Schemamerging und -mapping
|
|
|
- Bastian Brahms
- vor 7 Jahren
- Abrufe
Transkript
1 Schemamerging und -mapping Seminar Informationsqualität und -integration,
2 Überblick Schemaintegration / Einleitung Ziele Integrationskonflikte Integrationstechniken Multidatenbankanfragesprachen Anfragebearbeitung / -optimierung
3 Schemaintegration - Umfeld
4 Schemaintegration
5 Schemaintegration - Ziele Vollständigkeit & Korrektheit Minimalität Verständlichkeit
6 Integrationskonflikte Heterogenitätskonflikte unterschiedliche Datenmodelle Strukturelle Konflikte z.b. verschiedene Normalformen Extensionale Konflikte Beschreibungskonflikte Name, Vorname <-> Vorname Name Datenkonflikte
7 Integrationstechniken Zusicherungsbasierte Integration Zusammenhänge analysieren Element-Korrespondenzen Element-Attribut-Korrespondenzen Pfad-Korrespondenzen Integrationsregeln
8 Integrationstechniken - Beispiel 1.) Artikel_mech Artikel_elektrisch 1.a) Sachnr. = Sachnr. 1.b) Benennung = Benennung Artikel_mech Sachnr. Benennung M-spez. Attr. 1 M-spez. Attr. 2 Artikel_elektrisch Sachnr. Benennung E-spez. Attr. 1 E-spez. Attr. 2 + = Artikel_fusioniert Sachnr. Benennung E-spez. Attr. 1 E-spez. Attr. 2 M-spez. Attr. 1 M-spez. Attr. 2
9 Upward Inheritance Integration von Klassenhierarchien A=B A / B A B A B
10 Multidatenbank-Anfragesprachen mehrere Datenbanken pro Abfrage Restrukturierung Metadaten wie Daten behandeln Abwärtskompatibel mit SQL dynamische Anfrageschemata
11 Multidatenbank-Anfragesprachen SQL-Sichten AJAX SchemaSQL MQL FISQL
12 SQL-Sichten o Restrukturierung möglich ++ in jedem DBMS vorhanden - nur eine DB als Quelle - statische Struktur - keine dynamischen Sichten
13 AJAX deklarative, erweiterbare Sprache Fokus ist Datentransformation Ablauf: Kette von Transformationen gerichteter azyklischer Graph
14 AJAX Basistransformationen: Mapping SQL-join / -union Matching Clustering Merging
15 AJAX - Matching kartesisches Produkt + ext. Funktionen Ziel: finden passender Tupel nicht immer exact match möglich fuzzy match / Abstandsfunktion Problempotential
16 SchemaSQL Variablen in SQL: rel Tupel einer Relation In SchemaSQL neu: db:rel Tupel einer Relation Datenbanknamen db Relationsnamen db:rel Attributnamen db:rel.attr Werte eines Attributes
17 SchemaSQL - Beispiel1 SELECT Z.projekt, S, Z.S FROM db2:zeit Z, db2:zeit S WHERE S <> 'projekt'
18 SchemaSQL - Beispiel2 CREATE VIEW 1zu2::zeit(projekt, S) AS SELECT Z1.projekt, Z1.arbeitsstunden FROM db1:zeit Z1, Z1.mitarbeiter S
19 SchemaSQL + flexible Restrukturierung + Integration von Metadaten + dynamische Schemata + Transposition - nur eine Spalte als Metadaten - Umdefinition des view Kontrukts - keine geschachtelten Sichten
20 FISQL Algebra FIRA als Basis Erweiterung von SQL/RA + geschachtelte Anfragen + Allgemeingültigkeit + Abwärtskompatibilität
21 FISQL - Beispiel SELECT Z.projekt as 'projekt', Z.arbeitsstunden ON Z.mitarbeiter INTO '1zu2' FROM db1:zeit as Z
22 Anfragebearbeitung Ablauf einer Anfrage Unterschiede zu SQL Optimierungsmöglichkeiten
23 AJAX - Architektur
24 Anfrageoptimierung - AJAX Funktions-Umordnung Short-Circuited Computation Cached Computation Parallele Auswertung
25 Anfragebearbeitung - SchemaSQL
26 Anfrageoptimierung - SchemaSQL Umordnung von Selektionen Batch-Abfragen Parallele Abfragen Minimierung / Zusammenfassung von Zwischenergebnissen
27 Zusammenfassung Integrationsziele Integrationskonflikte Multidatenbank-Anfragesprachen Anfragebearbeitung / -optimierung
28 Fragen?
Schemamerging und -mapping. Stefan Hühner Betreut von Dipl.-Inf. Philipp Dopichaj
Schemamerging und -mapping Stefan Hühner Betreut von Dipl.-Inf. Philipp Dopichaj Inhaltsverzeichnis Schemamerging und -mapping...................................... 1 Stefan Hühner Betreut von Dipl.-Inf.
Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
7. XML-Datenbanksysteme und SQL/XML
7. XML-Datenbanksysteme und SQL/XML Native XML-DBS vs. XML-Erweiterungen von ORDBS Speicherung von XML-Dokumenten Speicherung von XML-Dokumenten als Ganzes Generische Dekomposition von XML-Dokumenten Schemabasierte
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL
Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured
Wirtschaftsinformatik 7a: Datenbanken. Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt. Der Wirt gibt dem Kellner den Auftrag
Kapitel 10: Relationale Anfragebearbeitung
Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 201/2016 Kapitel 10: Relationale Anfragebearbeitung Vorlesung:
ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de
08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren
Indexstrukturen in SQL
Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename
GROUP BY, HAVING und Sichten
GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten
7. XML-Datenbanksysteme und SQL/XML
7. XML-Datenbanksysteme und SQL/XML DB-Speicherung von XML-Dokumenten Arten von XML-Dokumenten Native XML-DBS vs. XML-Erweiterungen von ORDBS Speicherungsoptionen: ganzheitliche Speicherung vs. Dekomposition
Inhalt. Unland, Rainer Datenbanken im Einsatz digitalisiert durch: IDS Basel Bern
Inhalt 1 Einleitung und Übersicht 1 1.1 Anforderungserhebung und -analyse 6 1.2 Konzeptuelle Modellbildung 7 1.3 Logischer Entwurf 9 1.4 Implementationsphase 9 1.5 Allgemeine Datenbankbegriffe 10 1.6 Zusammenfassung
Vorlesung Datenbanken I Zwischenklausur
Prof. Dr. Stefan Brass 12. Dezember 2003 Institut für Informatik MLU Halle-Wittenberg Vorlesung Datenbanken I Zwischenklausur Name: Matrikelnummer: Studiengang: Aufgabe Punkte Max. Punkte Zeit 1 (Integritätsbedingungen)
Webbasierte Informationssysteme
SS 2004 Prof. Dr. Stefan Böttcher Universität Paderborn - SS 2004 - Prof. Dr. Stefan Böttcher Folie 1 Was ist eine relationale Datenbank? Menge von Relationen (=Tabellen) und Constraints (=Integritätsbedingungen)
Oracle 10g Einführung
Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes
Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)
Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:
Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis
Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung
Semantische Datenintegration: Strategien zur Integration von Datenbanken
Semantische Datenintegration: Strategien zur Integration von Datenbanken Inhalt 1. Wiederholung Integrationskonflikte 2. Klassische Strategien zur Integration 1. Eng gekoppelte Ansätze 2. Lose gekoppelte
Declarative Data Cleaning
Declarative Data Cleaning Vortragsgrundlage: Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, Cristian Augustin Saita: Declarative Data Cleaning: Language, Model, and Algorithms, in VLDB
Relationale Datenbanken
Ramon A. Mata-Toledo, Pauline K. Cushman Relationale Datenbanken Schaum's Repetitorien Übersetzung aus dem Amerikanischen von G&U Technische Dokumentation GmbH Z Die Autoren 9 Vorwort 9 1 Ein Überblick
Visualisierung in Informatik und Naturwissenschaften
Visualisierung in Informatik und Naturwissenschaften Datenbankvisualisierung Sven Bernhard 12.06.1999 Datenbankvisualisierung Datenbanktheorie in 5 Minuten Visualisierung vs. Datenbanken Visualisierung
DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme
Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: [email protected]
Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1
Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck
Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme
Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: [email protected] (Praktische
Query Languages (QL) Relationale Abfragesprachen/Relational
Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell
Die Anweisung create table
SQL-Datendefinition Die Anweisung create table create table basisrelationenname ( spaltenname 1 wertebereich 1 [not null],... spaltenname k wertebereich k [not null]) Wirkung dieses Kommandos ist sowohl
A Datendenition in SQL ( Punkte)
A Datendenition in SQL (5 + 2 + 1 Punkte) Eine Sportredaktion verwaltet die Ergebnisse der Fuball-Bundesliga in einer Datenbank mit folgendem Schema: Mannschaften (MannschaftID, MannschaftName) Spiele
Anfrageoptimierung Logische Optimierung
Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer
Welche Kunden haben die gleiche Ware bestellt? select distinct a1.name, a2.name from Auftrag a1, Auftrag a2 where a1.ware = a2.ware.
*HVFKDFKWHOWH$QIUDJHQ In einer SQL-Anweisung können in der where-klausel, from-klausel, select-klausel wieder SQL-Anweisungen auftreten. Man spricht dann auch von einer geschachtelten Anfrage oder Unteranfrage.
Datenbanksysteme I Aufgabenblatt 4: SQL
Hinweise: Datenbanksysteme I Aufgabenblatt 4: SQL Abgabetermin: Montag, 08.01.07, 13:30 (vor der Vorlesung) Format: Auf Papier im Fach Datenbanksysteme I im Foyer oder per E-Mail an [email protected]
Schema Mapping. Dr. Armin Roth arminroth.de. Dr. Armin Roth (arminroth.de) II Schema Mapping / 23
Dr. Armin Roth arminroth.de 25.04.2013 Dr. Armin Roth (arminroth.de) II Schema Mapping 25.04.2013 1 / 23 Agenda 1 Wiederholung: Schema Matching / Integration 2 Schema Mapping Definitionen Beispiel Algorithmus
Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)
Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der
SchemaSQL. 11. Multidatenbanksprachen. SchemaSQL: Beispiel-Anfragen. SchemaSQL: Beispiel
11. Multidatenbanksprachen Ziel: Globaler Zugriff auf mehrere (lokale) Datenbanken Lokale Datenbankschemata sind sichtbar. Benutzer darf eigene externe Schemata definieren. Multidatenbanksysteme (MDBS)
SELECT dient dazu, aus einer vorhandenen Datenbank bestimmte Spalten und Zeilen auszugeben es handelt sich also um eine Auswahlabfrage.
SELECT-FROM SELECT dient dazu, aus einer vorhandenen Datenbank bestimmte Spalten und Zeilen auszugeben es handelt sich also um eine Auswahlabfrage. Inhaltsverzeichnis 1 Der grundlegende Aufbau 2 Doppelte
Kapitel 9. Embedded SQL. Prof. Dr. Wolfgang Weber Vorlesung Datenbanken 1
Kapitel 9 Embedded SQL Vorlesung Datenbanken 1 Embedded SQL (siehe auch [Date00]) Arbeitsweise ähnlich PL/SQL, allerdings: Normale Programmiersprache mit eingestreuten SQL-Befehlen und anderen Befehlen
Relationen-Algebra. Prof. Dr. T. Kudraß 1
Relationen-Algebra Prof. Dr. T. Kudraß 1 Relationale Anfragesprachen Query Language (QL): Manipulation und Retrieval von Daten einer Datenbank Relationenmodell erlaubt einfache, mächtige Anfragesprachen
ABP Wo steckt der Fehler in der SQL-Anfrage? Semantische Prüfung von Lösungen Prof. Dr. Inga Marina Saatz
ABP 017 Wo steckt der Fehler in der SQL-Anfrage? Semantische Prüfung von Lösungen 017 - Prof. Dr. Inga Marina Saatz Inhaltsübersicht Prof. Inga M. Dr. Saatz I. Saatz Datenbanken SQLearn 1 Fachbereich ABP
Oberfläche SQL. Menü SQL. Formular. Kapitel 1: Datenbank- Administrator (DBA) Anwendungs- Programmierer. Datenbank- Verwaltungssystem (DBMS)
Kapitel 1: Begriffe: Datenbanksystem (DBS) Datenbank- Administrator (DBA) Datenbank- Verwaltungssystem (DBMS) Anwendungs- Programmierer Oberfläche SQL Menü SQL Formular Datenbank Daten (in Dateien) Query
Grundlagen von Datenbanken. Relationale Algebra und algebraische Optimierung
Grundlagen von Datenbanken Relationale Algebra und algebraische Optimierung Relationale Algebra Überblick Selektion: σ Projektion: π Mengenoperationen:,,,, Kartesisches Produkt: Verbund (Join): Umbenennung:
Relationentheorie grundlegende Elemente
Relationentheorie grundlegende Elemente Symbol Bedeutung Entsprechung in SQL π AAAA Projektion SELECT σ F Selektion WHERE ρ Umbenennung RENAME; AS Natural Join NATURAL JOIN (nicht in MS SQL Server verwendbar)
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language
Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni
Datenbanksysteme Kapitel 5: SQL - Grundlagen
Datenbanksysteme Kapitel 5: SQL - Grundlagen Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Prof. Peter Dr. Chamoni Peter
Anfragebearbeitung und Optimierung
In diesem Kapitel geht es darum, wie ein DBMS eine SQL-Anfrage verarbeitet. Also: 1. Schritte der Anfragebearbeitung 2. Parsen und Validieren 3. Optimieren und Erstellen des Zugriffsplans Schritte der
Das Relationale Modell
Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die
Datenbanksysteme Kapitel 5: SQL Grundlagen Teil 1
Datenbanksysteme Kapitel 5: SQL Grundlagen Teil 1 Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Prof. Dr. Dr. Peter Peter
Übung ERM. Beispiel: Erstellung einer relationalen Datenbank
LE 9-1 Übung ERM Lernziele: Sie sind in der Lage, Sachverhalte mit Hilfe von ERMs abzubilden. LE 9-2 Beispiel: Erstellung einer relationalen Datenbank Ein Bild ist von einem Künstler gemalt und hängt in
Kap. 3 Relationenmodell mit relationaler Algebra
Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3.1. Trägermenge Seien D 1, D 2,..., D k Domänen: (Typen, Arten, Sorten, Wertmengen) z.b. string integer real Boolean DateTime BLOB, TIFF-image, HTML-Doc,
Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.
Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten
SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)
SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans [email protected]
Kapitel 2: Einstieg in SQL
Kapitel 2: Einstieg in SQL 2. Einstieg in SQL 2. SQL (Structured Query Language) ist die in der Praxis am weitesten verbreitete Datenbanksprache für relationale Datenbanken. Die Historie von SQL geht zurück
d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y
Kapitel 7 Normalformen und DB-Entwurf Kap. 7.1 Normalformen Theorie Funktionale Abhängigkeit: f X Y f als Relation, d.h. Menge von Paaren {(x,y)} x: Definitions-Stelle, y: Funktionswert f ist Funktion
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2)
Vorlesung #4 SQL (Teil 2) Fahrplan Eine weitere Aggregation: median Geschachtelte Anfragen in SQL Korrelierte vs. Unkorrelierte Anfragen Entschachtelung der Anfragen Operationen der Mengenlehre Spezielle
SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.
SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit
Einführung in Datenbanken. Kapitel 11: Relationale Algebra in SQL
Stefan Brass: Einf. in Datenbanken 11. Relationale Algebra in SQL 1/48 Einführung in Datenbanken Kapitel 11: Relationale Algebra in SQL Prof. Dr. Stefan Brass Martin-Luther-Universität Halle-Wittenberg
DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt
DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller
Entity Relationship Modell
Entity Relationship Modell 2 Entity/Relationship (ER) Modell Legi Name Semester Entity = Gegenstandstyp Relationship = Beziehungstyp Schlüssel (Identifikation) Studenten hören Hörer Kurs Vorlesungen Attribut
[ SQL] Wissen, das sich auszahlt
[www.teia.de SQL] Wissen, das sich auszahlt INHALT SEITE 12 [I] 1] Einführung in SQL und relationale Datenbanken 12 14 16 18 11 1.1 1.2 Einführung Die Structured Query Language (SQL) Tabellen Mehrere Tabellen
SQL,Teil 2: SELECT. W. Spiegel. Übersicht SELECT. Mehrfache Werte vermeiden: SELECT DISTINCT. Ausgabe ordnen: ORDER BY. Projektion.
SQL,Teil 2: SELECT W. Spiegel Übersicht SELECT Mehrfache Werte vermeiden: SELECT DISTINCT Ausgabe ordnen: ORDER BY Projektion Selektion: WHERE Join mit SELECT Beispiel Aufgaben 1 SELECT Die SELECT-Anweisung
Kapitel 10. JDBC und SQLJ. Prof. Dr. Wolfgang Weber Vorlesung Datenbanken 1
Kapitel 10 JDBC und SQLJ 1 JDBC und SQLJ Bisher: Einbettung von SQL (statisch bzw. dynamisch) in C, C++, COBOL, ADA (embedded SQL) bzw. prozedurale Erweiterungen für SQL in Oracle (PL/SQL) Was ist mit
13. Sichten und Zugriffskontrolle. Sichten. Sichten II. Drei-Ebenen-Schema-Architektur
13. Sichten und Zugriffskontrolle Sichten Sichtenkonzept Änderungen auf Sichten Rechtevergabe in Datenbanksystemen Autorisierung und Authentifikation Statistische Datenbanken Sichten: virtuelle Relationen
SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2
SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit
ARBEITSBLATT ZUR SQL-BEFEHLEN
Gegeben ist die folgende Datenbank: ARBEITSBLATT ZUR SQL-BEFEHLEN In einer Firma gibt es Mitarbeiter. Jeder Mitarbeiter ist eindeutig einer Abteilung zugeordnet. Manche Mitarbeiter sind an einem Projekt
