Datenstrukturen & Algorithmen
|
|
|
- Jobst Wetzel
- vor 9 Jahren
- Abrufe
Transkript
1 Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010
2 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2
3 Einführung Binäre Suchbäume Höhe h O(h) für Operationen auf dynamische Mengen Baum kann zu Liste degenerieren h ist im Worst Case O(n) Balancierte Suchbäume Garantieren, dass Baum nicht zu Liste degenerieren kann Garantieren h=o(lg n) Erzwungen mittels zusätzlichen Bedingungen an Datenstruktur 3
4 Rot-schwarz Bäume Eine Variante von balancierten Suchbäumen Ggarantieren, dass Höhe im Worst Case O(lg n) statt wie vorher O(n) Alle Operationen sind O(lg n) ) 4
5 Rot-schwarz Bäume Zeiger gleich wie binäre Suchbäume (left, right, p) Konvention Falls ein Kind nicht existiert, wird Zeiger auf Wächterelement t nil[t] gespeichert Alle Knoten ausser nil[t] werden als innere Knoten betrachtet Vater von Wurzel zeight auch auf nil[t] 5
6 Rot-schwarz Bäume Hauptidee Jeder Knoten hat ein Bit Zusatzinformation Farbe des Knotens Rot oder schwarz Bedingungen g an Farbreihenfolge entlang Pfaden von Wurzel zu Blatt Garantieren, dass kein Pfad mehr als doppelt so lang als alle anderen Baum ist balanciert Einfügen und Löschen müssen Bedingungen erhalten 6
7 Eigenschaften 7
8 Beispiel 8
9 Schwarz-Höhe Höhe eines Knotens Länge des längsten Pfades vom Knoten zu einem Blatt Schwarz-Höhe eine Knotens bh(x) Anzahl Schwarzer Knoten auf irgendeinem i Pfad von x zum Blatt nil[t] x selbst nicht gezählt Blatt nil[t] [ ] mitgezählt Wegen Eigenschaft 5 wohldefiniert 9
10 Beispiel 10
11 Höhe von rot-schwarz Bäumen Lemma: Eigenschaften von rot-schwarz Bäumen garantieren, dass Höhe des Baumes h <= 2lg(n+1) = O(lg n) Garantiert effiziente Operationen! Beweis mittels 2 Behauptungen 11
12 Höhe von rot-schwarz Bäumen 1. Behauptung: Knoten mit Höhe h hat Schwarz-Höhe bh mindestens h/2 Beweis: Eigenschaft 4 Höchstens h/2 rote Knoten auf einem Pfad von Knoten zu jedem Blatt Mindestens h/2 Schwarze Knoten 12
13 Höhe von rot-schwarz Bäumen 2. Behauptung: Unterbaum von jedem bh(x) ( Knoten x hat 2 ) 1 interne Knoten 13
14 Höhe von rot-schwarz Bäumen Zusammenfassend 1. Knoten mit Höhe h hat Schwarz-Höhe h/2 2. Für jeder Knoten x,, Unterbaum hat interne Knoten 2 bh(x) 1 Sei b Schwarz-Höhe der Wurzel, n Anzahl Knoten im ganzen Baum 14
15 Operationen Nicht-modifizierende Operationen (Suchen, Vorgänger, Nachfolger, Minimum, Maximum) gleich wie binäre Suchbäume Aufwand O(lg n) Einfügen und Löschen sind komplizierter Einfügen Roter Knoten: kann Eigenschaft 4 verletzen Schwarzer Knoten: kann Eigenschaft 5 verletzen Löschen Rote Knoten: kein Problem Schwarze Knoten: kann Eigenschaften 2, 4, oder 5 verletzen 15
16 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 16
17 Rotationen Einfügen und Löschen zerstören rot- schwarz Eigenschaften Benötigen Rotationen, um rot-schwarz Eigenschaften wiederherzustellen Ändern Baumstruktur Bewahren binäre Suchbaum-Eigenschaft Es gibt Links- und Rechtsrotationen Inverse voneinander Implementiert durch umhängen von Zeigern 17
18 Rotationen 18
19 Beispiel 19
20 Rotationen Aufwand konstant, da eine konstante Anzahl Zeiger verändert werden Rotationen werden auch in anderen balancierten Suchbäumen verwendet AVL Bä S l Bä AVL Bäume, Splay Bäume
21 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 21
22 Einfügen Zwei Schritte 1. Einfügen (fast) wie in binären Suchbaum 2. Wiederherstellen der rot-schwarz Eigenschaften 22
23 Einfügen 23
24 Eigenschaften 1. Ok 2. Verletzt falls z die Wurzel ist, sonst Ok 3. Ok 4. Verletzt falls p[z] rot ist: sowohl z wie auch p[z] sind rot 5. Ok 24
25 Wiederherstellen der Eigenschaften 25
26 Schleifeninvariante Zu Beginn jeder Iteration der while- Schleife gilt a. z ist rot b. Falls p[z] Wurzel, dann ist p[z] schwarz c. Es gibt höchstens eine rot-schwarz Verletzung Eigenschaft 2: z is die Wurzel und rot Eigenschaft 4: sowohl z wie auch p[z] sind rot 26
27 Schleifeninvariante Initialisierung a. Bei Initialisierung i ist z roter Knoten, der eingefügt wurde b. Falls p[z] Wurzel, dann schwarz vor Einfügen, und Farbe wurde nicht geändert c. Zwei Fälle Falls Eigenschaft 2 verletzt: rote Wurzel ist Knoten der eingefügt wurde, keine andere Verletzung Falls Eigenschaft 4 verletzt: t: z und p[z] ] sind rot, keine andere Verletzung 27
28 Schleifeninvariante Terminierung Schleife endet weil p[z] schwarz ist, also ist Eigenschaft 4 ok Letzte Zeile garantiert Eigenschaft 2 Deshalb: rot-schwarz Eigenschaften bei Terminierung erfüllt 28
29 Schleifeninvariante Fortsetzung Fallunterscheidung 6 Fälle, 3 symmetrisch zu den anderen 3 Je 3 Fälle für p[z] entweder linkes oder rechtes Kind Beschreibung hier nimmt an p[z] ist linkes Kind y bezeichnet den Onkel von z, also den Bruder von p[z] ] Fälle schliessen sich gegenseitig nicht aus 29
30 Fall 1: Onkel y ist rot p[p[z]] [ [ muss schwarz sein, weil sowohl z wie p[z] rot sind, aber es nur eine Verletzung von Eigenschaft 4 gibt Mache p[z] und y schwarz => Eigenschaft 4 ok, aber Eigenschaft 5 kann verletzt t sein Mache p[p[z]] rot => Eigenschaft 5 ok Nächste Iteration hat p[p[z]] als neues z 30
31 Fall 2: y ist schwarz, z ist rechtes Kind Linksrotation um p[z] => z ist nun linkes Kind, und z und p[z] sind rot Sind nun in Fall 3 31
32 Fall 3: y ist schwarz, z ist linkes Kind Mache p[z] schwarz und p[p[z]] rot Rechtsrotation um p[p[z]] Eigenschaft 4 ok: nicht mehr zwei aufeinanderfolgende rote Knoten [ ] it j tt Sh k i it p[z] ist jetzt Schwarz => keine weiteren Iterationen 32
33 Analyse O(lg n) für RB-Insert Für RB-Insert-Fixup Jede Iteration ist O(1) Jede Iteration ist entweder die letzte (Fälle 2 und 3) oder bewegt z zwei Stufen nach oben (Fall 1) O(lg n) Stufen => O(lg n) Zeit Höchstens 2 Rotationen insgesamt! Total: Einfügen in rot-schwarz Baum ist O(lg n) 33
34 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 34
35 Löschen Zwei Schritte 1. Löschen (fast) wie aus binärem Suchbaum 2. Wiederherstellen der rot-schwarz Eigenschaften 35
36 Löschen 36
37 Löschen y wurde ausgeschnitten x ist entweder y s s einziges Kind bevor y ausgeschnitten wurde oder der Wächter, falls y keine Kinder hatte p[x] zweigt auf Knoten, der vorher y s Vater war 37
38 Rot-schwarz Verletzungen Falls y rot, keine Verletzungen Keine Veränderung der Schwarz-Höhen Keine neuen roten Knoten Falls y schwarz, mögliche Verletzungen 1. Ok 2. Falls y die Wurzel und x rot ist, dann wurde Wurzel rot 3. Ok 4. Verletzt falls p[y] und x rot sind 5. Jeder Pfad, der y enthält, hat jetzt einen schwarzen Knoten weniger 38
39 Rot-schwarz Verletzungen Idee zur Reparatur: x bekommt ein zusätzliches zusätzliches Schwarz Alle Pfade, die x enthalten, erhalten +1 schwarz Eigenschaft 5 repariert, aber Eigenschaft 1 verletzt x ist doppelt schwarz oder rot & schwarz 39
40 Reparatur Interpretation Der Knoten, auf den x zeigt, hat ein zusätzliches ( gedachtes ) Schwarz, aber sein Farbattribut wird nicht geändert Idee: bewege x im Baum nach oben, bis x zeigt auf einen rot & schwarzen Knoten => mache x schwarz x zeigt auf die Wurzel => zusätzliches Schwarz wird einfach entfernt Geeignete Rotationen und Umfärbungen durchgeführt werden können 40
41 Reparatur 41
42 Reparatur In der while Schleife Zeigt x immer auf einen nicht-wurzel Wurzel, doppelt schwarzen Knoten w ist der Bruder von x w kann nicht nil[t] sein, weil das Eigenschaft 5 am Knoten p[x] verletzen würde 8 Fälle, je 4 symmetrisch Hier: betrachten Fälle wo x ein linkes Kind ist Fälle schliessen sich gegenseitig nicht aus Idee Jede Transformation erhält Eigenschaft 5 Jede Transformation verschiebt x zu p[x], oder führt zu Termination der Schleife in der nächsten Iteration 42
43 Fall 1 Bruder w von x ist rot w muss schwarze Kinder haben Mache w schwarz und p[x] rot Linksrotation auf p[x] Neuer Bruder von x war Kind von w bevor Rotation => muss schwarz sein Gehe zu Fall 2, 3 oder 4 43
44 Fall 2 w ist schwarz und w s Kinder sind schwarz Entferne 1 Schwarz von x (=> einfach schwarz) und 1 von w (=> rot) Bewege Schwarz zu p[x] Nächste Iteration mit p[x] ] als neuem x Falls vorher Fall 1, dann war p[x] rot => neues x ist rot & schwarz => Farbattribut von neuem x ist rot => Schleife terminiert, neues x wird schwarz in letzter Zeile 44
45 Fall 3 w ist schwarz, linkes Kind rot, rechtes schwarz Mache w rot und w s linkes Kind schwarz Rechtsrotation auf w Neuer Bruder w von x ist schwarz mit rotem Kind => Fall 4 45
46 Fall 4 w ist schwarz, w s rechtes Kind ist rot Mache w die Farbe von p[x] ] Mache p[x] schwarz und w s rechtes Kind schwarz Linksrotation auf p[x] [ ] Entferne extra schwarz auf x (=> x jetzt einfach schwarz) ohne rot-schwarz Eigenschaften zu verletzen Fertig. Lass x auf Wurzel zeigen, Schleife terminiert i 46
47 Analyse RB-Delete ist O(lg n) RB-Delete-Fixup Nur Fall 2 erfordert mehr Iterationen x bewegt sich eine Stufe nach oben O(lg n) ) Iterationenti Fälle 1, 3 und 4 haben eine Rotation => höchstens h 3 Rotationen total Total O(lg n) 47
48 Zusammenfassung Binäre Suchbäume Binäre Suchbaum-Eigenschaft Wörterbuchoperationen (Suchen, Einfügen, Löschen) Prioritätswarteschlangen tesc (Minimum, Maximum) Sortierte Ausgabe (Vorgänger, Nachfolger) Ohne Zusatzbedingungen: g Höhe h=o(n) ( ) Kann zu Liste degenerieren Balancierte Bäume Z.B. rot-schwarz Bäume Zusatzbedingungen an Struktur Garantiert logarithmische Höhe h=o(lg n) Zusatzbedingungen müssen nach Einfügen, Löschen wiederhergestellt werden, Aufwand O(lg n) 48
49 Nächstes Mal Kapitel 15: dynamisches Programmieren 49
Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen
Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (21 - Balancierte Bäume, AVL-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected] 1/122
VL-11: Rot-Schwarz Bäume. (Datenstrukturen und Algorithmen, SS 2017) Janosch Fuchs
VL-11: Rot-Schwarz Bäume (Datenstrukturen und Algorithmen, SS 2017) Janosch Fuchs SS 2017, RWTH DSAL/SS 2017 VL-11: Rot-Schwarz Bäume 1/41 Organisatorisches Vorlesung: Gerhard Woeginger (Zimmer 4024 im
Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier
Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier [email protected] 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Grundlagen Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected]
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
7 Weitere Baumstrukturen und Heapstrukturen
7 Weitere Baumstrukturen und Heapstrukturen Man kann kurze Suchzeiten in Baumstrukturen erreichen durch Rebalancierung bei Einfügungen und Löschungen (AVL Bäume, gewichtsbalancierte Bäume, Bruderbäume,
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO INF.02031UF (2-4)-Bäume [email protected] 1 7. Bäume Bäume als Datenstruktur Binärbäume Balancierte Bäume (2-4)-Bäume Anwendung: Mischbare Warteschlangen
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Übung Algorithmen I
Übung Algorithmen I.6.5 Christoph Striecks [email protected] (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen
Algorithmen und Datenstrukturen I AVL-Bäume
Algorithmen und Datenstrukturen I AVL-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 01.12.2017 14:42 Algorithmen und Datenstrukturen I, AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum
Algorithmen und Datenstrukturen I Bruder-Bäume
Algorithmen und Datenstrukturen I Bruder-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 11.12.2017 10:50 Algorithmen und Datenstrukturen I, Bruder-Bäume 1/24 Definition ein binärer Baum heißt ein Bruder-Baum,
ADS 1: Algorithmen und Datenstrukturen
ADS 1: Algorithmen und Datenstrukturen Teil IX Uwe Quasthoff Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 1 Dezember 017 [Letzte Aktualisierung: 04/1/017, 10:56]
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen
Übung zur Vorlesung Algorithmische Geometrie
Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)
Mengen. Binäre Suchbäume. Mengen: Anwendungen (II) Mengen: Lösung mit Listen 12/3/12. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
// Mengen Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps n Ziel: ufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: n eines Elements n eines Elements
Suchstrukturen. Übersicht. 8 Suchstrukturen. Allgemeines. H. Täubig (TUM) GAD SS
Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 309 Allgemeines Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 310
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
7. Sortieren Lernziele. 7. Sortieren
7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche
7. Übung Algorithmen I
Timo Bingmann, Dennis Luxen INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Timo Bingmann, Dennis Luxen KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Randomisierte Algorithmen
Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick
Satz 172 Jedes vergleichsbasierte Sortierverfahren benötigt im worst-case mindestens n ld n + O(n) Vergleiche und hat damit Laufzeit Ω(n log n).
2.6 Vergleichsbasierte Sortierverfahren Alle bisher betrachteten Sortierverfahren sind vergleichsbasiert, d.h. sie greifen auf Schlüssel k, k (außer in Zuweisungen) nur in Vergleichsoperationen der Form
Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)
Aufgabe 3 a) Wir verwenden zur Lösung den Algorithmus Build-Heap 1, dieser verwendet die Funktion Heapify. Unser Array A ist gegeben durch [7, 10,, 5, 5,, 3, 3, 17]. 10 5 5 3 17 7 Abbildung 1: Das Array
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
Datenstrukturen Teil 3. Traversierung und AVL- Bäume. Traversierung. Traversierung. Traversierung
Traversierung Datenstrukturen Teil 3 Traversierung und AVL- Bäume Traversierung: bezeichnet verschiede Verfahren einer Routenbestimmung durch baumförmige Graphen Dabei wird jeder Knoten und jede Kante
Übung: Algorithmen und Datenstrukturen SS 2007
Übung: Algorithmen und Datenstrukturen SS 07 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 8 Votierung in der Woche vom 25.06.0729.06.07 Aufgabe 22 AVL-Bäume (a) Geben
1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee
AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für
ContainerDatenstrukturen. Große Übung 4
ContainerDatenstrukturen Große Übung 4 Aufgabenstellung Verwalte Kollektion S von n Objekten Grundaufgaben: Iterieren/Auflistung Suche nach Objekt x mit Wert/Schlüssel k Füge ein Objekt x hinzu Entferne
Sortieren II / HeapSort Heaps
Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: [email protected] Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php
Algorithmen und Datenstrukturen Heapsort
Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das
186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.
Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5
Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen
8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.
8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.
Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":
Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in
2. Übungstest. Motivation Überblick. Motivation für B-Bäume. B-Bäume. Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax, Beginn:
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen
3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr
3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Mehrwegbäume Motivation
Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung
Aufgabe 1 O-Notation (2+3+5=10 Punkte)
1 Aufgabe 1 O-Notation (2+3+=10 Punkte) Zeigen oder widerlegen Sie die folgenden Aussagen: a) n 2 +log n Θ(n 2 ) Ist die Aussage wahr, so muss gelten: 0 < lim n + n 2 +logn n 2
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT
Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT Komplexität eines Algorithmus Algorithmen verbrauchen Ressourcen Rechenzeit
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO
Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:
a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:
1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem
ADS: Algorithmen und Datenstrukturen
ADS: Algorithmen und Datenstrukturen Teil X Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 13.
9. Natürliche Suchbäume
Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten
Kapitel Andere dynamische Datenstrukturen
Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2017/2018 Vorlesung#13, 12.12.2017
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume
Übersicht Datenstrukturen und lgorithmen Vorlesung : Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-/dsal/ 1 Suche Einfügen
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Copyright, Page 1 of 8 AVL-Baum
www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Sortierte Folgen Maike Buchin 30.5., 1.6., 13.6.2017 Sortierte Folgen Häufiges Szenario: in einer Menge von Objekten mit Schlüsseln (aus geordnetem Universum) sollen Elemente
Datenstrukturen und Algorithmen SS17 Lösung - Übung 5
Prof. aa Dr. Ir. G. Woeginger T. Hartmann, D. Korzeniewski, B. Tauer Hausaufgabe (Inorder-Traversierung binärer Suchbäume): (3 + 3 Punkte) Es soll bewiesen werden, dass die Inorder-Traversierung alle Schlüssel
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach
Aufgaben, Hilfestellungen und Musterlösungen zum Modul 5 Druckversion
Abschnitt 1 Aufgaben, Hilfestellungen und Musterlösungen zum Modul 5 Druckversion Aufgabe 1: Binäre Suchbäume: Iteratives Suchen/Einfügen/Löschen Das Material dieser Übung enthält in der Klasse Tree0 die
