Polarisationszustände, Polarisation von Materie

Größe: px
Ab Seite anzeigen:

Download "Polarisationszustände, Polarisation von Materie"

Transkript

1 Übung 5 Abgabe: 3.3. bzw Elektromagnetische Felder & Wellen Frühjahrssemester 27 Photonics Laboratory, ETH Zürich Polarisationszustände, Polarisation von Materie Polarisationszustände ebener Wellen (7 Pkt.) In der Vorlesung haben Sie ebene Wellen als Lösungen der quellfreien Wellengleichung kennengelernt. Die Vektornatur der Felder ergibt den Freiheitsgrad der Polarisation einer Welle, der in der Kommunikations- und Messtechnik von unschätzbarem Wert ist. In dieser Aufgaben befassen wir uns mit linearer und zirkularer Polarisation. Wir betrachten dazu hier eine monochromatische, zirkular polarisierte ebene Welle, die wir als Superposition zweier linear polarisierter Wellen schreiben. Bei zirkular polarisierten Feldern beschreibt der elektrische Feldvektor an einem festen Raumpunkt in der Zeit einen Kreis. Wir wählen hier die Konvention, dass wir Felder linkszirkular nennen, deren Feldvektor an einem fixen Raumpunkt in Blickrichtung zur Quelle im Gegenuhrzeigersinn rotiert. Die Zirkularität rechtszirkular polarisierter Felder sei entsprechend entgegengesetzt. Die folgende Aufgabe finde zunächst in einem homogenen Medium mit isotropem Brechnungsindex n statt. (a) (3 Pkt.) Formulieren Sie das reelle elektrische Feld E (r, t) einer in positive z-richtung propagierenden ebenen Welle. Die Welle sei linear in x-richtung polarisiert, habe die Feldamplitude E R und die Phase sei gerade so gewählt, dass das Feld zum Zeitpunkt t = in der Ebene z = maximal ist. Formulieren Sie den Wellenvektor k unter Verwendung von ω, c und n. Das reelle Feld lautet Es gilt für den Wellenvektor k = nω/c(,, ) T. E (r, t) = E cos(kz ωt)n x. () (b) (3 Pkt.) Bestimmen Sie das komplexe elektrische Feld E (r) der Welle aus Teilaufgabe (a). Das komplexe Feld lautet E (r) = E e ikz n x. (2) (c) (3 Pkt.) Ermitteln Sie das reelle elektrische Feld E 2 (r, t) einer in positive z-richtung propagierenden ebenen Welle. Die Welle sei linear in y-richtung polarisiert, habe die Feldamplitude E R und die Phase sei gerade so gewählt, dass das Feld zum Zeitpunkt t = in der Ebene z = π/(2k) gerade maximal ist.

2 Das reelle Feld lautet E 2 (r, t) = E sin(kz ωt)n y. (3) (d) (3 Pkt.) Wie lautet das komplexe elektrische Feld E 2 (r) der Welle aus Teilaufgabe (c)? Wie äussert sich die Phasenverschiebung von π/2 zwischen den reellen Feldern aus den Teilaufgaben (a) und (c) im Vergleich der jeweiligen komplexen Felder? Das komplexe Feld lautet E 2 (r) = ie e ikz n y. (4) Die Phasenverschiebung von π/2 in den reellen Feldern resultiert also in einem komplexen Phasenfaktor i zwischen den komplexen Feldamplituden. (e) (8 Pkt.) Formulieren Sie nun ein weiteres elektrisches Feld E + (r, t), indem Sie die reellen elektrischen Felder aus den Teilaufgaben (a) und (c) superponieren. Erstellen Sie eine Skizze, in der Sie die Trajektorie der Spitze des elektrischen Feldvektors in der Ebene z = als Funktion der Zeit darstellen. Tragen Sie in Ihren Graphen den elektrischen Feldvektor zum Zeitpunkt t = π/(4ω) ein und geben Sie den Winkel an, den der Vektor mit der x-achse einschliesst. Geben Sie die Zirkularität des Feldes an. Das Gesamtfeld lautet cos(kz ωt) E + (r, t) = E sin(kz ωt). (5) In der Ebene z = lautet das Feld cos(ωt) E + (z =, t) = E sin(ωt). (6) Somit beschreibt der elektrische Feldvektor eine Kreisbahn. Zum Zeitpunkt t = π/(4ω) zeigt der Feldvektor im 45 Winkel zwischen x und y Achse und er rotiert bei Blickrichtung gegen die Ausbreitungsrichtung im Uhrzeigersinn. Das Feld ist also rechtszirkular polarisiert. y π/4 E(t) x z 2

