Physik VI Plasmaphysik
|
|
|
- Frauke Peters
- vor 9 Jahren
- Abrufe
Transkript
1 Physik VI Plasmaphysik
2 Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen im Plasma 6. Plasmakinetik 7. Plasmastrahlung 8. Thermonukleare Plasmen
3 1 8. Thermonukleare Plasmen die Entwicklung in der Plasmaphysik wurde im wesentlichen durch die Erforschung der kontrollierten Kernfusion vorangetrieben um aus der Verschmelzung von Atomkernen Energie zu gewinnen, muss ein Plasma bei ausreichender Temperatur lange genug eingeschlossen bleiben erst dann findet die Energiefreisetzung bei Fusionsreaktionen mit einer Rate statt, die das Aufrechterhalten des Plasmas gewährleistet dieses gezündete thermonukleare Plasma ist bislang noch nicht experimentell realisiert
4 Kernfusion pp-zyklus p + p D + e + + n D + p 3 He + g 3 He + 3 He 4 He + 2 p In jeder Sekunde Umwandlung von: 600 Mio. t Wasserstoff in 596 Mio. t Helium E = m c 2 entspricht Energieproduktion von: GW Sonne, Sterne Gravitation überwindet Abstoßungskräfte
5 Fusionsreaktoren Gravitation (Sonne) Magnetischer Einschluss Trägheitsfusion
6 Fusionsreaktionen der Energiegewinn bei der Kernfusion basiert auf der Fusion leichter Atomkerne hierbei wird eine große Menge an Energie freigesetzt, da sich die Bindungsenergie pro Nukleon im Fusionsprodukt erhöht (Potentialtopf tiefer) damit Fusion stattfindet, müssen die Atomkerne sich bei einem Stoß nahe genug kommen, um durch den Coulomb-Wall tunneln zu können und in den Bereich der starken Wechselwirkung zu gelangen Fusionsreaktionen mit großem Wirkungsquerschnitt sind:
7 Kernfusion große Abstände r > r n : Abstoßung durch Coulomb-Kraft Potentialwall ~ 100 kev + + Bindungsenergie Potentialwall: schwierig zu überwinden endliche Wahrscheinlichkeit für Durchtunneln der Barriere Wahrscheinlichkeit für leichte Kerne mit hohem v rel maximal + + kleine Abstände r < r n ~ fm : Anziehung durch Kernkräfte starke Wechselwirkung ~ MeV
8 Kernenergie Chemische Bindungen: ~ ev (Atome, Moleküle) Kernbindungsenergien: ~ MeV Energiefreisetzung prinzipiell möglich durch: Fusion von leichten Kernen oder Spaltung schwerer Kerne Vorteile der Fusion: Ressourcen Sicherheit
9 Kernfusion Sonne Energieerzeugung durch Kernprozesse Thermonukleare Fusionen sind Reaktionen, bei denen leichtere Kerne zu einem schweren Kern verschmelzen und sich durch diesen Prozess in einen energetisch günstigeren Zustand begeben, d.h. Energie an die Umgebung abgeben. Kernfusionsprozesse im Sterninneren werden durch kinetische Energie der ungeordneten thermischen Bewegung der Teilchen eingeleitet niedrige, aber hinreichende Fusionsrate wird primär durch Geschwindigkeitsverteilung und quantenmechanischen Tunneleffekt bestimmt dominierende Mechanismen sind: pp Reaktion CNO-Zyklus 3 -Prozess
10 Kernfusion Sonne
11 Kernfusion Sonne
12 Kernfusion Sonne pp-reaktion dominiert in der Sonne (BETHE, CHRITCHFIELD 1938) läuft im Bereich T K ab (Sonne!) pp- Reaktion: 1 H + 1 H 2 D + e + + n MeV ( a) daran anschließend sind am häufigsten 2 D + 1 H 3 He + g MeV (6s) 3 He + 3 He 4 He H MeV (10 6 a) Energiebilanz pro He-Kern ( MeV) + ( MeV) MeV 0.51 MeV = 26.2 MeV = J
13 Kernfusion geringer Wirkungsquerschnitt des pp-zyklus d.h.: Reaktion ist sehr unwahrscheinlich sehr langsame Reaktion lange Lebensdauer der Sterne auf Erde nicht realisierbar wahrscheinlichere Reaktion Deuterium-Tritium-Plasma (DT) Reaktionsbedingungen: Temperatur: T ~ 100 Mio K ~10 kev Dichte: n ~ m -3 Energieeinschlußzeit: ~ 5 10 s heiße Plasmen
14 Zündkriterium Rate der Fusionsreaktionen ist gegeben als bei vollständig ionisierten Plasmen sind die Strahlungsverluste im wesentlichen Bremsstrahlung der Elektronen, die im Coulomb-Feld der Ionen abgelenkt werden die Linienstrahlung spielt eine untergeordnete Rolle allerdings können Verunreinigungen, die durch Wandprozesse in das Plasma getragen werden, die Leistungsbilanz stark beeinflussen
15 4 für die Leistungsbilanz ist schließlich noch die Isolation des Plasmas wesentlich dies wird in einem einfachsten Ansatz mit einer Energieeinschlusszeit ausgedrückt Lawson-Kriterium um das thermonukleare Zünden des Plasmas zu erreichen, wird im wesentlichen an einer Verbesserung des Einschlusses gearbeitet dementsprechend gibt es unterschiedliche Konzepte, ein heißes Fusionsplasma zu erzeugen es lassen sich zwei Klassen unterscheiden: die magnetische Fusion (Tokamak, Stellarator) und die Trägheitsfusion, bei der ein Brennstoffgemisch aus Deuterium und Tritium mittels Laserstrahlung zur Implosion gebracht wird
16 Plasmaeinschluss die Halterung des thermonuklearen Plasmas kann wegen seiner hohen Temperatur nicht mehr durch substantielle Wände erfolgen jedoch eröffnet die Anwendung magnetischer Felder eine Möglichkeit zur Einschließung der Plasmen mittels des magnetischen Druckes (magnetische Halterung) ein Zusammenhalt des Plasmas infolge der Gravitationskräfte, wie er z.b. auf der Sonne auftritt, ist unter irdischen Maßstäben nicht realisierbar
17 Zylinderförmiges homogenes Magnetfeld: Magnetischer Einschluss Einschluss entlang der Achse Problem: Verschluss der Enden? Schließen zum Torus die Lösung?
18 Magnetischer Einschluss Rein toroidales Magnetfeld führt zu radialer Variation des Feldes B ~ 1/R Zentrifugalkraft und Gradienten-Drift Separation von Elektronen und Ionen (Ladungstrennung) elektrisches Feld E und Polarisationsdrift ExB-Drift Teilchenverluste
19 Magnetischer Einschluss Verdrillung des Feldes sorgt für Kompensation der Drift! (Mittelung über Gebiete mit schwachem und starkem Feld) Toroidale Anordnung mit magnetischen Flächen Zwei notwendige Feldkomponenten: toroidal ( B t ) und poloidal ( B p ) Zwei mögliche Konzepte: Tokamak und Stellarator
20 Tokamak Arzimovich, Sacharov, Tamm (Moskau, 50er Jahre) Poloidalfeld B p durch Induktion eines Plasmastroms (Transformatorprinzip) + intrinsische Heizung + fortgeschrittenstes Konzept - nicht stationär (Stromtrieb) - Stromabriss möglich (Disruption)
21 Tokamak R = 1.65 m a = 0.5 m B t 3.5 T I p 1.4 MA P H 28 MW Betriebsbeginn: 1991 ASDEX Upgrade, IPP Garching
22 Stellarator L. Spitzer jr. (50er Jahre, Princeton) poloidales Feld durch externe helikale Spulen + nur externe Ströme + stationär betreibbar - komplizierte Geometrie Magnetfeld durch externes Spulensystem erzeugt!
23 Stellarator Magnetfeld durch externes Spulensystem erzeugt! Wendelstein 7-X, IPP Greifswald
24 Kernfusion Stellarator Wendelstein
25 Stellarator Spulengehäuse Embedding 270 Wickelpaket Supraleiter 330 Querschnitt nichtplanare Spule Supraleitende nicht-planare Spulen 5 x 10 nichtplanare Spulen 5 x 4 planare Spulen
26 Plasmaheizung für die Erzeugung bzw. Heizung thermonuklearer Plasma kommen folgende Methoden in Frage: - Elektrischer Stromdurchgang (Stromtrieb, Ohmsche Heizung) - Magnetische Kompression (Pinch) - Injektion energiereicher Wellen- oder Teilchenstrahlen (Wellenheizung, Neutralteilcheninjektion)
27 - Ohmsche Heizung nur in Tokamaks von Bedeutung - Neutralteilcheninjektion (NBI) schnelle Teilchen geben Energie ab Plasmaheizung - Zyklotronresonanzheizung (CRH) Beschleunigung der Gyrationsbewegung Einstrahlung von Mikrowellen ins Plasma: Elektronen (ECRH): GHz (Radar) Ionen (ICRH): MHz (UKW) Gyrotronentwicklung im FZK
28 Energieträger Brennstoff-Bedarf eines 1GW-Kraftwerks im Jahr: Uran: 8 LKW (150 Tonnen) Fusionsbrennstoff 0,6 Tonnen Öl: 7 Supertanker ( Barrel) Kohle: Zug von 400 km Länge ( Tonnen) Strombedarf einer Familie im Jahr gedeckt durch 0.08 g D und 0.2 g Li Ein Kohlekraftwerk erzeugt pro Stunde 2000 t CO2. Ein Fusionskraftwerk erzeugt pro Stunde einige 100g harmloses Helium.
29 Fusionskraftwerk Brennstoff: D 1:2000 in Meerwasser Li im Meerwasser T wird in der Anlage erbrütet
Kernfusion durch magnetischen Einschluss
Bachelor Seminar SoSe 2012 13. Juli 2012 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3 Die Deuterium-Tritium-Reaktion
Ferienakademie Kernfusion. von Matthias Dodenhöft
Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung
Dieter Suter Physik B3
Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher
Kernfusion und Wendelstein 7-X
Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000
Energieversorgung 2100 - Kernfusion oder doch Windräder?
Max-Planck-Institut für Plasmaphysik Energieversorgg - Kernfusion oder doch Windräder? Ralph Dux MPI für Plasmaphysik 85748 Garching, Boltzmannstr. 2 [email protected] http://www.ipp.mpg.de Prolog Windräder
Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter
Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Wissenschaftliche Direktorin Max-Planck-Institut für Plasmaphysik, Garching/Greifswald Energie erzeugen wie die Sonne Wie gewinnt
Fusion von Wasserstoff
Fusion von Wasserstoff Die neue Energie? Thomas Klinger Max-Planck-Institut für Plasmaphysik, Greifswald Frage 1 Die Energiefrage ist absolut fundamental. Wohin geht die Entwicklung in diesem Jahrhundert?
Kapitel 5: Kernfusion
Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion
Die Welt von morgen - die Sicht eines Energieforschers
DHV Symposium Die Welt von morgen Die Welt von morgen - die Sicht eines Energieforschers Thomas Klinger Max Planck-Institut für Plasmaphysik Garching und Greifswald DHV Symposium, Bonn 2. November 2016
Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk
Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Dipl. Ing. (FH) Bernadett Gmeiner MPI Dank an: Dr. Rudolf Neu Dr. Hans Meister 85748 Garching, Boltzmannstr.2 [email protected]
Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43
Laserfusion Georg Hofmann Uni Osnabrück 05. Juni 2007 Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni 2007 1 / 43 1 Einführung Fusion 2 Laserfusion 3 Ausblick 4 Zusammenfassung Georg Hofmann (Uni Osnabrück)
Fusion- eine neue Primärenergiequelle der Zukunft
Mitglied der Helmholtz-Gemeinschaft Fusion- eine neue Primärenergiequelle der Zukunft IHK im Dialog Workshop 5: Forschung und Entwicklung Jülich, 14.10.2008 Detlev Reiter Entwurf: Impulsreferat, 14.10.08,
Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)
Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University
Energieerzeugung durch Kernfusion
red Institute for Nuclear Physics Mainz, D 55099 Mainz, Germany E-mail: [email protected] Vorgestellt werden die Grundprinzipien der Kernfusion, welche Probleme sich bei der technischen
Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf [email protected]
Max-Planck-Institut für Plasmaphysik Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf [email protected] Max-Planck-Institut für Plasmaphysik Energie Kernfusion Fusionsforschung
Physik VI Plasmaphysik
Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im
FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder
FWU Schule und Unterricht DVD 46 02527 18 min, Farbe FWU-Klassiker Kernfusion FWU das Medieninstitut der Länder 00 Lernziele nach Lehrplänen und Schulbüchern Die Schüler lernen, dass bestimmte Atomkerne
Fusionsexperiment Wendelstein 7-X
Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts
1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde
Kernfusion Johannes-Gutenberg-Universität Mainz Fortgeschrittenen-Praktikum Physik - Seminar (SoSe10) Referent: Tobias Macha Betreuer: Dr. Harald Merkel 26. April 2010 1. Was ist Kernfusion? Während dem
Primärproblem: Bevölkerungswachstum
Möglchkeiten der Energieversorgung aus der Kernfusion F. Wagner, Max-Planck Institut für Plasmaphysik, Greifswald Primärproblem: Bevölkerungswachstum Billion 20 18 16 14 12 10 8 6 4 2 0 1900 1950 2000
Handout zum Seminarvortrag Kernfusion
Handout zum Seminarvortrag Kernfusion Christoph Rosner 1 Grundlagen Unter Kernfusion verstehen wir die Verschmelzung zweier leichter Kerne zu einem schwereren. Die allgemeine Reaktionsgleichung hierfür
Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung
Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the
Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren
Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013 Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Kernfusion: Grundlagen Vorteile der Kernfusion Praktisch unbegrenzte
Plasmaphysik und Kernfusion
Patrick Fahner Seminarvortrag vom 22. Juni 2012 1 Einleitung Wir kennen Materie in drei Zuständen: fest, flüssig und gasförmig. Wir erreichen diese Zustände in der eben genannten Reihenfolge, indem wir
4. Radiochemie und Kerntechnik
4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel
30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil.
Posten 7 Kernfusion Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 1 Einsteins Postulate Posten
Plasmaphysik und Kernfusion
Plasmaphysik und Kernfusion Julian Butscher 29.05.2015 Zusammenfassung Dieses Handout wurde im Rahmen des theoretisch-physikalischen Seminars zur Elektrodynamik an der Universität Heidelberg unter der
Fusionsenergie. Fusionsenergie 1
1 von 11 Fusionsenergie Fusionsenergie 1 Einleitung 2 Was ist Fusionsenergie? 3 Tokamak-Anordnung 5 Stellarator-Anordnung 6 Geschichte der Fusionsenergie 7 Wie Funktioniert Fusionsenergie? 8 Wie entsteht
Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H +
Kernfusion Die ungeheuren Energiemengen, die bei der Kernfusion in der Sonne freiwerden, möchte der Mensch auch nutzen können. Doch das gestaltet sich schwieriger, als in den Anfängen der Fusionsforschung
Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes
2.8. KERNFUSION 109 2.8 Kernfusion Aus der Diskussion der Bindungsenergien pro Nukleon im vorhergehenden Abschnitt wissen wir, dass man im Bereich der leichten Atomkerne Energie dadurch gewinnen kann,
Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015.
Kernfusion Es geht um die Verschmelzung leichter Atomkerne zu schwereren Atomkernen. Dabei wird Energie frei. Die Kernfusion ist eine Energiequelle, sie ist die Energiequelle der Sterne. Unsere Sonne verbrennt
Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching
Einfu hrung in die Fusionsforschung Ein (Tokamak-) Fusionsreaktor Ein (Tokamak-) Fusionsreaktor Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching 1 Einführung in die Fusionsforschung Ein
41. Kerne. 33. Lektion Kerne
41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen
Forschung für die Energie der Zukunft
Forschung für die Energie der Zukunft Die Sonne, ein gewaltiger Plasmaball. Seit Jahrmillionen verströmt sie Licht und Wärme. Fusion eine neue Energiequelle Kernverschmelzungen sind wichtige Natur prozesse:
Fusionsforschung auf dem Weg zu einem energieliefernden Plasma
Zum Gedenken an Lise Meitner, Ehrendoktorin der FU Ringvorlesung Wintersemester 2018/2019 Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Robert Wolf [email protected] Fakultät II Zentrum
Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger
Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Garching Tag der Unternehmerschaft 2010 Düsseldorf 10. Juni 2010 Hotel NIKKO
Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare
Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?
MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz
MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN r~. t= ;, VA~/83 t[---i 7D : D7 i, 17. November 1983 STÄRKER ALS JEDER RADIOSENDER Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen
Energieerzeugung durch Fusion
Energieerzeugung durch Fusion von Simon Friederich Institut für Kernphysik Johannes Guttenberg Universität Betreuer: Dr. Harald Merkel 5. Dezember 2011 1 Kernfusion 1.1 Energieerzeugung durch Kernfusion
ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich
ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich Graduiertenseminar Teilchenphysik, RWTH Aachen, Physikalische Institute I, III, TPE, Bad Honnef, 25.8.2005 ITER
Einführung Fusions- forschung. indie
Einführung Fusions- forschung indie Grundlagen der Kernfusion Die Kernbausteine sind von einer Atomsorte zur anderen verschieden stark aneinander gebunden. Durch Umordnung der Kernbausteine in fester verbundene
Pro und Contra Kernfusionsforschung
1 Pro und Contra Kernfusionsforschung SPD BEZIRK BRAUNSCHWEIG 20. MAI 2015 Prof. Dr. Bruno Thomauske RWTH Aachen Institut für Nukleare Entsorgung und Techniktransfer (NET) 2 INHALT 1. Kernfusion Kernspaltung
Der Weg zu einem Fusionskraftwerk
EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das
Sternentwicklung (3) Wie Sterne Energie erzeugen
Sternentwicklung (3) Wie Sterne Energie erzeugen Die Leuchtkraft der Sonne Die Leuchtkraft ist eine Strahlungsleistung. Sie gibt die pro Zeiteinheit (Sekunde) von einem Stern im gesamten Spektralbereich
15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik
Hauptseminar. Experimentalphysik / Angewandte Physik Wintersemester 2005/06. Thema: Plasmafusion. von. Bernhard Krumme
Hauptseminar Experimentalphysik / Angewandte Physik Wintersemester 005/06 Thema: Plasmafusion von Bernhard Krumme 1 Inhalt 1. Vorwort. Physikalische Grundlagen 3. Reaktorkomponenten und Teilchenbewegung
= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV)
3. Primordiale Nukleosynthese = Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) Kern Bindungsenergie Häufigkeit (MeV) (% der der sichtbaren Masse) 1 H(= p) 0 71 a) 2
15 Kernphysik Physik für E-Techniker. 15 Kernphysik
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.
Experimentalphysik 4 - SS11 Physik der Atome und Kerne
Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser
Institut für Plasmaforschung, Universität Stuttgart. Klausur in Nukleare Elektrische Energiesysteme ( ) mit Lösungen
1 Institut für Plasmaforschung, Universität Stuttgart Prof. Dr. Uwe Schumacher Klausur in Nukleare Elektrische Energiesysteme (03.03.2006) mit Lösungen Aufgabe 1 a) Welche elektrische Leistung P el liefern
Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl
Kernenergie A = N + Z A Massenzahl N Neutronenzahl Z Protonenzahl Massendefekt: M Z m p + N m n M A Bindungsenergie: B M x c 2 c Lichtgeschwindigkeit 1 ev = 1,602 10-19 J Mittlere Bindungsenergie je Nukleon
BULLETIN Nr. 70 April 2014
AVES Pfannenstil Aktion für vernünftige Energiepolitik Schweiz (AVES) Regionalgruppe Pfannenstil c/o Dr. Hans R. Moning AG, Gotthardstrasse 10, 8800 Thalwil Postkonto 80-10120-3 www.aves-zh.ch BULLETIN
Fachhochschule Südwestfalen Wir geben Impulse
Fachhochschule Südwestfalen Wir geben Impulse Folie 2 (06/2015) Inhalt Grundidee Grundlagen der Kernfusion Projekt ITER Energiegewinnung Gefahren Wirtschaftlichkeit Zukunftsfähigkeit Quellen Folie 3 (06/2015)
Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade New applications for microwave plasma heating on the ASDEX Upgrade fusion experiment
Neue Einsatzbereiche der Mikrowellenheizung an ASDEX New applications for microwave plasma heating on the ASDEX fusion experiment Zohm, Hartmut; Stober, Jörg Max-Planck-Institut für Plasmaphysik, Garching
Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft
Energie erzeugen wie die Sonne Kernfusion im Energiemix der Zukunft Sibylle Günter Max-Planck-Institut für Plasmaphysik Garching Grafik: ITER Foto: SOHO (ESA & NASA) Die schier unerschöpfliche Energie
Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik
Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).
Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:
Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen
15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne
Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern
Aufgabe I: Fusionsreaktor und Sonne
Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle
Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf)
Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Robert Wolf, Max Planck Institut für Plasmaphysik, EURATOM Assoziation, Teilinstitut Greifswald Kernfusion
Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110
Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110 Johann Lingertat Gesteuerte Kernfusion Kurzfassung eines Vortrages, der im Arbeitskreis Energie-Rohstoff-Versorgung der Leibniz-Sozietät am 4. März
Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9
Kernfusion Ein Referat von Sebastian Titze und Florian Wetzel Einleitung... 2 Grundlagen der Kernverschmelzung (Kernfusion)... 2 Der Massendefekt... 2 Andere Fusionsvorgänge... 3 Die Coulomb schen Abstoßungskräfte...
9. Kernphysik 9.1. Zusammensetzung der Atomkerne
Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl
Thema heute: Aufbau der Materie, Atommodelle Teil 2
Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,
Der Weg zu einem Fusionskraftwerk
Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger Physikalisches Kolloquium Universität Heidelberg 4. Dezember 2009 Vielen
Stand der Fusionstechnik
StandderFusionstechnik GüntherHasinger WissenschaftlicherDirektor Max Planck InstitutfürPlasmaphysik 1.Einleitung:DasEnergie Dilemma DermittlerePro Kopf VerbrauchderWeltliegtderzeitbeietwa2200Watt(W)Primärenergie
Physik Spezialgebiet Die Kernfusion
Physik Spezialgebiet Die Kernfusion 1. Allgemeines zur Kernfusion 1.1 Geschichte der Kernfusion (Fusionsforschung) 1.2 Bedeutung der Kernfusion 2. Die natürliche Kernfusion in der Sonne 2.1 Bethe-Weizsäcker-Zyklus
Radioaktivität. den 7 Oktober Dr. Emőke Bódis
Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.
MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK
MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN PI 4/88 12. Oktober 1988 Fusionsexperiment WENDELSTEIN VII-AS in Betrieb Das erste Plasma in einem "Advanced Stellarator"/Stellaratoren im
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG Herausgegeben von GUSTAV HERTZ und ROBERT ROMPE 2., erweiterte Auflage Mit 145 Abbildungen und 10 Tabellen AKADEMIE-VERLAG BERLIN 1968 INHALTSVERZEICHNIS
Tokamak-Konfiguration und. Martin Droba
Tokamak-Konfiguration und ITER Martin Droba Inhalt Fusion Magnetischer Einschluss Stellarator Tokamaks ITER 13.01.2006 Frankfurt am Main 2 Fusion 13.01.2006 Frankfurt am Main 3 Reaktionen D + T He 4 (3.5MeV)
Experimentalphysik Modul PH-EP4 / PH-DP-EP4
10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle
Kernmodell der Quantenphysik
M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell
Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit
Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission
Potential und Spannung
Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0
Kraft. Sonne. der. Mit der FUSIONSENERGIE
FEUERBALL: Die Sonne ist ein riesiger Ball aus glühenden Gasen. Pro Jahr strahlt sie eine Energiemenge auf die Erde ab, die 15.000-mal größer ist als der Energieverbrauch aller Menschen auf der Welt in
Sonne, Mond und Sterne: Die neue Sicht des Universum. III Physik der Sonne und der Sterne
Sonne, Mond und Sterne: Die neue Sicht des Universum III Physik der Sonne und der Sterne Fragen: 1. Wie bilden sich Sterne? 2. Wie wird die Energie im Sterninnern erzeugt? 3. Wie gelangt die Energie aus
Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen
Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Kernfusion: (Stefan) - Kernfusion ist das Gegenteil der Kernspaltung - Fusion bedeutet das verschmelzen
Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas
Die Physik schneller Teilchen in Physics of fast particles in fusion plasmas Guenter, Sibylle; Lauber, Philipp; Strumberger, Erika Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor
Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel
Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,
2. Kontrollierte Kernfusion
203 2. Kontrollierte Kernfusion a) Einleitung Das Ziel der Forschung zur kontrollierten Kernfusion ist der Bau eines Reaktors, in dem durch Fusion der Wasserstoffisotope zu Helium Energie gewonnen wird.
Energiegewinnung nach dem Vorbild der Sonne
Energiegewinnung nach dem Vorbild der Sonne Vakuumtechnik ermöglicht die Herstellung von Fusionsbedingungen Auf der Suche nach alternativen und sauberen Energiequellen gewinnt die Energieerzeugung durch
Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik
Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik Raphael Höp;l Hochschule München, FK06 Studiengang: Physikalische Technik Schwerpunkt: Angewandte Physik Studiengruppe: PHB5P
Der Energiemix im 21. Jahrhundert Günther Hasinger
Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Der Energiemix im 21. Jahrhundert Günther Hasinger Standort Garching 10. Münchner Wissenschaftstage 23. Oktober 2010 LMU München Das Energie-Dilemma
Kernfusionsforschung in Mecklenburg-Vorpommern
Member of the Helmholtz Association Öffentliche Anhörung im Landtag Mecklenburg-Vorpommern Kernfusionsforschung in Mecklenburg-Vorpommern Sachverständiger Ulrich Samm, Forschungszentrum Jülich Schwerin,
Standard Sonnenmodell
Standard Sonnenmodell Max Camenzind Akademie HD - Juli 2016 Inhalt Sonnenmodell Die Sonne in Zahlen Aufbau der Sonne Die Sonne im Gleichgewicht Woher stammt die Energie? Nukleare Prozesse im Sonnenkern
Kernmodell der Quantenphysik
Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Atomkerne 2 Potentialtopfmodell In diesem Abschnitt 1 Atomkerne 1.1 Aufbau 1.2 Starke Wechselwirkungen 2 Potentialtopfmodell
