Diskussion: Personal (1)
|
|
|
- Agnes Frieda Waldfogel
- vor 7 Jahren
- Abrufe
Transkript
1 Diskussion: Personal (1) ER-Diagramm: Abteilung ist beschäftigt in [0, n] [0, 1] Person Umsetzung ins Relationenmodell?
2 Diskussion: Personal (2) Zusätzliche Regel: In jeder Abteilung (Person) muss mindestens eine beschäftigt sein ([1, N]) Umsetzung ins Relationenmodell? Zusätzliche Regel: Jeder Angestellte (Person) muss in einer Abteilung beschäftigt sein ([1, 1]) Umsetzung ins Relationenmodell?
3 Die relationale Algebra Selektion Pojektion x Kreuzprodukt Join (Verbund) Umbenennung Semi-Join (linker) Semi-Join (rechter) linker äußerer Join rechter äußerer Join Allg. Mengenoperationen: Differenz Division Vereinigung g Durchschnitt
4 Beispiel Mengendurchschnitt Finde die PersNr aller C4-Professoren, die mindestens eine Vorlesung halten. PersNr ( PersNr gelesenvon (Vorlesungen)) PersNr ( Rang=C4 (Professoren)) prozedural!
5 Relationaler Tupelkalkül Eine Anfrage im Relationenkalkül hat die Form {t P(t)} ()} mit t Tupelvariable und P Prädikat einfaches Beispiel: i C4-Professoren {p p Professoren p.rang = 'C4'}
6 Relationaler Tupelkalkül: weiteres Beispiel Studenten mit mindestens einer Vorlesung von Curie {s s Studenten h hören(s.matrnr=h.matrnr v Vorlesungen(h.VorlNr=v.VorlNr p Professoren(p. PersNr=v.gelesenVon pname= p.name 'Curie')))}
7 Dieselbe Anfrage in SQL belegt die Verwandtschaft select s. * from Studenten s where exists ( select h.* from hören h where h.matrnr = s.matrnr and exists ( select * from Vorlesungen v where v.vorlnr = h.vorlnr and exists ( select * from Professoren p where p.name = Curie' and p.persnr= v.gelesenvon )))
8 Relationaler Domänenkalkül Anfrage im Domänenkalkül hat die Form: {[v1, v2,..., vn] P(v1,..., vn)} mit v1,..., v2 Domänenvariablen und P Prädikat Beispiel: MatrNr und Namen der Prüflinge von Sokrates {[m, n] ([m, n, s] Studenten p, v, g ([m, p, v, g] prüfen a, r, b ([p, a, r, b] Professoren a = Sokrates )))}
9 Ausdruckskraft Die drei Sprachen relationale Algebra relationaler l Tupelkalkül, lkül eingeschränkt auf sichere Ausdrücke relationaler l Domänenkalkül, eingeschränkt auf sichere Ausdrücke sind gleich mächtig {n (n Professoren)} z.b. ist nicht sicher, da das Ergebnis unendlich ist
10 Fertigungsdatenbank gsdate [0,1] ANR ABTEILUNG [1,n] [0,n] ABTEILUNG (ANR, ANAME, AMNR) PERSONAL (PNR, PNAME, PBERUF, ANR) HAT- MANAGER MASCHINEN (MANR, MFABRIKAT, MTYP, ANR) [0,1] PNR MANR TNR PERSONAL MASCHINEN TEILE TEILE (TNR, TBEZ, TGEWICHT) ABT-PERS SETZT- EIN [1,1] [0,1] [0,n] [0,m] [0,n] [0,m] IST- KANN- GEEIGNET- BEDIENEN FÜR-DIE-HER- STELLUNG- VON [0,m] [0,n] PRODUKTION [0,p] (DATUM) KANN-BEDIENEN (PNR, MANR) GEEIGNET-FÜR-DIE-HERSTELLUNG-VON (MANR, TNR) PRODUKTION (PNR, MANR, TNR, DATUM, MENGE)
11 SQL - DRL Tutorials für erste Einblicke in SQL: sql.lernenhoch2.de/lernen/ com/sql Webschnittstellen für SQL: sqlfiddle.com (MySQL, Oracle, PostgreSQL, SQLite, MS SQL): auch Tabellen anlegen möglich hyper-db db.com/interface.html (HyPer): Universitätsdatenbank, TPC-H Schema Query-Ausführungspläne
12 Handelsdatenbank
13
14 Gerüst SQL-Anfrage select <Attributliste> 5 from <Relationenliste> 1 [where <Prädikatsliste> 2 group by <Attributliste> 3 having <Prädikatsliste> 4 order by <Attributliste> 6 fetch first <Anzahl Ergebnistupel> ] 7
15 Einfaches Beispiel Anfrage: "Gib mir die gesamte Information über alle Professoren Professoren select * PersNr Name Rang from Professoren 2136 Curie C Kant C Russel C Sokrates C Augustinus C Kopernikus C Popper C3
16 Ergebnis PersNr Name Rang 2136 Curie C Kant C Russel C Sokrates C Augustinus C Kopernikus C Popper C3
17 Attribute selektieren Anfrage: "Gib mir die PersNr und den Namen aller Professoren select PersNr, Name from Professoren Professoren PersNr Name Rang 2136 Curie C Kant C Russel C Sokrates C Augustinus C Kopernikus C Popper C3
18 Ergebnis PersNr Name 2136 Curie 2137 Kant 2126 Russel 2125 Sokrates 2134 Augustinus 2127 Kopernikus 2133 Popper
19 Duplikateliminierung Im Gegensatz zur relationalen Algebra (Mengen!) eliminert SQL keine Duplikate Falls Duplikateliminierung erwünscht, muss das Schlüsselwort distinct benutzt werden Beispiel: Anfrage: Welche Ränge haben Professoren? select distinct Rang Ergebnis: from Professoren Rang C3 C4
20 Where Klausel: Tupel selektieren Anfrage: "Gib mir die PersNr und den Namen aller Professoren, die den Rang C4 haben select PersNr, Name Ergebnis: from Professoren where Rang= C4 ; PersNr Name 2125 Sokrates 2126 Russel 2136 Curie 2137 Kant
21 Where Klausel: Prädikate Prädikate in der where-klausel können logisch kombiniert werden mit: AND, OR, NOT Als Vergleichsoperatoren können verwendet werden: =, <,<=, >,>=, between, like
22 Beispiel für between Anfrage: "Gib mir die Namen aller Studenten, die zwischen und geboren wurden select Name from Student where Geburtstag between and ; Anfrage äquivalent zu: select Name from Student where Geburtstag >= and Geburtstag <= ;
23 String-Vergleiche Stringkonstanten müssen in einfachen Anführungszeichen eingeschlossen sein Anfrage: "Gib mir alle Informationen über den Professor mit dem Namen Kant select * from Professoren where Name = Kant ;
24 Suche mit Jokern (Wildcards) Anfrage: "Gib mir alle Informationen über Professoren, deren Namen mit einem K anfängt select * from Professoren where Name like K% ; Mögliche Joker: _ steht für ein beliebiges Zeichen % steht für eine beliebige Zeichenkette (auch der Länge 0)
25 Nullwerte In SQL gibt es einen speziellen Wert NULL Dieser Wert existiert für alle verschiedenen Datentypen und repräsentiert Werte, die unbekannt oder nicht verfügbar oder nicht anwendbar sind. Nullwerte können auch im Zuge der Anfrageauswertung entstehen Auf NULL wird mit is NULL geprüft: Beispiel: select * from Professoren e where Raum is NULL;
26 Nullwerte cont. Nullwerte werden in arithmetischen Ausdrücken durchgereicht: mindestens ein Operand NULL Ergebnis ebenfalls NULL manchmal sehr überraschende Anfrageergebnisse, wenn Nullwerte vorkommen, z.b.: select count (*) from Studenten t where Semester < 13 or Semester > = 13 Wenn es Studenten gibt, deren Semester-Attribut den Wert NULL hat, werden diese nicht mitgezählt Der Grund liegt in dreiwertiger Logik unter Einbeziehung von NULL-Werten:
27 Auswertung bei Null-Werten SQL: dreiwertige Logik, mit den Werten true, false und unknown unknown liefern Vergleichsoperationen zurück, wenn mindestens eines ihrer Argumente NULL ist. In einer where-bedingung werden nur Tupel weitergereicht, für die die Bedingung true ist. Insbesondere werden Tupel, für die die Bedingung zu unknown auswertet, nicht ins Ergebnis aufgenommen. Bei einer Gruppierung wird NULL als ein eigenständiger Wert aufgefasst und in eine eigene Gruppe eingeordnet. Logische Ausdrücke werden nach den folgenden Tabellen berechnet:
28 Dreiwertige Logik-Tabellen not true false and true unknown false unknown unknown true true unknown false false true unknown unknown unknown false false false false false or true unknown false true true true true unknown true unknown unknown false true unknown false
Übung 4. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)
Übung 4 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)
Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)
Fortsetzung: Projektion Selektion. NULL Werte
Fortsetzung: Anfragen mit SQL Bisher: Projektion Selektion Duplikatbehandlung NULL Werte Professoren PersNr Name Rang Raum 2125 Sokrates 226 2126 Russel 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134
Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien
Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen
Entity Relationship Modell
Entity Relationship Modell 2 Entity/Relationship (ER) Modell Legi Name Semester Entity = Gegenstandstyp Relationship = Beziehungstyp Schlüssel (Identifikation) Studenten hören Hörer Kurs Vorlesungen Attribut
Datenbanksysteme noch Kapitel 7: SQL. Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück
Datenbanksysteme 2015 noch Kapitel 7: SQL Vorlesung vom 12.05.2015 Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Schlüsselworte select from where order by asc desc as like upper
Datenbanksysteme SS 2007
Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):
Grundlagen des relationalen Modells
Grundlagen des relationalen Modells Seien D 1, D,, D n Domänen (Wertebereiche, Mengen) Eine Relation ist eine Teilmenge R D 1 x x D n Bsp.: Telefonbuch string x string x integer Ein Tupel ist jedes Element
Das relationale Modell
Das relationale Modell Grundlagen Übersetzung von ER-Schemata in relationale Schemata Relationale Algebra Relationenkalkül Domänenkalkül Grundlagen des relationalen Modells Seien D 1, D 2,..., D n Domänen
DATENBANKSYSTEME: SQL
Datendefinitions-, Manipulations- und Anfrage-Sprache SQL, Datendefinition, Veränderung am Datenbestand, Einfache SQL Abfrage, Anfragen über mehrere Relationen, Mengenfunktionen, Aggregatfunktion und Gruppierung,
Das Relationale Modell
Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die
WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2)
Vorlesung #4 SQL (Teil 2) Fahrplan Eine weitere Aggregation: median Geschachtelte Anfragen in SQL Korrelierte vs. Unkorrelierte Anfragen Entschachtelung der Anfragen Operationen der Mengenlehre Spezielle
Datenbanksysteme noch Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück
Datenbanksysteme 2013 noch Kapitel 7: SQL Vorlesung vom 7.5.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Sprung Transititve Hülle SQL: avg, group by 16.) Liste die durchschnittliche
Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5
Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov. 2007 Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5 Aufgabe 1: SQL-Queries Datenbanksysteme I a) Geben Sie
Grundlagen des relationalen Modells
Grundlagen des relationalen Modells Das relationale Modell Verfeinerung des relationalen Schemas Relationale Algebra Relationenkalkül Kapitel 3 1 Grundlagen des relationalen Modells Seien D 1, D,, D n
Vorlesung Datenbanksysteme vom
Vorlesung Datenbanksysteme vom 27.10.2008 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D 1,
SQL. DDL (Data Definition Language) Befehle und DML(Data Manipulation Language)
SQL DDL (Data Definition Language) Befehle und DML(Data Manipulation Language) DML(Data Manipulation Language) SQL Abfragen Studenten MatrNr Name Vorname Email Age Gruppe 1234 Schmidt Hans [email protected]
Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück
Datenbanksysteme 2009 Vorlesung vom 19.05.2009 noch Kapitel 7: SQL Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Self Join 15.) Liste die Namen der Assistenten, die für denselben
Relationale Abfragesprachen
Relationale Abfragesprachen Relationale Abfragesprachen VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Relationale Abfragesprachen 1 Überblick
Wiederholung: Relationale Algebra
Vorlesung Datenbanksysteme vom 1.11.016 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D1, D,,
Web Science & Technologies University of Koblenz Landau, Germany. Grundlagen der Datenbanken SQL. Dr. Gerd Gröner Wintersemester 2013/14
Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Gerd Gröner Wintersemester 2013/14 Lernziele Kenntnisse der Grundkonzepte von Fähigkeit zur praktischen Anwendung
Datenbanksysteme 2013
Datenbanksysteme 2013 Kapitel 8: Datenintegrität Vorlesung vom 14.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Datenintegrität Statische Bedingung (jeder Zustand) Dynamische
SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.
SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit
Kapitel 8: Datenintegrität
Kapitel 8: Datenintegrität Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines Schlüssels 1:N - Beziehung Angabe einer Domäne Jetzt:
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Fortsetzung: Kreuzprodukt, Inner Join. Sortierung. Existenzquantor, Mengenvergleich Gruppierung, Aggregate Cast-Operator
Fortsetzung: Anfragen mit SQL Bisher: Projektion, Selektion, Duplikatbehandlung, NULL Werte Kreuzprodukt, Inner Join Mengenoperationen Sortierung Geschachtelte Anfragen Existenzquantor, Mengenvergleich
Wiederholung VU Datenmodellierung
Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester
Aufgabensammlung SQL SW4 1. Einfache Anfragen
Aufgabensammlung SQL SW4 1. Einfache Anfragen Buch: Kapitel 4.6 und 4.7. Datenbank: Die folgenden Anfragen beziehen sich auf die Universitätsdatenbank des Buches. Alle Umlaute werden umschrieben (hören
Das relationale Modell
Das relationale Modell Das relationale Modell VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Das relationale Modell 1. Überblick Überblick
Es wird empfohlen folgendes Material anzusehen:
Übung zur Vorlesung "Einführung in die Informatik für Hörer anderer Fachrichtungen (WZW)" IN8003, SS 2011 Prof. Dr. J. Schlichter Dr. Georg Groh, Dipl.Inform. Dipl.Geogr. Jan Herrmann, Florian Schulze
Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung
Rückblick SQL bietet viele Möglichkeiten zur Anfrageformulierung mathematische Funktionen (z.b. ABS(A) und SIGN(A)) Aggregatfunktionen (z.b. MIN(A) und SUM(A)) Boole sche Operatoren (AND, OR, EXCEPT) Verknüpfungen
Das Relationale Modell
Kapitel 6 Das Relationale Modell 6.1 Definition Gegeben sind n nicht notwendigerweise unterschiedliche Wertebereiche (auch Domänen genannt) D 1,..., D n, welche nur atomare Werte enthalten, die nicht strukturiert
SQL als Zugriffssprache
SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 05 Übung zur Vorlesung Grundlagen: Datenbanken im WS16/17 Harald Lang, Linnea Passing ([email protected]
insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle
Einführung in SQL insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle Quelle Wikipedia, 3.9.2015 SQL zur Kommunikation mit dem DBMS SQL ist
Datenintegrität. Kapitel 5 1
Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis dynamische
Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1
Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 05 Übung zur Vorlesung Grundlagen: Datenbanken im W15/16 Harald Lang, Linnea Passing ([email protected]
Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)
Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:
4. Relationenalgebra. Einleitung. Selektion und Projektion Mengenoperatoren. Verbundoperationen (Join) Division Beispielanfragen
Einleitung 4. Relationenalgebra Selektion und Projektion Mengenoperatoren Vereinigung, Durchschnitt, Differenz kartesisches Produkt Verbundoperationen (Join) Theta-Join natürlicher Verbund Semi-Join äußerer
Informatik für Ökonomen II: Datenintegrität. Prof. Dr. Carl-Christian Kanne
Informatik für Ökonomen II: Datenintegrität Prof. Dr. Carl-Christian Kanne 1 Konsistenzbedingungen DBMS soll logische Datenintegrität gewährleisten Beispiele für Integritätsbedingungen Schlüssel Beziehungskardinalitäten
Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)
Übung 3 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer [email protected] http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik
Kapitel 5: Der SQL-Standard
Kapitel 5: Der SQL-Standard 5. Der SQL-Standard 5. Ein Anfrageausdruck in SQL besteht aus einer SELECT-Klausel, gefolgt von einer FROM-Klausel, gefolgt von einer WHERE-Klausel. Grundform eines SFW-Ausdruck
Architektur eines DBMS Logische Optimierung
Vorlesung Datenbanksysteme vom 16.11.2015 Anfragebearbeitung 1 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Architektur eines DBMS SW-Komponenten der Anfragebearbeitung
Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis
Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung
(4 Punkte) Aufgabe 1: Relationenalgebra - Relationenkalkül
Musterlösunq zur Klausur 1665 Datenbanksvsteme 19.03.2005 Aufgabe 1: Relationenalgebra - Relationenkalkül (4 Punkte) In der Relationenalgebra werden die gewünschten Relationen durch Angabe einer Folge
Datenbanken. Datenintegrität + Datenschutz. Tobias Galliat. Sommersemester 2012
Datenbanken Datenintegrität + Datenschutz Tobias Galliat Sommersemester 2012 Professoren PersNr Name Rang Raum 2125 Sokrates C4 226 Russel C4 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134 Augustinus
Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.
Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,
Aufgabe Entity-Mengen: Relationship-Mengen: Integritätsbedingungen:
Notation HPI Aufgabe Entity-Mengen: ABTEILUNG mit Attributen ANR, ANAME, AMNR PERSONAL mit Attributen PNR, PNAME MASCHINEN mit Attributen MNR, MBEZ TEILE mit Attributen TNR, TBEZ, Farbe Relationship-Mengen:
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.
TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik 2 für Ingenieure (MSE) Alexander van Renen ([email protected])
2.5 Relationale Algebra
2.5 Relationale Algebra 2.5.1 Überblick Codd-vollständige relationale Sprachen Relationale Algebra Abfragen werden durch exakte Angabe der auf den Relationen durchzuführenden Operationen formuliert Relationenkalküle
Datenintegrität. Arten von Integritätsbedingungen. Statische Integritätsbedingungen. Referentielle Integrität. Integritätsbedingungen in SQL.
Datenintegrität Arten von Integritätsbedingungen Statische Integritätsbedingungen Referentielle Integrität Integritätsbedingungen in SQL Trigger 1 Datenintegrität Einschränkung der möglichen Datenbankzustände
Datenbanksysteme Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück
Datenbanksysteme 2013 Kapitel 7: SQL Vorlesung vom 6.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Sprung Transititve Hülle SQL 1970 Edgar Codd: A relational model for large shared
Relationen-Algebra. Prof. Dr. T. Kudraß 1
Relationen-Algebra Prof. Dr. T. Kudraß 1 Relationale Anfragesprachen Query Language (QL): Manipulation und Retrieval von Daten einer Datenbank Relationenmodell erlaubt einfache, mächtige Anfragesprachen
Einführung in Datenbanken. Kapitel 8: Nullwerte in SQL
Stefan Brass: Einf. in Datenbanken 8. Nullwerte in SQL 1/32 Einführung in Datenbanken Kapitel 8: Nullwerte in SQL Prof. Dr. Stefan Brass Martin-Luther-Universität Halle-Wittenberg Wintersemester 2018/19