3 (f) (3 Pkt.) Bestimmen Sie das komplexe Feld E + (r) des reellen Feldes E + (r, t) aus Teilaufgabe (e). Superposition der Felder aus den Teilaufgaben (b) und (d) ergibt E + (r) = E i e ikz. (7) (g) (3 Pkt.) Überzeugen Sie sich durch explizite Rechnung, dass Ihr Feld E + (r) aus Teilaufgabe (f) die quellfreie Helmholtzgleichung erfüllt. Einsetzen in die Helmholtzgleichung und Ausführen der Ableitungen führt zum gewünschten Ergebnis. (h) (4 Pkt.) Ermitteln Sie das zu Ihrem Ergebnis aus Teilaufgabe (f) gehörende komplexe magnetische Feld B + (r). In welchem Polarisationszustand befindet sich das Magnetfeld? Welche Phasendifferenz haben das elektrische und das magnetische Feld? Aus der Maxwell-Gleichung für ein monochromatisches Feld E(r) = iωb(r) erhalten wir für das Magnetfeld B + (r) = iω E n +(r) = E c i i e ikz. (8) Das Magnetfeld ist zum elektrischen Feld lediglich um π/2 phasenverschoben und trägt noch stets dieselbe Zirkularität, denn es gilt B + (r) = (in/c)e + (r). (i) (3 Pkt.) Formulieren Sie das reelle Magnetfeld B + (r, t). Hinweis: Sie können Ihr Resultat zusammen mit jenem aus Teilaufgabe (e) anhand der Maxwell schen Rotationsgleichungen überprüfen. Wir finden B + (r, t) = n c sin(kz ωt) cos(kz ωt). (9) (j) (4 Pkt.) Fügen Sie Ihrem Graphen aus Teilaufgabe (e) das Feld B(z =, t) hinzu. Tragen Sie den magnetischen Feldvektor zum Zeitpunkt t = π/(4ω) ein und überprüfen Sie die Transversalität der Felder ebener Wellen in Ihrem Graphen. Wir finden in der Ebene z = B(z =, t) = n sin(ωt) cos(ωt). () c 3

4 Transversalität: rechter Winkel y B(t=ω/π/4) π/4 E(t=ω/π/4) x z (k) (8 Pkt.) Formulieren Sie das reelle elektrische Feld E (r, t) mit inverser Zirkularität im Vergleichung zum Feld E + (r, t), bei sonst identischen Parametern. Das Feld E zeige zum Zeitpunkt t = in der Ebene z = in positive x-richtung. Erstellen Sie eine Skizze, in der Sie die Trajektorie der Spitze des elektrischen Feldvektors in der Ebene z = als Funktion der Zeit darstellen. Tragen Sie in Ihren Graphen den elektrischen Feldvektor zum Zeitpunkt t = π/(4ω) ein und geben Sie den Winkel an, den der Vektor mit der x-achse einschliesst. Das zugehörige linkszirkular polarisierte Feld lautet cos(kz ωt) E (r, t) = E sin(kz ωt) () Zum Zeitpunkt t = π/(4ω) lautet das Feld in der Ebene z = cos(π/4) E (z =, t = π/(4ω)) = E sin(π/4) (2) y π/4 E(t=ω/π/4) x z (l) (3 Pkt.) Formulieren Sie das komplexe elektrische Feld E (r). Das komplexe linkszirkular polarisierte Feld lautet E (r) = E i e ikz. (3) 4

5 Wir haben im ersten Teil der Aufgabe ein zirkular polarisiertes Feld aus zwei orthogonal linear polarisierten Feldern mit geeigneter Phasenverschiebung generiert. So wie horizontal und vertikal polarisierte Felder einen Satz von Basisfunktionen bilden, um ein beliebig polarisiertes Feld darzustellen, bilden links- und rechtszirkular polarisierte Felder eine äquivalente Basis. (m) (8 Pkt.) Superponieren Sie die komplexen Felder E + (r) und E (r), um ein komplexes Feld zu formulieren, das linear im 45 Winkel zwischen x und y-achse polarisiert ist, zum Zeitpunkt t = π/(4ω) in der Ebene z = seine Maximalamplitude 2E erreicht. Formulieren Sie das reelle Feld Ihrer Antwort, um ihre Richtigkeit zu überprüfen. Bei Betrachtung unserer Graphen wird klar, dass wir ein x-polarisiertes Feld erhalten, wenn wir die Felder E + und E superponieren. Offenbar müssen wir das linkszirkular polarisierte Feld um die Phase π/2 verschieben, um die gewünschte diagonale Polarisation zu erhalten. Wir finden so E(r) = E e ikz i + i ( i) = E ( i) e ikz = 2E e i(kz π/4) (4) In der Tat erfüllt das zugehörige zeitabhängige Feld E(r, t) die gewünschten Eigenschaften E(r, t) = 2E cos(kz ωt π/4). (5) Die Superposition gegenläufiger ebener Wellen kann zur Ausbildung stehender Wellen führen. Wir untersuchen zum Abschluss dieser Aufgabe zwei interessante Feldverteilungen, die sich durch Superposition gegenläufiger zirkular polarisierter Wellen ergeben. Nehmen Sie hierzu ab sofort an, dass sich alle Wellen im Vakuum ausbreiten. (n) (3 Pkt.) Formulieren Sie die komplexe Feldverteilung, die sich durch Superposition eines in positive z-richtung propagierenden linkszirkular polarisierten Feldes mit einem in negative z-richtung propagierenden rechtszirkular polarisierten Feld ergibt. Zeigen Sie, dass das resultierende Gesamtfeld an jedem Raumpunkt zirkular polarisiert ist. Das komplexe Feld einer in positive z-richtung propagierenden linkszirkular polarisierten Welle lautet E (r) = E i e ikz. (6) Das komplexe Feld einer in negative z-richtung propagierenden rechtszirkular polarisierten Welle lautet E + (r) = E i e ikz. (7) 5

6 Das Gesamtfeld lautet somit E ± (r) = 2E cos(kz) i. (8) (o) (3 Pkt.) Berechnen Sie die Intensität Ihres Feldes aus Teilaufgabe (n) und bestimmen Sie die Periode der Intensitätsverteilung in Einheiten der Wellenlänge λ. Die Intensität lautet I = 2 ε µ E(r) 2 = 4E 2 ε µ cos 2 (kz) und hat eine Periode von λ/2. (p) (5 Pkt.) Formulieren Sie die komplexe Feldverteilung, die sich durch Superposition eines in positive z-richtung propagierenden linkszirkular polarisierten Feldes mit einem in negative z-richtung propagierenden ebenso linkszirkular polarisierten Feld ergibt. Zeigen Sie, dass Ihr Feld lokal linear polarisiert ist und geben Sie die Länge (in Einheiten der Wellenlänge) in z-richtung an, nach der die lineare Polarisation sich um 9 gedreht hat. Das komplexe Feld einer in negative z-richtung propagierenden linkszirkular polarisierten Welle lautet E + (r) = E i e ikz. (9) Das Gesamtfeld lautet somit cos(kz) E ± (r) = 2E sin(kz) (2) und ist lokal linear polarisiert. Die Polarisation dreht sich um 9 nach z = π/(2k) = λ/4. (q) (3 Pkt.) Berechnen Sie die Intensitätsverteilung Ihres Feldes aus Teilaufgabe (p). Welche Periode hat die Intensitätsverteilung? Die Intensität lautet I = 2 ε µ E 2, ist also räumlich konstant. Die Periode ist unendlich. 6

7 2 Polarisierung eines dünnen Films (3 Pkt.) Aus der Vorlesung ist Ihnen bekannt, dass die Reaktion der Materie auf elektromagnetische Felder nur bei sehr niedrigen Frequenzen als lineare Antwort im Zeitraum angenommen werden kann. In dieser Aufgabe betrachten wir die Polarisation eines Materials unter dem Einfluss eines elektromagnetischen Pulses, um uns dispersive Effekte durch frequenzabhängige Materialparameter zu veranschaulichen. Wir betrachten hierzu einen dünnen Film, der von einem elektromagnetischen Puls angeregt werde. Der Film befinde sich in der Ebene z = und sei so dünn, dass es ausreicht, das Feld dort zu betrachten. Das Material des Films sei approximativ durch die lineare elektrische Suszeptibilität χ(ω) = χ e iω/ω (2) mit den Materialkonstanten χ und Ω beschrieben. Das anregende elektrische Feld habe den Zeitverlauf E(z =, t) = E e t2 /t 2, (22) wobei t die Pulsdauer und E die Pulsamplitude bezeichnen. Wir interessieren uns für die zeitliche Abhängigkeit der Polarisierung P(t) des Films. (a) (8 Punkte) Beschreiben Sie in einigen kurzen Sätzen und unter Verwendung von Formeln (ohne diese auszuwerten) zwei mögliche Vorgehensweisen, um im allgemeinen Fall P(t) aus E(z =, t) und χ(ω) zu berechnen. Methode (Zeitbereich): Man Fourier-transformiert χ(ω) in den Zeitbereich, um χ(t) zu erhalten χ(t) = dω χ(ω)e iωt. (23) Der zeitliche Verlauf der Polarisation ist dann durch die Faltung zwischen χ und E gegeben P(t) = ε χ(t t ) E(t ) dt. (24) Methode 2 (Frequenzbereich): Man Fourier-transformiert E(t) in den Frequenzbereich, um Ê(ω) zu erhalten. Ê(ω) = dt E(t)e iωt. (25) 2π Die zeitabhängige Polarisierung P(t) erhält man dann aus der Fouriertransformation von ˆP(ω) = χ(ω)ê(ω) P(t) = ε χ(ω) Ê(ω) e iωt dω. (26) (b) (7 Punkte) Berechnen Sie das Frequenzspektrum Ê(z =, ω) des anregenden elektrischen Feldes aus Gl. (22). Hinweis: Quadratisches Ergänzen sowie das Integral du e au2 = π a sollten hilfreich sein. 7

8 Wir berechnen das Frequenzspektrum des elektrischen Feldes durch die Fouriertransformation Ê(z =, ω) = 2π = E 2π = E 2π E(z =, t) e iωt dt (27) e t2 /t 2 e iωt dt (28) [ ( t dt exp i t )] [ 2 ( ) ] 2 ω ωt exp (29) t 2 2 = E t 2 π e t2 ω2 /4. (3) (c) (7 Punkte) Berechnen Sie nun P(t) für das anregende Feld aus Gl. (22) und die Suszeptibilität aus Gl. (2), und bestimmen Sie die zeitliche Verzögerung zwischen der Polarisierung und dem elektrischen Feld. Hinweis: Beachten Sie den Hinweis aus Teilaufgabe (b). Wir verwenden Methode 2 von oben, um auf die Polarisierung zu schliessen P(t) = ε χ(ω) Ê(z =, ω) e iωt dω (3) = ε t χ 2 π E = ε t χ 2 π E e t2 ω2 /4 e iω(t /Ω ) dω (32) [ ( )] ( ) e t ω i t t Ω e t 2 t Ω (33) = ε χ E e (t /Ω ) 2 /t 2. (34) Die Polarisierung ist somit um τ = /Ω gegenüber dem elektrischen Feld verzögert. (d) (3 Punkte) Sie haben soeben festgestellt, dass die Suszeptibilität aus Gl. (2) zu einer zeitlichen Verzögerung der Polarisierung relativ zum anregenden Feld führt. Verwenden Sie die Suszeptibilität χ(ω) = χ e iω/ω e ω2 τ 2 /4 (35) mit der materialspezifischen Konstante τ, um die daraus resultierende Polarisierung unter dem elektrischen Feld aus Gl. (22) zu berechnen. Welchen Einfluss hat der Parameter τ auf den Polarisierungspuls? Wir erhalten durch analoge Rechnung die Polarisierung t P(t) = ε χ E e (t /Ω ) 2 /(t 2 τ 2 + t 2 +τ 2). (36) Der Parameter τ verursacht eine Pulsverbreiterung von t auf t 2 + τ 2. 8

9 (e) (5 Pkt.) Erstellen Sie einen Graphen der zeitabhängigen Polarisierung für den Fall τ = t = /(2Ω ). Tragen Sie auf der Abszisse die normierte Zeit tω auf und auf der Ordinate die normierte Polarisierung P /( ε χ E ). Beschriften Sie Ihre Achsen. Skizzieren Sie zusätzlich den Puls im Fall τ =, t = /(2Ω ). Beschriften Sie quantitativ die normierte Polarisierung zum Zeitpunkt t = für beide Pulse. Beschriften Sie quantitativ den Zeitpunkt beider Pulsmaxima. Beschriftung x-achse mit tω, Beschriftung y-achse mit P/(ε χ E ), Gauss sche Form der Pulse, in positive x-richtung versetzte Pulse, Beschriftung, auf x-achse, Beschriftung Schnittpunkte mit y-achse. τ= τ=/(2ω ) P/( χ E ) e -2 /sqrt(2) /e 4 tω 9

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses)

Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) -1/17- Überraschende Effekte mit 3D-Brillen (Surprising effects with 3D glasses) Quelle des Ursprungsbildes: D-Kuru/Wikimedia Commons -2/17- Was sieht man, wenn man......mit einer 3D-Kinobrille in den

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Physik III (integrierter Kurs, exp. Teil), HU, WS 1999/2, T.H. September 26, 2 VORLESUNG 8 Nachdenken/Nachlesen: Sind Sterne farbig? Kann man die Farben besser direkt mit dem Auge oder mit Hilfe eines

Mehr

Versuch pl : Polarisation des Lichts

Versuch pl : Polarisation des Lichts UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch pl : Polarisation des Lichts 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck ÁÒ ÐØ

Mehr

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik Strahlungsquellen Laser-Messtechnik Thermische Strahlungsquellen [typ. kont.; f(t)] Fluoreszenz / Lumineszenzstrahler [typ. Linienspektrum; Energieniv.] Laser Gasentladungslampen, Leuchtstoffröhren Halbleiter-Dioden

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Fortgeschrittenen Praktikum Technische Universita t Darmstadt Betreuer: Dr. Mathias Sinther Durchfu hrung: 06.07.2009 Abgabe: 28.07.2009 Versuch A 3.3 Polarisation und Doppelbrechung Oliver Bitterling

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium

Physikalisches Praktikum I. Polarisation durch ein optisch aktives Medium Fachbereich Physik Physikalisches Praktikum I Name: Polarisation durch ein optisch aktives Medium Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

2 Ultrakurzpulslaser. 2.1 Modenkopplung

2 Ultrakurzpulslaser. 2.1 Modenkopplung 2 Ultrakurzpulslaser Durch die Möglichkeit eine konstante Phasenbeziehung zwischen verschiedenen longitudinalen Moden innerhalb eines Verstärkungsspektrums herstellen zu können, lassen sich sehr kurze

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O08 Polarisation (Pr_PhII_O08_Polarisation_7, 25.10.2015) 1. 2. Name Matr. Nr. Gruppe Team Protokoll ist ok O Datum

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Kohärente Anti-Stokes Raman-Streuung

Kohärente Anti-Stokes Raman-Streuung Kohärente Anti-Stokes Raman-Streuung von Gesine Steudle 1 Betreuer: Dr. Cynthia Aku-Leh Max-Born-Institut, Gebäude C, Z 1.5, Tel: (030)6392-1474 Max-Born-Str. 2a, 12489 Berlin email: akuley@mbi-berlin.de

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht

Laborversuche zur Physik 2 II - 2. Polarisiertes Licht FB Physik Laborversuche zur Physik 2 II - 2 Versuche mit polarisiertem Licht Reyher, 27.02.15 Polarisiertes Licht Ziele Beschreibung und Erzeugung von polarisiertem Licht Optische Aktivität von Quarz und

Mehr

Laborversuche zur Experimentalfysik II. Versuch II-02: Polarisiertes Licht

Laborversuche zur Experimentalfysik II. Versuch II-02: Polarisiertes Licht Laborversuche zur Experimentalfysik II Versuch II-02: Polarisiertes Licht Versuchsleiter: Monika Wesner Autoren: Kai Dinges Michael Beer Gruppe: 12 (Di) Versuchsdatum: 13. Juni 2006 Inhaltsverzeichnis

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden.

Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5. Diagramme mit MATHCAD Von den vielen Möglichkeiten der Diagrammdarstellungen in MATHCAD sollen einige gezeigt werden. 5.. Erstellen eines Diagramms Das Erstellen eines Diagramms verläuft in mehreren

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Optische Bauelemente

Optische Bauelemente Optische Bauelemente (Teil 2) Matthias Pospiech Universität Hannover Optische Bauelemente p. 1/15 Inhalt 1. Akusto-Optische Modulatoren (AOMs) 2. Faraday Rotator (Faraday Effekt) 3. Optische Diode Optische

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz.

Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz. Bergische Universität Wuppertal Fachbereich C Sommersemester 007 Physikalisches Praktikum 1 Versuch Mi 1 Mikrowellen Verfasser: Moritz Schubotz Betreuer: Sebastian Weber Abgabetermin: 0 Ausgangssituation

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS. Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch

DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS. Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch DAS SNELLIUSSCHE BRECHUNGSGESETZ UND LINSEN MIT EXAKT PUNKTFÖRMIGEM FOKUS Eugen Grycko, Werner Kirsch, Tobias Mühlenbruch Fakultät für Mathematik und Informatik FernUniversität Universitätsstraße 1 Hagen

Mehr

Die Polarisation von Licht

Die Polarisation von Licht Kapitel 3 Die Polarisation von Licht In diesem Kapitel werden wir uns mit elektromagnetischen Wellen beschäftigen, deren Feldvektor E eine definierte Richtung zum Wellenvektor k besitzt. Solche Wellen

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2000 / 2001 Protokoll zum Thema WELLENOPTIK Petra Rauecker 9855238 INHALTSVERZEICHNIS 1. Grundlagen zu Polarisation Seite 3 2. Versuche zu Polarisation Seite 5

Mehr

Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen

Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen BERGISCHE UNIVERSITÄT WUPPERTAL Versuch WP1 Polarisation von Licht durch Streuung und Reflexion und die elliptische Polarisation von Lichtwellen I. Vorkenntnisse 9.06 Licht als ebene, transversale elektromagnetische

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005 PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 00 Assistent Florian Jessen Tübingen, den. Oktober 00 1 Vorwort In diesem Versuch ging es um das Phänomen der Doppelbrechung

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Polarimetrie - Deutschlands nationales Metrologieinstitut

Polarimetrie - Deutschlands nationales Metrologieinstitut Polarimetrie - Deutschlands nationales Metrologieinstitut - 1 - Anwendungen der Polarimetrie In vielen Bereichen wird Polarimetrie eingesetzt, um optisch aktive Substanzen nachzuweisen und deren Konzentration

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 3.3: Polarisation und Doppelbrechung Praktikum für Fortgeschrittene Von Isabelle Zienert (106586) & Mischa Hildebrand

Mehr

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0 Protokoll der Physikdoppelstunde am 25.02.2002 Protokollant: Alexander Rudyk Zu Beginn der Stunde haben wir uns mit den Gesetzmäßigkeiten der Induktion bei rotierender Induktionsspule beschäftigt und insbesondere

Mehr

Wellenoptik II Polarisation

Wellenoptik II Polarisation Phsik A VL41 (31.01.2013) Polarisation Polarisation Polarisationsarten Polarisatoren Polarisation durch Streuung und Refleion Polarisation und Doppelbrechung Optische Aktivität 1 Polarisation Polarisationsarten

Mehr

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SAARLAND Versuche zu linear polarisiertem Licht Jaqueline Schriefl Manuel Kunzler

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Vorbereitung zum Versuch. Laser und Wellenoptik (Teil B)

Vorbereitung zum Versuch. Laser und Wellenoptik (Teil B) Vorbereitung zum Versuch Laser und Wellenoptik (Teil B) Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 5. Mai 2008 1 Erzeugen des Bildes eines Spaltes aus dessen Beugungsbild In diesem Versuchsteil

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Thema 9: Optische Polarisation

Thema 9: Optische Polarisation Version vom 26. April 2015 Thema 9: Optische Polarisation Abbildung 9.1: Übersicht des Versuchsaufbaus Abbildung 9.2: Detailansicht der Proben 1 Einführung und Grundbegriffe 1.1 Einführung Neben Beugungs

Mehr

Physikalisches Praktikum 5. Semester

Physikalisches Praktikum 5. Semester Torsten Leddig 22.Dezember 2005 Mathias Arbeiter Betreuer: Toralf Ziems Physikalisches Praktikum 5. Semester - Zeeman-Effekt - Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Normaler Zeeman-Effekt 3 3 Messung

Mehr

Oliver Kronenwerth (Autor) Extraordinary Magnetoresistance Effekt: Meatll-Halbleiter- Hybridstrukturen in homogenen und inhomogenen Magnetfeldern

Oliver Kronenwerth (Autor) Extraordinary Magnetoresistance Effekt: Meatll-Halbleiter- Hybridstrukturen in homogenen und inhomogenen Magnetfeldern Oliver Kronenwerth (Autor) Extraordinary Magnetoresistance Effekt: Meatll-Halbleiter- Hybridstrukturen in homogenen und inhomogenen Magnetfeldern https://cuvillier.de/de/shop/publications/2713 Copyright:

Mehr

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM 6. FOURIER-TRANSFORMATION In diesem Versuch ging es darum, mittels Fouriertransformation aus dem Beugungsbild eines Einfachspaltes auf dessen Breite zu schließen.

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang:

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang: SS 2003 Klausur zum Praktikum ETiT III Mess- und Sensortechnik 16.07.2003 90 min Vorname, Name:, Matrikelnummer: Studiengang: ETiT / Fb. 18 WiET / Fb. 1 Aufgaben: #1 #2 #3 #4 Kurzfragen Summe Punkte: /

Mehr

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht 1 Polarisiertes Licht Dieser Bereich der Optik ist besonders interessant, weil die Entdeckung der Polarisation historisch die Vorstellung des Lichtes als elektromagnetische Welle etabliert hat. Vorbereitung:

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

1 Grundlagen: Abbildung mit Linsen

1 Grundlagen: Abbildung mit Linsen C B C @ KOP/ Koppelprobleme KOP Dieses Kapitel beschäftigt sich mit Fragestellungen bezüglich der Verkopplung von Wellenleitern sowie Stecker oder Spleiÿe. Grundlagen: bbildung mit Linsen Zunächst werden

