Anfrageoptimierung Kostenabschätzung
|
|
|
- Harald Scholz
- vor 8 Jahren
- Abrufe
Transkript
1 Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Kostenabschätzung Dr. Thomas Gottron Wintersemester 2012/13
2 Regel vs. Kostenbasierte Optimierung Bisher: Regeln, wie Optimierung abläuft Heuristiken garantieren keine Optimalität Gelegentlich schlechte Auswertungspläne Kostenbasierte Optimierung Verschiedene Auswertungspläne erzeugen Aufwand abschätzen Beste Variante auswählen Zusätzlicher (Zeit-)Aufwand für die Optimierung Thomas Gottron GLDB 2012/13 2
3 Wiederholung: Optimierung der Joinreihenfolge Laufzeit abhängig von physischem Operator Merge Join π[x] 3 π[x]? Nested-Loop? Join A B C A B C π[x] A B C π[x] A B C Thomas Gottron GLDB 2012/13 3
4 Iteratorfunktionen cost und size IndexSelect P open next close cost size cost: Kosten (Zeit) für die Berechnung der Ergebnismenge Optimierung nach Ausführungszeit size: Anzahl der Tupel in Ergebnismenge Optimierung der Anzahl der Zwischenergebnisse Thomas Gottron GLDB 2012/13 4
5 In Kostenmodellen verwendet Information Thomas Gottron GLDB 2012/13 5
6 Selektivität Thomas Gottron GLDB 2012/13 6
7 Selektivität Anteil der qualifizierenden Tupel für ein Bedingung P Selektionen: sel P = σ PR R Joins: sel RS = R S R S Schnitt, Differenz, Vereinigung... Thomas Gottron GLDB 2012/13 7
8 Einfache Abschätzungen Bedingung P ist Werteinschränkung auf Schlüssel sel R.A=wert = 1 R Join mit Schlüsselattribut in R: sel R.A=S.B S R S Gleichverteiltung der Tupel auf k verschiedene Attributwerte sel R.B=wert = 1 k Thomas Gottron GLDB 2012/13 8
9 Genauere Abschätzungen Ziel: Selektivität als Wahrscheinlichkeit ausdrücken: sel R.B=wert = P(B = wert) Verteilung der Werte näher bestimmen! Parametrisiert Annäherung durch Verteilung (Normalverteilung, Exponentialverteilung,...) Bestimmung der Parameter (μ, σ ; α ;...) aus den Daten Histogramme Auszählen der Werte in vorgegebenen Intervallen Stichproben Thomas Gottron GLDB 2012/13 9
10 Parametrisierte Verteilung vs. Histogramme Parametrisierte Verteilung Histogramm Thomas Gottron GLDB 2012/13 10
11 Histogramme: Equi-width vs. Equi-depth Bins Fixe Intervalbreite für die Bins Fixe Elementanzahl für die Bins Thomas Gottron GLDB 2012/13 11
12 Stichprobe Zufälliges Ziehen einiger Tupel Annahme: Wertverteilung auf der Stichprobe ist repräsentativ für Gesamtpopulation Schwierigkeit: Schnelles Ziehen der Stichprobe Wahl der Stichprobe Thomas Gottron GLDB 2012/13 12
13 Problem bei der Kombination von Attributwerten sel R.X=wert1 R.Y=wert2 Thomas Gottron GLDB 2012/13 13
14 Problem bei der Kombination von Attributwerten Thomas Gottron GLDB 2012/13 14
15 Tuning von Datenbanken Statistiken (Histogramme, etc.) müssen explizit angelegt und aktualisiert werden Anderenfalls liefern die Kostenmodelle falsche Werte In Oracle analyze table Professoren compute statistics analyze table Professoren estimate statistics In DB2 runstats on table Thomas Gottron GLDB 2012/13 15
16 Kostenbasierte Optimierung Thomas Gottron GLDB 2012/13 16
17 Kosten (Seitenzugriffe) Selektion (ohne Index) Alles Seiten lesen: cost σ P R = blocks R Selektion (mit Index) Lesen des Index: c Seitenzugriffe cost σ P R = c + sel P blocks R Join (Nested Loop) Mit k Seiten für innere, m k für äußere Schleife blocks R cost R S = blocks R + k + blocks S k m k Thomas Gottron GLDB 2012/13 17
18 Kostenbasierte Optimierung Generiere alle denkbaren Anfrageauswertungspläne Enumeration Bewerte deren Kosten Kostenmodell Statistiken Histogramme Kalibrierung gemäß verwendetem Rechner Abhängig vom verfügbaren Speicher Aufwands-Kostenmodell Durchsatz-maximierend Nicht Antwortzeit-minimierend Behalte den billigsten Plan Meist zu viele Pläne Thomas Gottron GLDB 2012/13 18
19 Auswertungspläne E D C A A B B C D E Links-tief Frage: Reihenfolge Bushy Frage: Form & Reihenfolge Thomas Gottron GLDB 2012/13 19
20 Plan Generierung und bewertung Dynamische Programmierung Optimaler Plan ist Kombination aus optimalen Teilplänen Pruning schlechter Pläne Anfrage mit Join über Relationen R 1 bis R n Erzeuge Zugriffspläne für {R 1 } bis {R n } Behalte Top-k beste Pläne Kombiniere alle 2-elementigen Pläne Kombiniere kleinere Pläne zu optimalen Plänen, behalte die Top-k besten Pläne. Kombiniere alle 3-elementigen Pläne... Kombiniere alle n-elementigen Pläne k>1: Auch gute suboptimale Pläne können sich später auszahlen Thomas Gottron GLDB 2012/13 20
21 Analysieren von Leistungsengpässen Geschätzte Kosten von Oracle Thomas Gottron GLDB 2012/13 21
22 Fragen? Thomas Gottron GLDB 2012/13 22
Anfrageoptimierung Kostenmodelle
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Anfrageoptimierung Kostenmodelle Dr. Jérôme Kunegis Wintersemester 2013/14 Regel vs. Kostenbasierte Optimierung
Anfrageoptimierung Logische Optimierung
Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer
Physische Anfrageoptimierung
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 201/14 Ziel der physischen Optimierung π[titel] Konkrete Implementation der
Star Join & Kostenbasierte Optimierung. Architektur von Datenbanksystemen II
Star Join & Kostenbasierte Optimierung Architektur von Datenbanksystemen II Star Join Übungsaufgabe zum 09.06.2015 JOIN-ALGORITHMUS für folgendes Scenario Große Faktentabelle F mit sehr vielen Einträgen
Oracle 9i Einführung Performance Tuning
Kurs Oracle 9i Einführung Performance Tuning Teil 3 Der Optimizer Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 16 Seite 1 von 16 1. auf Tabellen 2. 3. Optimizer 4. Optimizer RBO 5. Optimizer CBO 6.
Anfragebearbeitung 3
Anfragebearbeitung 3 VL Datenbanksysteme, WS 2014/5 Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Kostenmodelle und
Kapitel 10: Relationale Anfragebearbeitung
Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 201/2016 Kapitel 10: Relationale Anfragebearbeitung Vorlesung:
Indexstrukturen in SQL
Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename
Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann
Datenbanksysteme I Anfragebearbeitung und -optimierung 9.1.2008 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)
Anfragebearbeitung 2. Vorlesung Datenbanksysteme vom
Vorlesung Datenbanksysteme vom 21.11.2016 Anfragebearbeitung 2 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Physische Optimierung Iterator: einheitliche Schnittstelle
Anfrageoptimierung Ausführungspläne, Hints, Statistikinformationen, IDEs
Anfrageoptimierung Ausführungspläne, Hints, Statistikinformationen, IDEs Peter Matjeschk 05-INDT Fachbereich Informatik, Mathematik und Naturwissenschaften HTWK-Leipzig 19. Juni 2008 Peter Matjeschk (Fb
Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1
Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck
Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis
Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung
Datenbanken Vertiefung
Datenbanken Vertiefung Anfrageoptimierung Nikolaus Augsten [email protected] FB Computerwissenschaften Universität Salzburg Wintersemester 2013/14 Augsten (Univ. Salzburg) DBV / Anfrageoptimierung
Grundlagen von Datenbanken. 4. Übung: Algebraische Optimierung
Grundlagen von Datenbanken 4. Übung: Algebraische Optimierung Algebraische Optimierung Ziel Effiziente Ausführung eines algebraischen Ausdrucks Minimierung der Größe von Zwischenergebnissen (das Endergebnis
Übung Datenbanksysteme II Anfrageoptimierung. Maximilian Jenders. Folien basierend auf Thorsten Papenbrock
Übung Datenbanksysteme II Anfrageoptimierung Maximilian Jenders Folien basierend auf Thorsten Papenbrock Hausaufgaben 3 + 4 2 Praktische Übung: Feedback, Probleme? Java-Aufgabe Picasso-Aufgabe Stabilität
6. Formaler Datenbankentwurf 6.1. Definitionen
6. Formaler Datenbankentwurf 6.1. Definitionen Minimale Überdeckung Eine Menge funktionaler Abhängigkeiten F min ist eine minimale Überdeckung zu F, wenn wir sie durch Anwendung der folgenden Schritte
8. Anfrageoptimierung
8. Anfrageoptimierung Vorgehensweise Übersetzung vs. Interpretation von DB-Operationen Anfragedarstellung Anfragetransformation Erstellung und Auswahl von Zugriffsplänen Kostenbewertung Prof. E. Rahm 8-1
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Grundlagen von Datenbanken. 4. Übung: Algebraische Optimierung
Grundlagen von Datenbanken 4. Übung: Algebraische Optimierung Algebraische Optimierung Ziel Effiziente Ausführung eines algebraischen Ausdrucks Minimierung der Größe von Zwischenergebnissen (das Endergebnis
Anfragebearbeitung und Optimierung
In diesem Kapitel geht es darum, wie ein DBMS eine SQL-Anfrage verarbeitet. Also: 1. Schritte der Anfragebearbeitung 2. Parsen und Validieren 3. Optimieren und Erstellen des Zugriffsplans Schritte der
Aufgabe 9.1: Lösung: Block-Nested-Loop-Verbund Index-Nested-Loop-Verbund Sort-Merge-Verbund Hash-Verbund
1 Aufgabe 9.1: Sei p die Größe einer Seite, hier p = 4 kb. Sei b die Größe eines Blocks in Anzahl Seiten, hier b = 100. Die Größe des Datenbankpuffers, d.h. die zur Ausführung des Verbundes im Internspeicher
Übungsblatt 8 Lösungsvorschläge
Prof. Dr. T. Härder Fachbereich Informatik Arbeitsgruppe Datenbanken und Informationssysteme Universität Kaiserslautern Übungsblatt 8 Lösungsvorschläge für die freiwillige Übung Unterlagen zur Vorlesung:
[W, T4, D, 15] [start_transaction, T3] [W, T3, C, 30] [W, T4, A, 20] [commit, T4] [W, T2, D, 25] System Crash
Übungen Aufgabe 1 Geben ist die folgende Logdatei: [start_transaction, T1] [W, T1, D, 20] [commit, T1] [checkpoint] [start_transaction, T2] [W, T2, B, 12] [start_transaction, T4] [W, T4, D, 15] [start_transaction,
Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520
Kapitel 7 Anfragebearbeitung 285 / 520 Übersicht Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis 286 / 520 Übersetzung Übersetzung SQL ist deklarativ, irgendwann muß Anfrage aber für Laufzeitsystem
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning
Kapitel 8 Anfragebearbeitung Logische Optimierung Physische Optimierung Kostenmodelle Tuning Ablauf der Anfrageoptimierung Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck AnfrageOptimierer
Wolf-Gert Matthäus. Lösungen für die Statistik mit Excel 97
Wolf-Gert Matthäus Lösungen für die Statistik mit Excel 97 Vorwort 9 Einleitung 11 1 Excel 97 - Zusammenstellung einiger Möglichkeiten 13 1.1 Begriffe und Bedienung 13 1.2 Niveaustufen der Arbeit mit Excel
Grundlagen von Datenbanken. Relationale Algebra und algebraische Optimierung
Grundlagen von Datenbanken Relationale Algebra und algebraische Optimierung Relationale Algebra Überblick Selektion: σ Projektion: π Mengenoperationen:,,,, Kartesisches Produkt: Verbund (Join): Umbenennung:
Statistik für NichtStatistiker
Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse
Kap. 3 Relationenmodell mit relationaler Algebra
Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3.1. Trägermenge Seien D 1, D 2,..., D k Domänen: (Typen, Arten, Sorten, Wertmengen) z.b. string integer real Boolean DateTime BLOB, TIFF-image, HTML-Doc,
Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015
Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler
Indizes B+Bäume in Oracle. Jörg Winkler
Indizes B+Bäume in Oracle Vortragende: Conrad Kobsch Jörg Winkler Inhalt Allgemeines Aufbau / Eigenschaften von B+Bäumen Vorteile / Nachteile B+Baum-Indexe Kriterien für Indizes Anlegen eines Indizes Anfrageoptimierung
mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler))
3. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 Hinweis: Wir schlagen vor, die Aufgaben in der Reihenfolge
DB-Anfrageverarbeitung Überblick (2)
DB-Anfrageverarbeitung Überblick (1) Transaktionsprogramme Mengenorientierte DB-Schnittstelle SQL, QBE... Satzorientierte DB-Schnittstelle FID EXT/STORE... Interne Satz-Schnittstelle Speichere Satz (in
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Das Rucksack-Problem Ein Dieb, der einen Safe
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Einführung in die (induktive) Statistik
Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung
Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation
Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Inhalt. Dr. Frank Haney 17.5.2005 1
Inhalt SQL-Optimierung Grundlagen Logische und physische Optimierung CBO Funktionsweise Entscheidungsgrundlagen Zugriffspfade Statistiken für den Optimizer Initialisierungsparameter Optimizer Hints Dynamic
1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung)
1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Hafen(HNR, Ort, Grundsteinlegung) Matrose(MNR, Nachname, Geburtsdatum, Ausbildungsort Hafen.HNR) Schi(SNR, Name, Bruttoregistertonnen,
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen
Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten
W-Rechnung und Statistik für Ingenieure Übung 8
W-Rechnung und Statistik für Ingenieure Übung 8 Aufgabe 1 : Motivation Anhand von Daten soll eine Aussage über die voraussichtliche Verteilung zukünftiger Daten gemacht werden, z.b. die Wahrscheinlichkeit
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2009 11. Vorlesung Uwe Quasthoff Universität Leipzig Institut für Informatik [email protected] Das Rucksack-Problem Ein Dieb, der einen
Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen
Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol [email protected] Markus Höchstötter [email protected] Stetige Verteilungen Definition: Sei
Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.
Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung
Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI
Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)
Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz.
4.1 4.2 4.1 4.2 NICOLE SCHWEIKARDT, ISOLDE ADLER GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL 4, SEITE 1 Grenzen der Ausdrucksstärke konjunktiver Anfragen Wir haben gesehen: konjunktive
Wahrscheinlichkeitstheorie und Statistik
Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste
ORACLE. ORACLE-SQL für Profis. Tuning von ORACLE-SQL (Einführung-2) Januar,
ORACLE ORACLE-SQL für Profis Tuning von ORACLE-SQL (Einführung-2) 1 1. Die Oracle Optimizer Die SQL-Optimizer entscheiden grundsätzlich anhand der folgenden Kriterien: Angegebene Syntax für die Anweisung
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Approximationsalgorithmen
Effiziente Algorithmen Lösen NP-vollständiger Probleme 320 Approximationsalgorithmen In polynomieller Zeit lässen sich nicht exakte Lösungen von NP-harten Problemen berechnen. Approximationsalgorithmen
Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann
Datenbanksysteme I Anfragebearbeitung und -optimierung 27.6.2011 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)
Prüfungsvorbereitungskurs Höhere Mathematik 3
Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse
