Teil 4: Datenkommunikation
|
|
|
- Tobias Frei
- vor 9 Jahren
- Abrufe
Transkript
1 Inhalt Teil 4: Datenkommunikation ISO/OSI Schichtenmodell Ethernet und TCP/IP 1 Motivation um Daten von Rechner A im Ort x zu Rechner B in Ort y zu übertragen, benötigt man: Rechner mit E/A-Schnittstelle (Datenendeinrichtung = DTE) Netzwerk und Leitungen Datenübertragungseinrichtung (DCE) dies allein genügt nicht: es muß auch festgelegt werden, wie die Rechner miteinander kommunizieren, z.b.: Anwahl des Zielrechners Definition von Spannungspegeln, Bitreihenfolge Einteilung in Pakete Fehlerbehandlung es werden Protokolle (Satz von Regeln) benötigt, die in einem Standard festgelegt sind 2 1
2 ISO/OSI Schichtenmodell ISO Referenzmodell für OSI, 1983 standardisiert (International Standardization Organization reference model for Open Systems Interconnection) verschiedene Stufen der Abstraktion und verschiedene Funktionalität auf jeder Schicht, Kommunikation nur zwischen benachbarten Schichten Hilfsmittel für Protokollentwurf, legt aber keine Protokolle explizit fest! i.a. nicht alle 7 Schichten in einer Implementierung vorhanden! 3 Physikalische Schicht ( physical layer ) ungesicherte Übertragung von Bit-Sequenzen von Knoten A eines Netzwerks zu Knoten B über ein Übertragungsmedium (daher wird diese Schicht auch als Bit-Übertragungsschicht bezeichnet) Definition von physikalischen Größen, z.b.: Spannungspegel für 1 und 0, Steuersignalen, Taktfrequenzen, Steckerbelegungen, Anfang- und Ende-Kennung für die Übertragung einer Bit-Sequenz diverse Übertragungsmedien: verdrilltes, zweiadriges Kabel ( twisted pair cable ) Koaxialkabel Glasfaserkabel Infrarot (z.b. IrDA) Richtfunk Funkverbindung via Satellit Distanz 5 km 3 km 30 km 1 m 10 km km Übertragung ist i.a. mit Fehlern behaftet, z.b. durch: Rauschen (gaussian noise), Übersprechen (cross-talk), Echo, Störimpulse Bitrate 150 Mbit/s 800 Mbit/s 2 Gbit/s 4 Mbit/s 150 Mbit/s 2 Gbit/s 4 2
3 Physikalische Schicht (Forts.) das Signal-/Rauschverhältnis S/N gibt das Verhältnis von Signalleistung S zu Rauschleistung N an (wird i.a. logarithmisch ausgedrückt in db: 10 log 10 S/N) max. Bitrate r auf Übertragungskanal mit Bandbreite b : bei L verschiedenen Signalpegeln ohne Rauschen: r = 2 b log 2 L bei beliebig vielen Signalpegeln und einem Signal-/Rauschverhältnis S/N (theoretische Kanalkapazität nach Shannon): r = b log 2 (1 + S/N) Beispiel: Datenübertragung über Telefonnetz analoge Übertragung im Frequenzbereich 300 bis 3300 Hz Bandbreite 3000 Hz max. Bitrate bei Übertragung eines reinen Binärsignals: 6000 Bit/s max. Bitrate bei Verwendung vieler Signalpegel und einem typischen Signal/Rauschverhältnis von 30 db (d.h. S/N = 1000): Bit/s 5 Physikalische Schicht (Forts.) Beispiel: Datenübertragung über Telefonnetz (Forts.): ein analoger Telefonkanal kann nur Sinusfrequenzen innerhalb der Kanalbandbreite, aber keine digitalen Pulse übertragen Transformation der digitalen Signale mittels Modem (Modulator / Demodulator) in analoge Signale erforderlich; verschiedene Verfahren: Amplitudenmodulation (AM): feste Frequenz f, Amplituden a 0 und a 1 zum Senden von 0 / 1 Frequenzmodulation (FM): Frequenzen f 0 und f 1 zum Senden von 0 / 1, feste Amplitude a Phasenmodulation (PM): Phasen ϕ 0 und ϕ 1 zum Senden von 0 / 1, Frequenz und Amplitude fest Phasendifferenzmodulation (PSK): 2 k Phasen ϕ i zum Senden von 2k möglichen k-bit Sequenzen Quadraturamplitudenmodulation (QAM): Kombination von PSK mit 2 k Phasen und AM mit q Amplituden 6 3
4 Physikalische Schicht (Forts.) Standards zur Datenübertragung über das Telefonnetz: V.21 V.22 V.32 V.34 V.90 ISDN ADSL max. Bitrate k 33.6k / 56k je Kanal 64k 768k / 8M Verfahren FM (f 0 = 1180 Hz, f 1 =980 Hz) PSK (k = 2) QAM (k = 4, q = 2) QAM (960 Phasen/Amplituden-Kombinationen) wie V.34 / quasi-digital 2 Kanäle, rein digitale Übertragung Nutzung einer Bandbreite von 1.1 MHz ADSL ( Asymmetric Digital Subscriber Line ) verwendet auf der Leitung vom Endbenutzer zum 1. Netzwerkknoten (< 5 km) Bandbreiten von 100 khz (, upload) und 1 MHz (, download) oberhalb des für Sprache verwendeten Frequenzbereichs 7 Physikalische Schicht (Forts.) Neben dem Übertragungsverfahren wird in der physikalischen Schicht auch ein einfaches Bereitschaftsprotokoll benötigt Beispiel: V.24 Protokoll zur Kopplung von DCE (z.b. Modem) und DTE (Rechner) neben Datenleitungen (TxD, RxD) gibt es 4 weitere Steuerleitungen: Request to Send (RTS) Clear to Send (CTS) Data Set Ready (DSR) Data Terninal Ready (DTR) vollständiger V.24 Anschluß: (25-pol. Stecker) aktiv, wenn DTE Daten senden möchte aktiv, wenn DCE neue Daten empfangen kann aktiv, wenn DCE eingeschaltet ist aktiv, wenn DTE betriebsbereit ist (steuert Anschalten an Telefonleitung und Auflegen) 8 4
5 Physikalische Schicht, Forts. verschiedene Betriebsarten eines Übertragungskanals: simplex: Signale werden nur in eine Richtung übertragen halb-duplex: Signale können zu einem Zeitpunkt alternativ in einer von beiden Richtungen übertragen werden voll-duplex: Signale werden gleichzeitig in beide Richtungen übertragen zur Erhöhung der Auslastung eines Kanals können eingesetzt werden: Zeitmultiplex-Verfahren (time division multiplexing, TDM) Frequenzmultiplex-Verfahren (frequency division multpliexing, FDM) 9 Sicherungsschicht ( data link layer ) Aufbau einer fehlerfreien Verbindung zwischen zwei direkt verbundenen Netzknoten Aufteilung des Datenstroms in Pakete, die sequentiell versandt werden Paketsynchronisation durch Protokolle: Senden spezieller Anfangs- und Ende-Zeichen für Pakete Empfänger erkennt Paketanfang und Paketende im Datenstrom und sendet Bestätigung für empfangenes Paket zurück Fehlererkennung in jedem Paket ggf. Fehlerkorrektur (z.b. durch wiederholtes Senden von fehlerhaft oder nicht empfangenen Paketen) 10 5
6 Sicherungsschicht (Forts.) Beispiel 1: BiSync, ein einfaches byte-orientiertes Protokoll ASCII ( American Standard Code for Information Interchange ) enthält in einer 7-Bit Kodierung neben Buchstaben, Ziffern und Symbolen auch einige Sonderzeichen zur Steuerung einer Kommunikation: Bit 6 4 Bit Sicherungsschicht (Forts.) Beispiel 1 (Forts.): BiSync ist ein einfaches Protokoll, das folgende Sonderzeichen benötigt: SYN ( Synchronize ) SOH ( Start of Header ) STX/ETX ( Start/End of Text ) ACK/NAK ( [Negative] Acknowledge ) ENQ ( Enquiry ) EOT ( End of Transmission ) zwei SYN Zeichen definieren den Anfang eines Paketes allgemeiner Aufbau eines Paketes: 12 6
7 Sicherungsschicht (Forts.) Beispiel 2: HDLC, ein bit-orientiertes Protokoll BiSync ist ungeignet zur Übertragung von Bitströmen beliebiger Art! bei HDLC ( High-Level Data Link Control ) erfolgt die Übertragung von Bitströmen in Rahmen ( frames ), die mit der 8-Bit Kennung beginnen und aufhören. Folgen in den zu übertragenden Daten fünf 1-Bits aufeinander, fügt Sender stets ein 0-Bit ein ( bit stuffing ); so wird z.b im HDLC-Rahmen übertragen. Empfänger löscht stets das 0-Bit nach Erkennen von strikte Trennung von Master (Sender, initiiert Kommunikation) und Slave (Empfänger, darf nur auf Anforderung Antwortpakete senden) Übertragung: 13 Sicherungsschicht (Forts.) Beispiel 2 (Forts.): allgemeiner Aufbau eines HDLC-Rahmens: Ablauf des Protokolls wird gesteuert durch den Inhalt <type>,n(s),n(r),p/f des 8-Bit control -Feldes: <type> : RR = Receiver Ready REJ = Reject alle Rahmen seit N(R) N(S) : Send Sequence Number (aus 0 7) N(R) : Receive Sequence Number des nächsten erwarteten Paketes (aus 0 7) P/F : Poll = Master bittet um Antwort Final = Slave sendet letzten Rahmen Prüfsumme ( cyclic redundancy checksum ) enthält den bei Divison des data -Bitstrings durch ein Polynom entstehenden 16-Bit Rest 14 7
Teil 4: Datenkommunikation
Inhalt Teil 4: Datenkommunikation ISO/OSI Schichtenmodell Ethernet und TCP/IP 1 Motivation um Daten von Rechner A im Ort x zu Rechner B in Ort y zu übertragen, benötigt man: Rechner mit E/A-Schnittstelle
E Datenkommunikation. E Datenkommunikation. 1. Netzwerke 2. ISO/OSI-Schichtenmodell 3. Kopplung von Netzwerken 4. Ethernet 5.
1. Netzwerke 2. ISO/OSI-Schichtenmodell 3. Kopplung von Netzwerken 4. Ethernet 5. TCP/IP 1 Einordnung in das Schichtenmodell: E-2 1 Netzwerke um Daten von Computer A im Ort x zu Computer B in Ort y zu
E Datenkommunikation. E Datenkommunikation. 1 Netzwerke (2) 1 Netzwerke. Einordnung in das Schichtenmodell:
Einordnung in das Schichtenmodell: 1. Netzwerke 2. ISO/OSI-Schichtenmodell 3. Kopplung von Netzwerken 4. Ethernet 5. TCP/IP 1 E-2 1 Netzwerke um Daten von Computer A im Ort x zu Computer B in Ort y zu
H Datenkommunikation. 1. Netzwerke 2. ISO/OSI-Schichtenmodell 3. Kopplung von Netzwerken 4. Ethernet 5. TCP/IP. Einordnung in das Schichtenmodell:
1. Netzwerke 2. ISO/OSI-Schichtenmodell 3. Kopplung von Netzwerken 4. Ethernet 5. TCP/IP 1 Einordnung in das Schichtenmodell: H-2 1 Netzwerke um Daten von Computer A im Ort x zu Computer B in Ort y zu
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen
Asynchronous Digital Subscriber Line. Übertragungstechnik Schnittstellen und Protokolle Einsatzgebiete
Asynchronous Digital Subscriber Line Übertragungstechnik Schnittstellen und Protokolle Einsatzgebiete Wired Local Loop Besteht aus einem verdrillten Adernpaar. Einsatzmöglichkeiten: Analog Subscriber Line
Rechnernetze 1 Vorlesung im SS 07
Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller [email protected] Tel.: 740-4050, H-B 8404 Zusammenfassung: Protokollhierarchie Schichten, Protokolle und Dienste ISO-OSI Referenzmodell
Bitübertragungsschicht
Bitübertragungsschicht Theorie der Datenübertragung Fourier-Zerlegung, Abtasttheorem Übertragungsmedien Kupferdraht, Koaxialkabel, Lichtwellenleiter, Funk Multiplexverfahren Frequenz-, Wellenlängen-, Zeitmultiplex
Themen. Bitübertragungsschicht. Kabel. Glasfaser. Funk / Satellit. Modem / DSL / Kabelmodem. Multiplexverfahren
Themen Kabel Glasfaser Funk / Satellit Modem / DSL / Kabelmodem Multiplexverfahren OSI-Modell: TCP/IP-Modell: Physical Layer Netzwerk, Host-zu-Netz Aufgaben: Umwandlung von Bits in Übertragungssignale
6 Computernetzwerke. Kommunikationssystem
6 Computernetzwerke 6.1 Computernetzwerke 6.1.1 Konzeptionelle Sicht Internet - riesiges Computernetzwerk Computer in den Laboren - lokales Netzwerk Auto - Netzwerk von Prozessoren und Geräten Aber Unterschiedliche
Themen. Flußkontrolle. Stefan Szalowski Rechnernetze Sicherungsschicht
Themen Flußkontrolle PPP Flusskontrolle Das Problem: Kein Wissen des Senders über Aufnahmefähigkeit des Empfängers Momentane Auslastung des Empfängers Kommunikation notwendig wieviele Rahmen empfangen
Summation der I und Q Signale
Offset QPSK (OQPSK) Bildquelle: William Stallings, Data and Computer Communications, Seventh Edition, 2004 Grundlagen der Rechnernetze Physikalische Schicht 52 Summation der I und Q Signale Carrier + Shifted
Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke
Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL4 Folie 1 Grundlagen Netzwerke dienen dem Datenaustausch
Quadrature Amplitude Modulation (QAM)
Quadrature Amplitude Modulation (QAM) Bildquelle: William Stallings, Data and Computer Communications, Seventh Edition, 2004 Grundlagen der Rechnernetze Physikalische Schicht 55 Konstellationsdiagramme
Nonreturn to Zero (NRZ)
Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem
Vermittlungsschicht ( network layer )
Vermittlungsschicht ( network layer ) ggf. Auswahl eines Subnetzes für die folgende Übertragungsstrecke Auswahl eines guten Transportweges (Routing) im gewählten Subnetz statisch: fest für alle Pakete
Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt.
5. Modulation Für die Uebertragung eines Nutzsignals über Leitungen oder durch die Luft muss das informationstragende Signal, das Nutzsignal, an die Eigenschaften des Uebertragungswegs angepasst werden.
Das ISO / OSI -7 Schichten Modell
Begriffe ISO = Das ISO / OSI -7 Schichten Modell International Standardisation Organisation Dachorganisation der Normungsverbände OSI Model = Open Systems Interconnection Model Modell für die Architektur
Technische(Informa/k(II(
Technische(Informa/k(II( ( Prof.(Dr.(Bernd(Freisleben( Sommersemester(2013( Kapitel(11:(( (Grundlagen(der(Datenübertragung( Inhalt((1)(! Übertragungsmedien.(! Einfache(Kabel,(Koaxialkabel,(Lichtwellenleiter.(!
Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47
Encoding und Modulation Digitale it Dt Daten auf Analogen Signalen Grundlagen der Rechnernetze Physikalische Schicht 47 Amplitude Shift Keying (ASK) Formal: Signal s(t) für Carrier Frequenz f c : Bildquelle:
Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der
Serielle Schnittstellen
Serielle Schnittstellen Grundbegriffe Seriell, Parallel Synchron, Asynchron Simplex, Halbduplex, Vollduplex Baudrate, Bitrate Serielle Datenübertragung Senden von Daten Bit für Bit 1 0 1 1 Serielle Datenübertragung
OSI-Schichtenmodell. Martin Fechtner
OSI-Schichtenmodell Martin Fechtner Rechnernetze Rechnernetze sind Netzwerke, deren Teilnehmer Rechner sind zwischen den Teilnehmern werden digitale Daten übertragen im Allgemeinen können beliebige Teilnehmer
6. ISDN - Integrated Services Digital Network. Rechnernetze Wolfgang Effelsberg
6. ISDN - Integrated Services Digital Network 6.1 Ziele von ISDN 6.2 Grundlagen von ISDN 6.3 Schichten 1, 2 und 3 für ISDN 6.4 Standards 6. ISDN 6-1 6.1 Ziele von ISDN Integration existierender Telekommunikationsdienste:
Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen
Protokollgrundlagen (Schicht 2)
Protokollgrundlagen (Schicht ) Einfaches Kommunikationsprotokoll für eine Punkt-zu-Punkt- Verbindung: Phase Station Station Eröffnung ENQ Fehlerroutine Invalid or no NAK ACK reply Nachrichtenübermittlung
Themen. Wireless LAN. Repeater, Hub, Bridge, Switch, Router, Gateway
Themen Repeater, Hub, Bridge, Switch, Router, Gateway WLAN Kommunikation Direkte Verbindung zweier Rechner Ad Hoc Networking WLAN Kommunikation Kommunikation über Zugriffspunkt Access Point WLAN Kommunikation
6. Peripheriegeräte und Schnittstellen
Abb. 6.1: Tastatur und Tastaturschnittstelle Abb. 6.2: Tastatur-SDU und Belegung der Stecker Abb. 6.3: Die Scan-Codes der MF-II-Tastatur Tastatur Tastaturkontaktmatrix Tastaturprozessor Tastaturkabel 11
Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer
Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12
Übertragungstechnik. Übertragungstechnik. Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1
Übertragungstechnik Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1 Allgemeines Schema einer Nachrichtenübertragung Modulator Sender Störungen Strecke Nachrichtenquelle Nachrichtensenke Demodulator
Einführung Bitübertragungsschicht
Einführung Bitübertragungsschicht 01010001 Kanal 01010001 Information Information Transformation Störeinflüsse (Rauschen, Echo, etc.) Transformation Bitübertragungsschicht (Physical Layer): Übertragung
CAN - BUS. Inhaltsverzeichnis
Inhaltsverzeichnis Überblick CAN Übersicht Bussysteme ISO / OSI Schichtenmodell Physical Layer (Hardwareschicht) Data Layer (Softwareschicht) Application Layer (Anwendungsschicht) Anwendungsgebiete Literaturverzeichnis
Internet Protokoll. Die Funktionen von IP umfassen:
Internet Protokoll Das Internet Protocol (IP) stellt die Basisdienste für die Übermittlung von Daten in TCP/IP Netzen bereit und ist im RFC 791 spezifiziert. Hauptaufgaben des Internet Protokolls sind
Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht
Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen
Digitale Betriebsarten. von Ing. Kurt Baumann OE1KBC
Digitale Betriebsarten von Ing. Kurt Baumann OE1KBC Agenda Digitale Modulationen Ein- und Mehr-Träger Systeme Codierung und Faltung Ausbreitung versus Datendurchsatz Gegenüberstellung Auswahl der Technik
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 5. Vorlesung 10.04.2006 [email protected] 1 Basisband und Breitband Basisband (baseband) Das digitale Signal wird direkt in Strom-
Grundlagen der Datenkommunikations- Technologien
Grundlagen der Datenkommunikations- Technologien Herstellerunabhängiges Seminar Hotel Mercure Europaplatz, Wien s c h l a g e r communications services GmbH Steinergasse 2a-4, 3100 St. Pölten, Tel.: 0
Digitale Übertragung im Basisband
Digitale Übertragung im Basisband RS-232-Schnittstelle Sender und Empfänger Leitungscodierung Störung durch Rauschen Tiefpasskanal Nyquist-Bandbreite Kanalkapazität Digitaler Teilnehmeranschluss WS 28/9
Grundlagen der Rechnernetze. Physikalische Schicht
Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren
Wireless-LAN. Fachseminar WS 09/10 Joachim Urbach
Wireless-LAN Fachseminar WS 09/10 Joachim Urbach Aufbau: 1. Entstehung des WLAN 2. Grundlagen der WLAN Technik 3. Verschlüsselung Geschichte der drahtlosen Datenübertragung Erste optische Datenübertragung
Netzwerke - Bitübertragungsschicht (1)
Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)
Open Systems Interconnection
Standard Schichten im ISO/OSI Referenzmodell Titel und Gremien Open Systems Interconnection International Standard ISO/IEC 7498-1 identisch zu ITU-T Recommendation X.200 ISO International Organization
Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
Abschlussklausur Computernetze 14. Februar 2014 Name: Vorname: Matrikelnummer: Tragen Sie auf allen Blättern (einschlieÿlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein. Schreiben
FM PM FSK BPSK FDM PSK GMSK OFDM ASK 64-QAM AFSK. Analoge und digitale Modulationsarten im Amateurfunk
BPSK FM PM FSK ASK AM FDM PSK GMSK OFDM 64-QAM AFSK 1 von 28 Vortrag zur UKW-Tagung 2010 DL7MAJ - 09/2010 Die Amplitudenmodulation - AM u 0 (t) = A ( 1 + m cos(ϖ Μ t)) cos(ϖ Τ t) m = Modulationsgrad 0...
Technische Informatik II FS 2008
Institut für Technische Informatik und Kommunikationsnetze Prof. Bernhard Plattner, Fachgruppe Kommunikationssysteme Technische Informatik II FS 2008 Übung 5: Kommunikationsprotokolle Hinweis: Weitere
Digitale Übertragung im Basisband
Digitale Übertragung im Basisband ASCII-Code RS-232-Schnittstelle Digitale Basisbandübertragung Leitungscodierung Störung durch Rauschen Tiefpasskanal Nyquist-Bandbreite Kanalkapazität Digitaler Teilnehmeranschluss
Spektrum und Bandbreite
Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum
Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1
Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden
Modul 4: Fast- und Gigabit- Ethernet
Modul 4: Fast- und Gigabit- Ethernet 23.04.2012 17:49:05 17:47:50 M. Leischner // K. Uhde Netze SS 2012 Folie 1 Ethernet: Namensregelung Beispiele: 10Base-T, 100Base-Fx, 10GBase-T Der Name enthält 3 Bereiche
ISDN D-Kanalprotokoll
Referat 5 Seiten INHALT 1 Aufgabenstellung...2 2 Beurteilungskriterien...2 3 Angaben...3 3.1 Ablaufdiagramm: Abheben Wählton...3 3.2 Schicht 2 Rahmenaufbau, Rahmenformate, SAPI, TEI...4 3.3 Sicherungsmaßnahmen...5
Handbuch LWL-Interfaces
Handbuch W&T Typen 81009 81025 81026 Release 1.0 Irrtum und Änderung vorbehalten 1 12/2002 by Wiesemann & Theis GmbH Irrtum und Änderung vorbehalten: Da wir Fehler machen können, darf keine unserer Aussagen
Im Vorlesungsskript (5) auf Seite 7 haben wir folgendes Bild:
Übungsblatt 4 Aufgabe 1 Sie möchten ein IEEE 802.11-Netzwerk (WLAN) mit einem IEEE 802.3-Netzwerk (Ethernet) verbinden. 1a) Auf welcher Schicht würden Sie ein Zwischensystem zur Übersetzung ansiedeln?
übertragbare Signale: RGBHV, RGsB oder RsGsBs
12 Technische Daten 12.1 CATVision Video: Auflösung: max. 1920 x 1440 Bildpunkte (abhängig von Kabel und Videosignal) Übertragungslänge: 10 bis max. 300 Meter (abhängig von Kabel, Auflösung und Videosignal)
Hauptdiplomklausur Informatik. September 2000: Rechnernetze
Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Hauptdiplomklausur Informatik September 2000: Rechnernetze Name:... Vorname:...
Übung zu Drahtlose Kommunikation. 6. Übung
Übung zu Drahtlose Kommunikation 6. Übung 26.11.2012 Aufgabe 1 (Multiplexverfahren) Erläutern Sie mit wenigen Worten die einzelnen Multiplexverfahren und nennen Sie jeweils ein Einsatzgebiet/-möglichkeit,
Die serielle Schnittstelle in der MSR - Technik
Die serielle Schnittstelle in der MSR - Technik In der Mess- Steuer- und Regelungstechnik (MSR - Technik) werden für die Ansteuerung von Messgeräten oft serielle Schnittstellen verwendet. Aus leidvoller
Datenübertragung. Vorlage für den Informatikunterricht. Mag. Otto Dolinsek
Mag. Otto Dolinsek Übertragungsprinzip ISDN ADSL Mobilfunk Klassisches Übertragungsprinzip Beim klassischen Übertragungsprizip im Fernsprechnetz werden Daten analog übertragen. Die Frequenz der menschlichen
BA Course ICT Management 1 2004/05 Part 10
(slide 1) BA Course ICT Management 1 2004/05 Part 10 Ulrich Ultes-Nitsche Research Group Department of Computer Science, University of Fribourg Chemin du Musée 3, CH-1700 Fribourg Switzerland (slide 2)
Netze wurden für einen einzigen Dienst geschafffen (Telefon: Fernsprechnetz, Fernschreiben: DATAX-L, Datentransfer: DATEX-P)
$ 390 7,90/ $07; 08 9, 09 47 03890:3/09 0 Vergangenheit: Netze wurden für einen einzigen Dienst geschafffen (Telefon: Fernsprechnetz, Fernschreiben: DATAX-L, Datentransfer: DATEX-P) Heute: Netze bieten
SCHICHTENMODELLE IM NETZWERK
SCHICHTENMODELLE IM NETZWERK INHALT Einführung Schichtenmodelle Das DoD-Schichtenmodell Das OSI-Schichtenmodell OSI / DOD Gegenüberstellung Protokolle auf den Osi-schichten EINFÜHRUNG SCHICHTENMODELLE
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 6. Vorlesung 11.04.2006 [email protected] 1 Das elektromagnetische Spektrum leitungsgebundene Übertragungstechniken verdrillte DrähteKoaxialkabel
Verteilte Systeme. Protokolle. by B. Plattner & T. Walter (1999) Protokolle-1. Institut für Technische Informatik und Kommunikationsnetze
Protokolle Protokolle-1 Kommunikationssubsystem Ein System, welches innerhalb eines verteilten Systems für den Nachrichtentransport zwischen Kommunikationspartnern (= Prozesse) zuständig ist (Hardware
Netzwerktechnologie 2 Sommersemester 2004
Netzwerktechnologie 2 Sommersemester 2004 FH-Prof. Dipl.-Ing. Dr. Gerhard Jahn [email protected] Fachhochschulstudiengänge Software Engineering Software Engineering für Medizin Software Engineering
Serielle Datenübertragung. TeilB: Serielle Schnittstellen. Serielle Datenübertragung Minimalverkabelung
TeilB: Serielle Schnittstellen Serielle Schnittstelle 20mAStromschnittstelle Serielle SchnittstelleRS 485 Serielle Datenübertragung Datenwerdennacheinander(d.h.in Serie)übertragen. Gemeintisti.d.R.bitseriell.
Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68
Flusskontrolle Grundlagen der Rechnernetze Übertragungssicherung 68 Data Link Layer Frame synchronization how to make frames Flow control adjusting the rate of data Error control correction of errors Addressing
Computernetze 1. Inhalt
Computernetze 1 Inhalt 1 Einführung: Problemanalyse Computernetze... 2 2 Betrachtungsweise von Computernetzen... 3 2.1 Topologien... 3 2.2 Vermittlungsprinzipien... 5 Circuit Switching... 5 Paketvermittlung...
Wireless Local Area Network
Wireless Local Area Network (WLAN) Zengyu Lu 1. Einleitung 2. Der IEEE 802.11 Standard 3. Die Zugriffskontrollebene(MAC) 4. Der Verbindungsprozess eines WLANs 5. Quellen - 1 - 1. Einleitung Mobilität ist
Handbuch Interface RS232 <> RS485
Handbuch Interface RS RS485 W&T Release 1.0 Typ 8600 06/00 by Wiesemann & Theis GmbH Irrtum und Änderung vorbehalten: Da wir Fehler machen können, darf keine unserer Aussagen ungeprüft verwendet werden.
Digitales Fernsehen DVB
Digitales Fernsehen DVB Thomas Lauterbach DL1NAW 1. Video- und Audiokodierung (MPEG) 2. DVB 3. DVB-T in Nürnberg Quellen: U. Reimers, Digitale Fernsehtechnik http://www.dvb-t-baern.de Referate und Ausarbeitungen
TCP/IP-Protokollfamilie
TCP/IP-Protokollfamilie Internet-Protokolle Mit den Internet-Protokollen kann man via LAN- oder WAN kommunizieren. Die bekanntesten Internet-Protokolle sind das Transmission Control Protokoll (TCP) und
Technische Grundlagen
Technische Grundlagen Allgemeines über Computernetze Die Beschreibung der Kommunikation in Computernetzwerken erfolgt in der Regel über Standards. Das Ziel aller Standardisierungsbemühungen sind offene
Übung zu Drahtlose Kommunikation. 1. Übung
Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung
Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)
Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen
Asymmetric DSL (ADSL)
Asymmetric DSL (ADSL) Grundprinzip: Asymmetrische Datenraten: Hohe Bitrate zum Teilnehmer, niedrigere Bitrate vom Teilnehmer Koexistenz mit POTS (Plain Old Telephone Service) bzw. ISDN Begriffe: Downstream:
Digitale Bandpass Übertragung. Roland Küng, 2009
Digitale Bandpass Übertragung Roland Küng, 2009 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Basisband RF Was ändert sich? Sender
Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104
Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven
Systeme II 7. Woche Funkprobleme und Ethernet
Systeme II 7. Woche Funkprobleme und Ethernet Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Spezielle Probleme in drahtlosen Netzwerken 2 Probleme
Abschlussklausur. Computernetze. Bewertung: 16. Mai Name: Vorname: Matrikelnummer:
Abschlussklausur Computernetze 16. Mai 2014 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund und prüfungsfähig fühle.
Codierung Fehlerdetektion
Übersicht Elektromagnetische Wellen Frequenzen und Regulierungen Antennen Signale Signalausbreitung Multiplex Modulation Bandspreizverfahren Codierung Rauschen und Übertragungsfehler Fehlerdetektion Block-Codes
Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 23.
Rechnernetze I SS 2012 Universität Siegen [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 23. ärz 2012 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 5 14. Mai 18. Mai 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe
Modul 117. OSI-Referenzmodell
Modul 117 Modulbezeichnung: Kompetenzfeld: Kompetenz: - und Netzinfrastruktur für ein kleines Unternehmen realisieren Network Management 6.3. Kennt den Zweck und die Funktion der Schichtenmodelle( OSI
Jede Technik oder jeder Vorgang, der zur Datenübertragung genutzt wird, lässt sich in 3 Teile gliedern:
Jede Technik oder jeder Vorgang, der zur Datenübertragung genutzt wird, lässt sich in 3 Teile gliedern: Übertragungsweg Der Übertragungsweg ist das Medium, welches zur Datenübertragung genutzt wird. Z.
12 Technische Daten RS232. Übertragungsrate: max. 57600 bit/s übertragbare Signale: TxD, RxD, RTS, CTS, DTR, DSR, DCD. Audio
Guntermann & Drunck GmbH Installations- und Bedienungsanleitung LwLVision 12 Technische Daten Video Auflösung (lokal): max. 1920 1200 Bildpunkte (max. Wert) Auflösung (entfernt): max. 1920 1200 Bildpunkte
Netzwerkgrundlagen. OSI-Modell. Layer 1 Physikal Layer. Layer 2 Data Link Layer. Layer 3 Network Layer
Netzwerkgrundlagen http://de.wikipedia.org/wiki/ethernet OSI-Modell http://de.wikipedia.org/wiki/osi-modell Das OSI-Modell beschreibt modellhaft eine Art der Datenübertragung für die Kommunikation offener,
Die Mathematik in der CD
Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern
Trellis Diagramme und Viterbi-Decoder
Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe
Übungsblatt Warum brauchen Bridges und Layer-2-Switches keine physischen oder logischen
Übungsblatt 3 Aufgabe 1 (Bridges und Switche) 1. Was ist die Aufgabe von Bridges in Computernetzen? 2. Wie viele Schnittstellen ( Ports ) hat eine Bridge? 3. Was ist der Hauptunterschied zwischen Bridges
Der CAN-Bus (Controller Area Network)
Der CAN-Bus (Controller Area Network) Was ist das und wozu braucht man das? Jürgen Stuber 2012-10-03 Jürgen Stuber () Der CAN-Bus (Controller Area Network) 2012-10-03 1 / 15 Anwendungen KFz Jürgen Stuber