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Entwicklung der Pulsformung in Phase, Amplitude und Polarisation sowie kohärente Kontrolle in der MOT

Entwicklung der Pulsformung in Phase, Amplitude und Polarisation sowie kohärente Kontrolle in der MOT Entwicklung der Pulsformung in Phase, Amplitude und Polarisation sowie kohärente Kontrolle in der MOT Diplomarbeit von Fabian Weise Fachbereich Physik, Freie Universität Berlin Februar 2006 BetreutvonProf.Dr.Dr.h.c.LudgerWöste

Mehr

Elektromagnetische Welle

Elektromagnetische Welle Elektromagnetische Welle Thomas Schwotzer 31. Oktober 2013 Zusammenfassung Mobilfunk, Ortung mit GPS und vieles andere basiert auf elektromagnetischen Wellen. Wir wollen einmal sehr grob die Grundlagen

Mehr

Versuch 3.3: Polarisation und Doppelbrechung

Versuch 3.3: Polarisation und Doppelbrechung Versuch 3.3: Polarisation und Doppelbrechung Praktikanten: Carl Böhmer, Maxim Singer Betreuer: Mathias Sinther Durchführung: 18.04.2011 1 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.............................

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Eigenschaften von Licht............................. 2 2.2 Polarisation.................................... 2 2.2.1 Herstellung von polarisiertem

Mehr

Kapitel 6. Elektromagnetische Wellen. 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator

Kapitel 6. Elektromagnetische Wellen. 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator Kapitel 6 Elektromagnetische Wellen 6.1 Lösung der Maxwellschen Gleichungen in einem Isolator In diesem Abschnitt wollen wir uns mit der Lösung der Maxwell Gleichungen in einem Isolator beschäftigen. Wir

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

11 Elektromagnetische Schwingungen und Wellen

11 Elektromagnetische Schwingungen und Wellen 16 11 Elektromagnetische Schwingungen und Wellen 11.1 Elektromagnetischer Schwingkreis Ein elektromagnetischer Schwingkreis besteht aus einer Induktivität L und einem Kondensator C (LC-Kreis) Lädt man

Mehr

Permanent Magnet Motor Konzept

Permanent Magnet Motor Konzept Permanent Magnet Motor Konzept QuickField Simulation (Studentenversion) ROTOR STATOR www.magnetmotor.at Dietmar Hohl, Linz/AUSTRIA Jän. 2010 Rev. D Seite 1 von 13 Beginnen wir mit zwei dreieckigen Magneten.

Mehr

3. Inelastische Lichtstreuung: Der Raman-Effekt

3. Inelastische Lichtstreuung: Der Raman-Effekt 3. Inelastische Lichtstreuung: Der Raman-Effekt Nachdem im vorangegangenen Abschnitt der Einfluß der Gestalt eines Probenvolumens auf sein Streuverhalten betrachtet wurde, wird im folgenden die Lichtstreuung

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Polarisation und Doppelbrechung

Polarisation und Doppelbrechung Polarisation und Doppelbrechung Fortgeschrittenen Praktikum der TU Darmstadt Konstantin Ristl und Jan Wagner Betreuer: Dr. Mathias Sinther Datum: 29.Juni 2009 Erklärung zum fortgeschrittenen Praktikum

Mehr

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s. Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung

Mehr

Ellipsometrie an gekrümmten Oberflächen

Ellipsometrie an gekrümmten Oberflächen Ellipsometrie an gekrümmten Oberflächen Christian Negara und Matthias Hartrumpf Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung Fraunhoferstraße 1, D-76131 Karlsruhe Zusammenfassung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil II. Polarisiertes Licht

Physikalisches Grundpraktikum für Physiker/innen Teil II. Polarisiertes Licht Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil II Polarisiertes Licht WWW-Adresse Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/

Mehr