Z C + Z L 77
1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer
TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,
Lösung für Blatt 7,,Elektrodynamik
Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert
Elektro- und Magnetostatik
Übung 1 Abgabe: 1.3. bzw. 5.3.219 Elektromagnetische Felder und Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik In dieser Übung befassen wir
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16
Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität
Formelsammlung Elektrodynamik
Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................
1 Vektoralgebra (3D euklidischer Raum R 3 )
Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition
1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4
Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................
4 Statische Magnetfelder
4.1 Magnetismus und Ströme 4 Statische Magnetfelder 4.1 Magnetismus und Ströme In der Natur treten zahlreiche magnetische Effekte auf, die hier kurz zusammenfassend dargestellt und später quantitativ diskutiert
Klausur zur Vorlesung Experimentalphysik II (SS 2018)
Universität Siegen Sommersemester 218 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur zur Vorlesung Experimentalphysik II (SS 218) Aufgabe 1: Kurzfragen Beantworten
1 FORMELSAMMLUNG 1. möglich. Die Rücktransformation erfolgt dann jeweils durch Anwendung der inversen Matrix: = T z 0 0 1
1 FORMELSMMLUNG 1 1 Formelsammlung 1.1 Koordinatensysteme und Koordinatentransformation Eine Übersicht der Orts- und Basisvektoren, der metrischen Faktoren sowie der Weg-, Flächen- und olumenelemente in
Aufgabe Summe max. P Punkte
Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,
Kapitel 7: Maxwell-Gleichungen
Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,
Theoretische Elektrodynamik
Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
Physik-Department. Ferienkurs zur Experimentalphysik
Physik-Department Ferienkurs zur Experimentalphysik Daniel Jost 27/08/13 Technische Universität München Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Gleichungen der Magnetostatik........................ 1
Polarisierung und Magnetisierung
Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische
Blatt 12: Satz von Gauss, Satz von Stokes
Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes
(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld
. a) E = grad ϕ = e r ϕ/ r = ϕ e r/ e r b) ρ = div D = D ( y 2y2 y 2 y ) = 2D y 2 y 3 y 2 y 3 c) J = rot H = H e z ( / )) = d) F = q v B = q v B 5 (3, 4,) e) U = = rb Ed l = r a [ ] E y2 2 r (,,) E y=
Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.
Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................
2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0
Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der
Elektromagnetische Schwingungen
Elektromagnetische Schwingungen W el = 2 CU 2 Freie Schwingung - F J EX-II SS27 - E - F J W mag = 2 LI2 - E mẍ + αẋ + D x = Freie Schwingung wir hätten auch so vorgehen können Für die Spannungen im Kreis
Elektrotechnik II Formelsammlung
Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz
3.4 Gradient, Divergenz, Rotation in anderen Koordinaten
3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0
Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle
Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als
Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand
E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge
Klassische Theoretische Physik III (Elektrodynamik)
WiSe 7/8 Klassische Theoretische Physik III Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 3 Ausgabe: Fr,..7 Abgabe: Fr, 7..7 Besprechung: Mi,..7 Aufgabe 8: Prolate
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen
Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung
2.3 Gekrümmte Oberflächen
2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei
Einführung in die theoretische Physik II Sommersemester 2015
Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß
Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/
Klausur Experimentalphysik II
Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung
Ferienkurs Experimentalphysik II Elektrodynamik
Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................
Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht
Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien
Krummlinige Koordinaten
Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere
1 Mathematische Hilfsmittel
Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation
Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )
Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
Blatt 14.2: Integralsätze von Gauß und Stokes
Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/
6.4.4 Elihu-Thomson ****** 1 Motivation
V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele
Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen
Gedächtnisprotokoll GGET 3 Klausur Vorwort:
Gedächtnisprotokoll GGET 3 Klausur 2010 Vorwort: Es handelt sich wieder einmal um ein Gedächtnisprotokoll, das direkt nach der Klausur erstellt wurde. Die Aufgaben entsprechen also in grober Näherung dem
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript:
PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Alonso-Finn, Halliday Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2004-2005
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
3. Die Divergenz und die Quellen des elektrischen Feldes
3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.3. bzw. 15.3.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Formelsammlung: Physik II für Naturwissenschaftler
Formelsammlung: Physi II für Naturwissenschaftler 4 Eletrizität und Magnetismus 4.1 Ladung und Ladungserhaltung Ladung q = n(±e) mit Elementarladung 4.2 Coulomb-Gesetz e = 1,6 10 19 C = 1,6 10 19 As Stand:
Othmar Marti Experimentelle Physik Universität Ulm
PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003
Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu
KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen
Physik 2 Elektrodynamik und Optik
Physik 2 Elektrodynamik und Optik Notizen zur Vorlesung im Sommersemester 2013 Peter Schleper 6. Juni 2013 Institut für Experimentalphysik, Universität Hamburg [email protected] http://www.desy.de/~schleper/lehre/physik2/ss_2013
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Vorlesung 4 Magnetostatik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 16.09.2010 1 Allgemeines In der Magnetostatik gibt es viele Analogien zur Elektrostatik. Ein
Höhere Mathematik 3 Herbst 2014
IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2
Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm
Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände
n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r
Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript
Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)
Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches
P d. b a. Die Ringscheibe wird nun mit einer geschlossenen Scheibe mit gleichem Außenradius b ausgetauscht.
Felder und Wellen 1/17 Klausur H14 Aufgabe 1 (16 Punkte) Hinweis: Die Aufgabenteile c) mit d) können unabhängig von den Aufgabenteilen a) und b) gelöst werden. Gegeben ist folgende Anordnung, die eine
Magnetostatik. B( r) = 0
KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die
Ableitungen von skalaren Feldern Der Gradient
Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Übung 1 - Musterlösung
Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln
KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung
KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die
TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern
TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine
IX.2 Multipolentwicklung
IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale
"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"
V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz
Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]
Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten
5 Harmonische Funktionen
5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung
Elektrische Ladung, elektrostatisches Feld
ET 1 Elektrische Ladung, elektrostatisches Feld Elektrische Ladung Die elektrische Ladung Q eines (geladenen) Körpers wird durch diejenige Kraft festgestellt, die er auf andere geladene Körper ausübt.
1.) Es sind folgende Hilfsmittel zugelassen: Schreibmaterial, nicht alphanumerisch programmierbarer Taschenrechner und ein Wörterbuch.
Allgemeine und Theoretische Elektrotechnik (ATE) Fachprüfung: Tag der Prüfung: 0908 Dauer: 120 Minuten Name: Matrikel-Nr: Hinweise: 1) Es sind folgende Hilfsmittel ugelassen: Schreibmaterial, nicht alphanumerisch
Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.
Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen
Ferienkurs Experimentalphysik 2
Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:
