Indexstrukturen in SQL
|
|
|
- Eduard Knopp
- vor 9 Jahren
- Abrufe
Transkript
1 Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename on tablename (columnname[asc DESC][, ]) create inde name_geb on Dozent (Name ASC, Geburt DESC) um eindeutigkeit des Primärschlüssels zu verwalten wird automatisch ein Inde angelegt 1 Indestrukturen in SQL Inde Reihenfolge: 1.) 2.) create inde name_geb on Dozent (Name, Geburt) create inde geb_name on Dozent (Geburt, Name ) Welcher Inde unterstüzt folgende Anfrage besser: Select Name from Dozent where Name like H% Inde name_geb ist besser, da Name ein Praefi von Name, Geburt. 2
2 Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Kapitel 10: Relationale Anfragebearbeitung Vorlesung: Dr. Peer Kröger Übungen: Karsten Borgwardt, Dr. Peer Kröger Skript 2004 Christian Böhm Zentrale Aufgabe der Anfragebearbeitung ist die Übersetzung der deklarativen Anfrage in einen effizienten, prozeduralen Auswertungsplan deklarative Anfrage algebraischer Ausdruck Scanner/Parser View-Ersetzung Anfrageoptimierung Auswertungsplan 4 Ausführung
3 Kanonischer Auswertungsplan zu einer SQL-Anfrage (Ergebnis der ersten Übersetzungsphase) select A 1, A 2, from R 1, R 2, where B 1 and B 2, 1. Bilde das kartesische der Relationen R 1, R 2, 2. Führe Selektionen mit den einzelnen Bedingungen B 1, B 2, durch. 3. Projiziere die Ergebnistupel auf die erforderlichen Attribute A 1, A 2, π A B B ( R1 2))) 1, A R π[ A 1, A2 ] σ[ B 2 ] σ[ B 1 ] R 1 R 2 Beispiel Autodatenbank (KNr, Name, Adresse, Region, Saldo) 6 KNr Name Adresse Region Saldo 201 Klein Lilienthal Bremen Horn Dieburg Rhein-Main Berger München München Weiss Würzburg Unterfranken View Gute(KNr, Name, Adresse, Region, Saldo) = select * from where Saldo (BNr, Datum, KNr, Region, Saldo) (PNr, Bezeichnung, Anzahl, Preis) BNr Datum KNr PNr PNr Bezeichnung Anzahl Preis 12 BMW 318i Golf Fiat Uno Ferrari Opel Corsa
4 Einfache SQL-Anfrage: Welche guten (Name) haben einen Fiat Uno bestellt (und Saldo )? 7 select Name from Gute k, b, p where b.knr = k.knr and b.pnr = p.pnr and Bezeichnung = Fiat Uno Epansion der View: select Name from k, b, p where b.knr = k.knr and b.pnr = p.pnr and Bezeichnung = Fiat Uno and Saldo Übersetzung in relationale Algebra (kanonisch): π Name Saldo Bezeichung= ' FiatUno' b. PNr= p. PNr b. KNr= k. KNr (Pr odukt ( σ[ b. KNr = k. ))))) 8
5 9 : KNr Name Adresse Region Saldo 201 Klein Lilienthal Bremen Horn Dieburg Rhein-Main Berger München München Weiss Würzburg Unterfranken : BNr Datum KNr PNr : PNr Bezeichnung Anzahl Preis 12 BMW 318i Golf Fiat Uno Ferrari Opel Corsa σ[ b. KNr = k Beobachtungen: Der kanonische Auswertungsplan erzeugt das kartesische der 3 Relationen Die Kardinalität des kartesischen s ist * * = 100 Tupel Für jedes der 100 Tupel muss z.b. die Bedingung b.knr=k.knr ausgewertet werden Günstiger wäre es z.b., wenn man sich gleich von Anfang an auf das Fiat Uno und die mit hohem Saldo beschränken würde: 10
6 σ[ b. KNr = k σ[ b. KNr = k σ[ b. KNr = k i.a. gibt es viele verschiedene, gleichwertige Auswertungspläne für dieselbe Anfrage Die Performanz gleichwertiger Auswertungspläne variiert häufig zwischen wenigen Sekunden (schnellster Plan) und vielen Stunden (Standardplan) Die Aufgabe der Anfrageoptimierung ist es, den günstigsten Auswertungsplan zu ermitteln (bzw. zumindest einen sehr günstigen Plan zu ermitteln) Wegen des großen Unterschiedes zwischen günstigstem und ungünstigstem Plan ist die Optimierung bei der relationalen Anfragebearbeitung wesentlich wichtiger als z.b. bei der Übersetzung von (imperativen) Programmiersprachen
7 13 Logische und physische Anfrageoptimierung: Optimierungstechniken, die den Auswertungsplan betrachten und umbauen werden als logische Anfrageoptimierung bezeichnet Physische Anfrageoptimierung: Auswahl einer geeigneten Auswertungsstrategie für Join-Operationen oder Entscheidung, ob für eine Selektionsoperation ein Inde verwendet wird. Beispiel: Auswertungsstrategien für Joins Erzeuge alle Tupel des kartesischen s und prüfe Join- Bedingung (Nested Loop) Sortiere beide Relationen nach dem Joinattribut und filtere passende Paare (Sort Merge) Betrachte alle Tupel der einen Relation und greife auf die Joinpartner über einen passenden Inde der anderen Relation zu (Indeed Loop) Regel- und kostenbasierte Optimierung Es gibt zahlreiche Regeln (Heuristiken), um die Reihenfolge der Operatoren im Auswertungsplan zu modifizieren und so eine Performanz-Verbesserung zu erreichen, z.b. Push Selection: Führe Selektionen möglichst frühzeitig (vor Joins) aus Optimierer, die sich ausschließlich nach solchen starren Regeln richten, nennt man regelbasierte oder auch algebraische Optimierer 14
8 1 Optimierer, die die voraussichtliche Performanz von Auswertungsplänen ermitteln werden als kostenbasierte Optimierer bezeichnet. Die Vorgehensweise ist meist folgende: Generiere einen initialen Plan (z.b. Standardauswertungsplan) Schätze bei der Auswertung entstehende Kosten Modifizieren den aktuellen Plan gemäß vorgegebener Heuristiken Wiederhole die Schritte 2 und 3 bis ein Stop-Kriterium erreicht ist Gib den besten erhaltenen Plan aus Als Kostenmaß eignen sich der Erwartungswert der Antwortzeit (Einbenutzerbetrieb) oder die Belegung von Ressourcen wie z.b. Anzahl zugegriffener Blöcke oder CPU-Nutzung (Durchsatz-Optimierung va. im Mehrbenutzerbetrieb)
Kapitel 10: Relationale Anfragebearbeitung
Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 201/2016 Kapitel 10: Relationale Anfragebearbeitung Vorlesung:
Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1
Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck
Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann
Datenbanksysteme I Anfragebearbeitung und -optimierung 9.1.2008 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof Alfons Kemper, PhD Blatt Nr 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS5/6 Harald Lang, Linnea Passing (gdb@intumde) http://www-dbintumde/teaching/ws56/grundlagen/
Anfrageoptimierung Logische Optimierung
Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer
DB I S. 1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.
1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Person(PNR, Vorname, Nachname, Geburtsdatum, Wohnort Ort.ONR) Jugendherberge(JNR, Name, Ort Ort.ONR, Manager Person.PNR) Ort(ONR,
Kapitel 2: Das Relationale Modell
Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Kapitel 2: Das Relationale Modell Vorlesung:
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
1 Relationenalgebra [8 P.] Gegeben seien die folgenden Relationenschemata: Hafen(HNR, Ort, Grundsteinlegung)
1 Relationenalgebra Gegeben seien die folgenden Relationenschemata: [8 P.] Hafen(HNR, Ort, Grundsteinlegung) Matrose(MNR, Nachname, Geburtsdatum, Ausbildungsort Hafen.HNR) Schi(SNR, Name, Bruttoregistertonnen,
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Semesterklausur Wiederholung
Universität Augsburg, Institut für Informatik Wintersemester 2010/2011 Prof. Dr. W. Kießling 04. April 2011 Dr. M. Endres, F. Wenzel Datenbanksysteme Semesterklausur Wiederholung Hinweise: Die Bearbeitungszeit
Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis
Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung
Kapitel 5 Anfragebearbeitung
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATAASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2013 Kapitel 5 Anfragebearbeitung Vorlesung: PD Dr. Peer Kröger
Anfrageoptimierung Kostenabschätzung
Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Kostenabschätzung Dr. Thomas Gottron Wintersemester 2012/13 Regel vs. Kostenbasierte Optimierung Bisher: Regeln, wie Optimierung
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik 2 für Ingenieure (MSE) Alexander van Renen ([email protected])
Anfragebearbeitung und Optimierung
In diesem Kapitel geht es darum, wie ein DBMS eine SQL-Anfrage verarbeitet. Also: 1. Schritte der Anfragebearbeitung 2. Parsen und Validieren 3. Optimieren und Erstellen des Zugriffsplans Schritte der
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing ([email protected]
Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.
Anfrageoptimierung Kostenmodelle
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Anfrageoptimierung Kostenmodelle Dr. Jérôme Kunegis Wintersemester 2013/14 Regel vs. Kostenbasierte Optimierung
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2014 Kapitel 3: Datenbanksysteme Vorlesung:
Übungsblatt 10: Lösungsvorschlag
Ludwig-Maximilians-Universität München Institut für Informatik Prof. Dr. Christian Böhm Sebastian Goebl Einführung in die Informatik: Systeme und Anwendungen SS 2014 Übungsblatt 10: Lösungsvorschlag Aufgabe
SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.
SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2013 Kapitel 3: Datenbanksysteme Vorlesung:
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 05 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing ([email protected]
[W, T4, D, 15] [start_transaction, T3] [W, T3, C, 30] [W, T4, A, 20] [commit, T4] [W, T2, D, 25] System Crash
Übungen Aufgabe 1 Geben ist die folgende Logdatei: [start_transaction, T1] [W, T1, D, 20] [commit, T1] [checkpoint] [start_transaction, T2] [W, T2, B, 12] [start_transaction, T4] [W, T4, D, 15] [start_transaction,
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2018 Kapitel 3: Datenbanksysteme Vorlesung:
Universität Augsburg, Institut für Informatik Wintersemester 2008/2009 Prof. Dr. W. Kießling 03. Februar Semesterklausur
Universität Augsburg, Institut für Informatik Wintersemester 2008/2009 Prof. Dr. W. Kießling 03. Februar 2009 Dr. A. Huhn, M. Endres, T. Preisinger Datenbanksysteme I Semesterklausur Hinweise: Die Bearbeitungszeit
DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER
DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.
Oracle 9i Einführung Performance Tuning
Kurs Oracle 9i Einführung Performance Tuning Teil 3 Der Optimizer Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 16 Seite 1 von 16 1. auf Tabellen 2. 3. Optimizer 4. Optimizer RBO 5. Optimizer CBO 6.
Grundlagen von Datenbanken. 4. Übung: Algebraische Optimierung
Grundlagen von Datenbanken 4. Übung: Algebraische Optimierung Algebraische Optimierung Ziel Effiziente Ausführung eines algebraischen Ausdrucks Minimierung der Größe von Zwischenergebnissen (das Endergebnis
Kapitel 2: Das Relationale Modell
Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Datenbanksysteme I Wintersemester 2012/2013 Kapitel 2: Das Relationale
Semesterklausur Datenbanksysteme 1 SS 2015
Universität Augsburg, Institut für Informatik Sommersemester 2015 Prof. Dr. W. Kießling 10. April 2015 F. Wenzel, L.Rudenko Datenbanksysteme 1 Semesterklausur Datenbanksysteme 1 SS 2015 Hinweise: Die Bearbeitungszeit
IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN
Joins 1 Literatur IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN A. Kemper, A. Eickler: Datenbanksysteme Eine Einführung, 8. Auflage Oldenburg Verlag, 2011, ISBN 978-3-486-59834-6 (als E-Book mit dem Übungsbuch
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 8 Hausaufgabe 1 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe ([email protected])
Wirtschaftsinformatik 7a: Datenbanken. Dozent: R. Witte
Wirtschaftsinformatik 7a: Datenbanken Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt. Der Wirt gibt dem Kellner den Auftrag
Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)
Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der
Übungsblatt 8 Lösungsvorschläge
Prof. Dr. T. Härder Fachbereich Informatik Arbeitsgruppe Datenbanken und Informationssysteme Universität Kaiserslautern Übungsblatt 8 Lösungsvorschläge für die freiwillige Übung Unterlagen zur Vorlesung:
Grundlagen: Datenbanken
Grundlagen: Datenbanken 3. Zentralübung / Fragestunde Linnea Passing Harald Lang [email protected] Diese Folien finden Sie online. Die Mitschrift stellen wir im Anschluss online. Agenda Hinweise zur Klausur
(4 Punkte) Aufgabe 1: Relationenalgebra - Relationenkalkül
Musterlösunq zur Klausur 1665 Datenbanksvsteme 19.03.2005 Aufgabe 1: Relationenalgebra - Relationenkalkül (4 Punkte) In der Relationenalgebra werden die gewünschten Relationen durch Angabe einer Folge
Datenbanken Vertiefung
Datenbanken Vertiefung Anfrageoptimierung Nikolaus Augsten [email protected] FB Computerwissenschaften Universität Salzburg Wintersemester 2013/14 Augsten (Univ. Salzburg) DBV / Anfrageoptimierung
Physische Anfrageoptimierung
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 201/14 Ziel der physischen Optimierung π[titel] Konkrete Implementation der
Grundlagen von Datenbanken. Relationale Algebra und algebraische Optimierung
Grundlagen von Datenbanken Relationale Algebra und algebraische Optimierung Relationale Algebra Überblick Selektion: σ Projektion: π Mengenoperationen:,,,, Kartesisches Produkt: Verbund (Join): Umbenennung:
Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6
Datenbanksysteme I WS 18/19 Teillösung Übungsblatt 4-6 Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M. Franke DBS1 Blatt 4 Mitschreibbar 2 Welche Autoren
Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz.
4.1 4.2 4.1 4.2 NICOLE SCHWEIKARDT, ISOLDE ADLER GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL 4, SEITE 1 Grenzen der Ausdrucksstärke konjunktiver Anfragen Wir haben gesehen: konjunktive
Datenintegrität. Kapitel 5 1
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Kapitel 3: Datenbanksysteme
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:
Grundlagen von SQL. Informatik 2, FS18. Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich
Grundlagen von SQL Informatik 2, FS18 Dr. Hermann Lehner (Material von Dr. Markus Dahinden) Departement Informatik, ETH Zürich Markus Dahinden 13.05.18 1 Grundlagen von SQL (Structured Query Language)
5/14/18. Grundlagen von SQL. Grundlagen von SQL. Google, Facebook und Co. setzen auf SQL. Whatsapp
5/14/18 Grundlagen von SQL (Structured Query Language) Datenbanksprache Befehle Datenbanken und Tabellen erstellen/verändern Daten manipulieren (eingeben, ändern, löschen) Datenbank durchsuchen (Queries
Rückblick: Relationale Normalisierung
Rückblick: Relationale Normalisierung Gute Relationenschema vermeiden Redundanz und führen nicht zu Anomalien beim Einfügen, Löschen oder Ändern Relationale Normalformen (1NF, 2NF, 3NF, BCNF, 4NF) charakterisieren
Schemamerging und -mapping
Schemamerging und -mapping Seminar Informationsqualität und -integration, 30.06.2006 Überblick Schemaintegration / Einleitung Ziele Integrationskonflikte Integrationstechniken Multidatenbankanfragesprachen
Kapitel 6: Das E/R-Modell
Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2013/2014 Vorlesung: Prof. Dr. Christian Böhm Übungen:
ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de
08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren
Anfrageoptimierung Ausführungspläne, Hints, Statistikinformationen, IDEs
Anfrageoptimierung Ausführungspläne, Hints, Statistikinformationen, IDEs Peter Matjeschk 05-INDT Fachbereich Informatik, Mathematik und Naturwissenschaften HTWK-Leipzig 19. Juni 2008 Peter Matjeschk (Fb
Datenbanksysteme I WS 17/18 HS-Übung. Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M.
Datenbanksysteme I WS 17/18 HS-Übung Universität Leipzig, Institut für Informatik Abteilung Datenbanken Prof. Dr. E. Rahm, V. Christen, M. Franke Kapitel 1: Definitionen Grundlegenge Begriffe IS, DB, DBMS/
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)
Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)
FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1
FachPraktikum 1590 Erweiterbare Datenbanksysteme Aufgaben Phase 1 Wintersemester 2004/2005 Ralf Hartmut Güting, Dirk Ansorge, Thomas Behr, Markus Spiekermann Praktische Informatik IV, Fernuniversität Hagen
Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5
Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov. 2007 Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5 Aufgabe 1: SQL-Queries Datenbanksysteme I a) Geben Sie
Datenintegrität. Kapitel 5 1
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.
Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten
