Anfrageoptimierung Logische Optimierung

Größe: px
Ab Seite anzeigen:

Download "Anfrageoptimierung Logische Optimierung"

Transkript

1 Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13

2 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck Auswertungs- Plan (QEP) Anfrage- Optimierer Codeerzeugung Ausführung SQL Spezifikation der Anfrage RA was gehört zur Ergebnismenge? Operatorbaum wie wird die Ergebnismenge berechnet? Thomas Gottron GLDB 2012/13 2

3 Abstraktionsebenen Konzeptuelle Ebene Keine Abfragen Logische Ebene Logische Optimierung (Modellabhängig) Physische Ebene Physische Optimierung (Implementation) Thomas Gottron GLDB 2012/13 3

4 Logische Optimierung Thomas Gottron GLDB 2012/13 4

5 Ziele der logischen Optimierung Reduktion der Datenmenge Reduktion der Zugriffe auf Hintergrundspeicher Nur benötigte Daten laden Reduktion der Notwendigkeit der Auslagerung So wenig Daten wie nötig vorhalten Reduktion der auszuführenden Vergleiche So wenig Arbeitsschritte wie möglich Umformung einer einfachen Algebraischen Ausgangsform Rechenregeln der Relationalen Algebra Optimale Lösung kann i.d.r. nicht effizient bestimmt werden Heuristiken (Vermeiden des schlimmsten Falls) Thomas Gottron GLDB 2012/13 5

6 Kanonische Übersetzung SELECT A1,..., An FROM R1,..., Rk WHERE P Rk R3 R1 R2 Thomas Gottron GLDB 2012/13 6

7 Beispiel: Kanonische Übersetzung SELECT Titel FROM Professoren, Vorlesungen WHERE Name = Popper AND PersNr = gelesenvon 2 Zeilen 1 Spalten 2 Zeilen 15 Spalten Zeilen 15 Spalten Professoren 164 Zeilen 5 Spalten Vorlesungen 333 Zeilen 10 Spalten Thomas Gottron GLDB 2012/13 7

8 Erste Optimierungsidee: frühe Selektion SELECT Titel FROM Professoren, Vorlesungen WHERE Name = Popper AND PersNr = gelesenvon Professoren 164 Vorlesungen 333 π[titel] σ PersNr=gelesenVon σ Name= Popper Professoren Vorlesungen Thomas Gottron GLDB 2012/13 8

9 Zweite Optimierungsidee: Projektionen einfügen SELECT Titel FROM Professoren, Vorlesungen WHERE Name = Popper AND PersNr = gelesenvon π[persnr] 2 π[titel, gelesenvon] 5 Professoren 5 Vorlesungen 10 π[titel] σ PersNr=gelesenVon π PersNr σ Name= Popper Professoren π Titel,gelesenVon Vorlesungen Thomas Gottron GLDB 2012/13 9

10 Dritte Optimierungsidee: Join statt Kreuzprodukt SELECT Titel FROM Professoren, Vorlesungen WHERE Name = Popper AND PersNr = gelesenvon 1 1 π[persnr] π[titel, gelesenvon] Professoren Vorlesungen π[titel] π PersNr σ Name= Popper Professoren π Titel,gelesenVon Vorlesungen Thomas Gottron GLDB 2012/13 10

11 Vierte Optimierungsidee: Reihenfolge der Joins SELECT x FROM A, B, C WHERE A.y = B.y AND B.z= C.z Gute Abschätzung nötig π[x] 3 π[x] A B C A B C π[x] A B C π[x] A B C Thomas Gottron GLDB 2012/13 11

12 Heuristik: durch Umformung σ σ 1 σ 2 σ 1. Selektionen aufbrechen 2. Selektionen nach unten schieben σ 3. Selektion und Kreuzprodukt zu Join zusammenfassen 4. Joinreihenfolge optimieren π π 5. Projektionen einfügen 6. Projektionen nach unten schieben Thomas Gottron GLDB 2012/13 12

13 Äquivalenzerhaltende Umformungsregeln Aufbrechen von Konjunktionen in Selektionen σ P1 P 2 R = σ P1 σ P2 R σ σ 1 σ 2 Selektionen sind kommutativ σ P1 σ P2 R = σ P2 σ P1 R σ Projektionskaskaden π A 1 π A 2 π A n R = π A 1 R π Kaskade nur definiert, wenna 1 A 2 A n Vertauschen von Projektion und Selektion π A σ P R = σ P π A R σ π Wenn die Attribute aus P in A liegen Thomas Gottron GLDB 2012/13 13

14 Äquivalenzerhaltende Umformungsregeln Selektion an Join / Kreuzprodukt vorbeischieben σ P R 1 R 2 = σ P R 1 R 2 σ σ P R 1 R 2 = σ P R 1 R 2 Wenn P nur Attribute aus R 1 betrifft Projektion an Join vorbeischieben π A R 1 R 2 = π A π A 1 R 1 π A 2 R 2 π Wobei A 1 nur Attribute aus R 1 betrifft und Joinattribute erhält (ebenso für A 2 ). Joinattribute werden nachgelagert über π A ausgeblendet. Vertauschen von Projektion und Vereinigung π A R 1 R 2 = π A R 1 π A R 2 π Thomas Gottron GLDB 2012/13 14

15 Äquivalenzerhaltende Umformungsregeln Kommutativität: R 1 R 2 = R 2 R 1 R 1 R 2 = R 2 R 1 R 1 R 2 = R 2 R 1 R 1 R 2 = R 2 R 1 Assoziativität: R 1 R 2 R 3 = R 1 R 2 R 3 R 1 R 2 R 3 = R 1 R 2 R 3 R 1 R 2 R 3 = R 1 R 2 R 3 R 1 R 2 R 3 = R 1 R 2 R 3 Konkrete Ausführung benötigt Kostenmodelle und Größenabschätzungen Thomas Gottron GLDB 2012/13 15

16 Äquivalenzerhaltende Umformungsregeln Selektion und Kreuzprodukt zusammenfassen σ R1.A=R 2.B R 1 R 2 = R 1 R1.A=R 2.B R 2 σ DeMorgan sche Umformungen in Selektionsbedingungen: σ P Q = σ P Q σ P Q = σ P Q σ σ 1 σ 2 Erlaubt dadurch das Verschieben von Negationen Thomas Gottron GLDB 2012/13 16

17 Zusammenfassung Logische Optimierung Ausgangspunkt: kanonische Übersetzung Heuristische Umformungsregeln Optimum nicht garantiert Äquivalenzerhaltende Umformungsregeln der RA Ergebnis darf nicht verändert werden Ergebnis: Relationaler Ausdruck als Operatorbaum Unabhängig von physischer Umsetzung Thomas Gottron GLDB 2012/13 17

18 Fragen? Thomas Gottron GLDB 2012/13 18

Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1

Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck

Mehr

Architektur eines DBMS Logische Optimierung

Architektur eines DBMS Logische Optimierung Vorlesung Datenbanksysteme vom 16.11.2015 Anfragebearbeitung 1 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Architektur eines DBMS SW-Komponenten der Anfragebearbeitung

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof Alfons Kemper, PhD Blatt Nr 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS5/6 Harald Lang, Linnea Passing (gdb@intumde) http://www-dbintumde/teaching/ws56/grundlagen/

Mehr

Physische Anfrageoptimierung

Physische Anfrageoptimierung Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 201/14 Ziel der physischen Optimierung π[titel] Konkrete Implementation der

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 9.1.2008 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung

Mehr

Kapitel 10: Relationale Anfragebearbeitung

Kapitel 10: Relationale Anfragebearbeitung Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 201/2016 Kapitel 10: Relationale Anfragebearbeitung Vorlesung:

Mehr

Anfrageoptimierung Kostenabschätzung

Anfrageoptimierung Kostenabschätzung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Kostenabschätzung Dr. Thomas Gottron Wintersemester 2012/13 Regel vs. Kostenbasierte Optimierung Bisher: Regeln, wie Optimierung

Mehr

Entity Relationship Modell

Entity Relationship Modell Entity Relationship Modell 2 Entity/Relationship (ER) Modell Legi Name Semester Entity = Gegenstandstyp Relationship = Beziehungstyp Schlüssel (Identifikation) Studenten hören Hörer Kurs Vorlesungen Attribut

Mehr

Indexstrukturen in SQL

Indexstrukturen in SQL Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename

Mehr

Vorlesung Datenbanksysteme vom

Vorlesung Datenbanksysteme vom Vorlesung Datenbanksysteme vom 27.10.2008 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D 1,

Mehr

Grundlagen von Datenbanken. Relationale Algebra und algebraische Optimierung

Grundlagen von Datenbanken. Relationale Algebra und algebraische Optimierung Grundlagen von Datenbanken Relationale Algebra und algebraische Optimierung Relationale Algebra Überblick Selektion: σ Projektion: π Mengenoperationen:,,,, Kartesisches Produkt: Verbund (Join): Umbenennung:

Mehr

Query Languages (QL) Relationale Abfragesprachen/Relational

Query Languages (QL) Relationale Abfragesprachen/Relational Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell

Mehr

Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)

Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Übung 3 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik

Mehr

Rückblick: Relationale Normalisierung

Rückblick: Relationale Normalisierung Rückblick: Relationale Normalisierung Gute Relationenschema vermeiden Redundanz und führen nicht zu Anomalien beim Einfügen, Löschen oder Ändern Relationale Normalformen (1NF, 2NF, 3NF, BCNF, 4NF) charakterisieren

Mehr

Wiederholung: Relationale Algebra

Wiederholung: Relationale Algebra Vorlesung Datenbanksysteme vom 1.11.016 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D1, D,,

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Datenbanken Vertiefung

Datenbanken Vertiefung Datenbanken Vertiefung Anfrageoptimierung Nikolaus Augsten [email protected] FB Computerwissenschaften Universität Salzburg Wintersemester 2013/14 Augsten (Univ. Salzburg) DBV / Anfrageoptimierung

Mehr

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz.

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz. 4.1 4.2 4.1 4.2 NICOLE SCHWEIKARDT, ISOLDE ADLER GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL 4, SEITE 1 Grenzen der Ausdrucksstärke konjunktiver Anfragen Wir haben gesehen: konjunktive

Mehr

Übung 4. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)

Übung 4. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Übung 4 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

2.5 Relationale Algebra

2.5 Relationale Algebra 2.5 Relationale Algebra 2.5.1 Überblick Codd-vollständige relationale Sprachen Relationale Algebra Abfragen werden durch exakte Angabe der auf den Relationen durchzuführenden Operationen formuliert Relationenkalküle

Mehr

Anfrageoptimierung Kostenmodelle

Anfrageoptimierung Kostenmodelle Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Anfrageoptimierung Kostenmodelle Dr. Jérôme Kunegis Wintersemester 2013/14 Regel vs. Kostenbasierte Optimierung

Mehr

Relationales Datenmodell Relationale Algebra

Relationales Datenmodell Relationale Algebra Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Relationale Algebra Dr. Gerd Gröner Wintersemester 2013/14 Lernziele Grundbegriffe des Relationalen Modells Abbildung

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1) Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Diskussion: Personal (1)

Diskussion: Personal (1) Diskussion: Personal (1) ER-Diagramm: Abteilung ist beschäftigt in [0, n] [0, 1] Person Umsetzung ins Relationenmodell? Diskussion: Personal (2) Zusätzliche Regel: In jeder Abteilung (Person) muss mindestens

Mehr

Aggregatfunktionen in der Relationenalgebra?

Aggregatfunktionen in der Relationenalgebra? Aggregatfunktionen in der Relationenalgebra? Dieter Sosna Aggregatfunktionen in der Relationenalgebra p.1/23 Gliederung Motivation Begriffe Definitionen Anwendungen Zusammenfassung Aggregatfunktionen in

Mehr

1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung)

1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung) 1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Hafen(HNR, Ort, Grundsteinlegung) Matrose(MNR, Nachname, Geburtsdatum, Ausbildungsort Hafen.HNR) Schi(SNR, Name, Bruttoregistertonnen,

Mehr

Semesterklausur Datenbanksysteme 1 SS 2015

Semesterklausur Datenbanksysteme 1 SS 2015 Universität Augsburg, Institut für Informatik Sommersemester 2015 Prof. Dr. W. Kießling 10. April 2015 F. Wenzel, L.Rudenko Datenbanksysteme 1 Semesterklausur Datenbanksysteme 1 SS 2015 Hinweise: Die Bearbeitungszeit

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Anfragebearbeitung und Optimierung

Anfragebearbeitung und Optimierung In diesem Kapitel geht es darum, wie ein DBMS eine SQL-Anfrage verarbeitet. Also: 1. Schritte der Anfragebearbeitung 2. Parsen und Validieren 3. Optimieren und Erstellen des Zugriffsplans Schritte der

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler))

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler)) 3. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 Hinweis: Wir schlagen vor, die Aufgaben in der Reihenfolge

Mehr

Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte

Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.

Mehr

Das Relationale Modell

Das Relationale Modell Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die

Mehr

Fortsetzung: Projektion Selektion. NULL Werte

Fortsetzung: Projektion Selektion. NULL Werte Fortsetzung: Anfragen mit SQL Bisher: Projektion Selektion Duplikatbehandlung NULL Werte Professoren PersNr Name Rang Raum 2125 Sokrates 226 2126 Russel 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 27.6.2011 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning Kapitel 8 Anfragebearbeitung Logische Optimierung Physische Optimierung Kostenmodelle Tuning Ablauf der Anfrageoptimierung Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck AnfrageOptimierer

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücken, 11.06.2015 Information Systems Group Vorlesung Informationssysteme Vertiefung Kapitel 6: SQL und Verschachtelte Anfragen Erik Buchmann ([email protected]) Foto: M. Strauch Aus den

Mehr

Semesterklausur Wiederholung

Semesterklausur Wiederholung Universität Augsburg, Institut für Informatik Wintersemester 2010/2011 Prof. Dr. W. Kießling 04. April 2011 Dr. M. Endres, F. Wenzel Datenbanksysteme Semesterklausur Wiederholung Hinweise: Die Bearbeitungszeit

Mehr

Datenbanken. Seminararbeit. Einführung in das wissenschaftliche Arbeiten

Datenbanken. Seminararbeit. Einführung in das wissenschaftliche Arbeiten Seminararbeit vorgelegt von: Gutachter: Studienbereich: Christian Lechner Dr. Georg Moser Informatik Datum: 6. Juni 2013 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung in Datenbanken 1 1.1 Motivation....................................

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

DATENBANKSYSTEME: SQL

DATENBANKSYSTEME: SQL Datendefinitions-, Manipulations- und Anfrage-Sprache SQL, Datendefinition, Veränderung am Datenbestand, Einfache SQL Abfrage, Anfragen über mehrere Relationen, Mengenfunktionen, Aggregatfunktion und Gruppierung,

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 05 Übung zur Vorlesung Grundlagen: Datenbanken im W15/16 Harald Lang, Linnea Passing ([email protected]

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik 2 für Ingenieure (MSE) Alexander van Renen ([email protected])

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Grundlagen: Datenbanken

Grundlagen: Datenbanken Grundlagen: Datenbanken 3. Zentralübung / Fragestunde Linnea Passing Harald Lang [email protected] Diese Folien finden Sie online. Die Mitschrift stellen wir im Anschluss online. Agenda Hinweise zur Klausur

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 05 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing ([email protected]

Mehr

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität Datenbanken Unit 4: Das Relationale Modell & Datenintegrität 15. III. 2016 Outline 1 Organisatorisches 2 SQL 3 Relationale Algebra Notation 4 Datenintegrität Organisatorisches Erster Zwischentest: nach

Mehr

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12

Universität Augsburg, Institut für Informatik WS 2007/2008 Prof. Dr. W. Kießling 18. Jan Dr. A. Huhn, M. Endres, T. Preisinger Übungsblatt 12 Universität Augsburg, Institut für Informatik WS 2007/2008 Prof Dr W Kießling 18 Jan 2008 Dr A Huhn, M Endres, T Preisinger Übungsblatt 12 Datenbanksysteme I Hinweis: Das vorliegende Übungsblatt besteht

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücken, 28.05.2015 Information Systems Group Vorlesung Informationssysteme Vertiefung Kapitel 5: Relationenalgebra Erik Buchmann ([email protected]) Foto: M. Strauch Aus den Videos wissen

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.

DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort. 1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.ONR) Jugendherberge(JNR, Name, Ort Ort.ONR, Manager Person.PNR) Ort(ONR,

Mehr

Datenbanken 2. Kapitel 5: Pufferverwaltung und Optimierung von Zugriffspfaden

Datenbanken 2. Kapitel 5: Pufferverwaltung und Optimierung von Zugriffspfaden Datenbanken 2 Kapitel 5: Pufferverwaltung und Optimierung von Zugriffspfaden Inhalte des Kapitels Pufferverwaltung und Optimierung von Zugriffspfaden DB-Puffermanagement DB-Zugriffspfade Explains Lernziele

Mehr

Anfragebearbeitung 2. Vorlesung Datenbanksysteme vom

Anfragebearbeitung 2. Vorlesung Datenbanksysteme vom Vorlesung Datenbanksysteme vom 21.11.2016 Anfragebearbeitung 2 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Physische Optimierung Iterator: einheitliche Schnittstelle

Mehr