ADS 1: Algorithmen und Datenstrukturen
|
|
|
- Britta Acker
- vor 7 Jahren
- Abrufe
Transkript
1 ADS 1: Algorithmen und Datenstrukturen Teil IX Uwe Quasthoff Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 1 Dezember 017 [Letzte Aktualisierung: 04/1/017, 10:56] Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
2 Motivation / Wiederholung: natürliche Suchbäume im Worst Case: lineare Zugriffskosten (dh für Suchen, Einfügen, Löschen) 1 5 beschränke die Höhe: ZB in ausgeglichenem Baum; statisch ok, aber einen Baum bei Einfüge/Lösch-Operationen ausgeglichen zu halten, ist sehr teuer! Was wäre zb nötig, nachdem 4 eingefügt wird? Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember 017 / 0
3 Wiederholung: l-balancierter Binärbaum Seien B l (x) und B r (x) die linken und rechten Tochterbäume eines Knotens x Weiterhin sei h(b) die Höhe eines Baumes B Definition: Ein Binärbaum heisst l-balanciert, genau dann wenn für jeden seiner Knoten x gilt: h(b l (x)) h(b r (x)) l (Anmerkung: Nach dieser Definition ist der leere Baum auch l-balanciert) dh der maximale Höhenunterschied von Tochterbäumen eines Knotens ist durch l beschränkt l lässt sich als Maß für die Abweichung von einer ausgeglichenen Baumstruktur auffassen Offenbar ist jeder ausgeglichene Baum auch 1-balanciert Aber ist jeder 1-balancierte Baum ausgeglichen? Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
4 AVL-Baum nach russischen Mathematikern Adelson-Velski und Landis (196) Definition: Ein 1-balancierter binärer Suchbaum heißt AVL-Baum also: AVL-Kriterium h(b l (x)) h(b r (x)) 1 Konstruktionsprinzip: h+1 h+1 h+1 h 1 h h h h h 1 B l B r B l B r B l B r Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
5 Balancefaktor Definiere Balancefaktor BF(x) für Knoten x als BF(x) = h(b l (x)) h(b r (x)) Markieren der Knoten mit dieser Höhendifferenz der Tochterbäume, zb 6(+1) 6(+) 3(0) 7 3(-1) 7 4 4(-1) macht AVL-Kriterium deutlich ( BF(x) 1) 5 Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
6 Rebalancierung / Wartungsoperationen nach Einfügen Wann und wo kann das AVL-Kriterium beim Einfügen verletzt werden? Durch Einfügen kann sich nur der Balancefaktor von Knoten auf dem Pfad von der Wurzel des Baumes zum neuen Blatt verändern Höchstens h Knoten sind betroffen 6(+1) 6(+) 3(0) 7 3(+1) 7 4 (+1) 4 1 Reorganisation lässt sich lokal begrenzen Geeignete Operationen: Rotationen Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
7 Rotation A x y B C Rechtsrotation Linksrotation A x B y C Hier: x und y sind Knoten; A,B und C stehen für Teilbäume Warum erhält Rotation die Suchbaumeigenschaft? Wie verändert Rotation die Balancierung? Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
8 Beispiel: Einfügen und Einfachrotation AVL-Baum Einfügen von 1 Rechtsrotation 6(+1) 6(+) 3(0) 3(0) 7 3(+1) 7 (+1) 6(0) 4 (+1) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
9 Beispiel: Einfügen und Doppelrotation AVL-Baum Einfügen von 5 Linksrotation Rechtsrotation (+1) 6(+) 6(+) 4(0) 3(0) 7 3(-1) 7 4(+1) 7 3(+1) 6(0) 4 4(-1) 3(+1) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
10 Rebalancierung nach Einfügen eines Knotens i Test BF(y) für alle Knoten y auf Pfad von i bis zur Wurzel (in dieser Reihenfolge) Falls BF(y) +: Betrachte linken Tochterknoten y ( ) x von y Falls BF(x) 0 (dh h(a) h(b)), rotiere rechts um y Sonst Doppelrotation nötig: rotiere zuerst links um x, dann rechts um y x C Falls BF(y) : Betrachte rechten Tochterknoten x von y Falls BF(x) 0, rotiere links um y Sonst (BF(x) > 0), rotiere zuerst rechts um x, dann links um y Nach Einfügen eines Knotens ist maximal eine Einfach- oder Doppelrotation nötig Der reorganisierte Teilbaum hat danach dieselbe Höhe wie vorher, so dass das AVL-Kriterium für alle Knoten oberhalb wieder erfüllt ist A B Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
11 Löschen in AVL-Bäumen I Einfacher Fall: Löschen eines Blattes bzw eines Randknotens (also Löschen von Knoten mit max 1 Tochter) kann Balancierungsfaktoren von Vorgängern ändern - Rebalancierung an Vorgängerknoten mit BF = +/- wie bei Einfügen gegebenenfalls wiederholte Rebalancierung (nur auf dem Pfad zur Wurzel) Dies ist ein Unterschied zu Einfügen, denn Rebalancierung nach Löschen kann Höhe eines Teilbaums erniedrigen AVL-Baum Löschen von 1 Linksrotation 3(-1) 3(-) 6(0) (+1) 6(-1) 6(-1) 3(0) 7(0) 1 4 7(0) 4 7(0) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0 8 9
12 Löschen in AVL-Bäumen II Löschen eines Knotens x mit Töchtern wird auf Löschen für Blatt/Randknoten zurückgeführt: ersetze x durch kleinsten Schlüssel y im rechten Tochterbaum von x (oder wahlweise größten Schlüssel im linken); Beachte: die Suche nach y benötigt O(log n) Schritte Warum hat der Knoten mit Schlüssel y höchstens eine Tochter? Lösche ursprünglichen Knoten von y und rebalanciere wie zuvor Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
13 Höhe von AVL-Bäumen I Zur Erinnerung: Fibonacci-Zahlen F 0 = 0; F 1 = 1; F i = F i 1 + F i (i > 1) Behauptung: Für jeden AVL-Baum T der Höhe h gilt, T hat mindestens F h Knoten ( T F h ) Beweis durch vollständige Induktion (über Baumhöhe) Induktionsstart: h = 0 (leerer Baum), h = 1 (nur Wurzel) ok Induktionsschritt (h ) Sei T ein AVL-Baum der Höhe h; sei ausserdem T minimal Einer der Tochterbäume von T muss die Höhe h 1 haben Wegen Minimalität von T hat der andere Tochterbaum die kleinstmögliche Höhe; wegen AVL-Eigenschaft, also h Nach Induktionshypothese gilt, dass die Tochterbäume mindestens F h 1 und F h Knoten enthalten, daher gilt T F h 1 + F h + 1 F h Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
14 Höhe von AVL-Bäumen II Um die minimale Knotenzahl eines AVL-Baums der Höhe h abzuschätzen, schätzen wir also F h weiter ab Nach Binetscher Formel (vgl 1 Vorlesung) gilt F h = (A h B h )/ 5, wobei A = (1 + 5)/ und B = (1 5)/ Da B < 1, ist B h < 1 Wir können deshalb weiter abschätzen F h (A h 1)/ 5 Sei T ein AVL-Baum der Höhe h mit n Knoten Nun gilt n F h (A h 1)/ 5, also (nach h aufgelöst) h log ( 5n + 1) log A Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
15 Höhe von AVL-Bäumen III Aus ergibt sich h log ( 5n + 1) log A h < 144 log n Vergleich mit vollständigen Bäumen: 1 log A (log 5 + log n) (+kleine Konstante) h = log (n + 1) Resultat: Selbst im ungünstigsten Fall sind AVL-Bäume nur um Faktor 144 höher als vollständige Bäume mit derselben Knotenzahl! Was haben wir also erreicht? (Wie sieht der worst-case aus?) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
16 Fibonacci-Bäume Maximal unbalancierte AVL-Bäume Zu jedem h 0 gibt es genau einen Fibonacci-Baum B h mit Höhe h B 0 ist der leere Baum, B 1 ist ein einzelner Knoten für h ist der Fibonacci-Baum der Höhe h mit Wurzel x B h = BUILD(B h 1, x, B h ) B B 3 B 4 B 5 Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
17 Gewichtsbalancierte Suchbäume I Gewichtsbalancierte oder BB-Bäume (bounded balance) Zulässige Abweichung der Struktur vom ausgeglichenen Binärbaum wird über den Quotient zwischen der Anzahl der Knoten im linken Tochterbaum und dem gesamten Teilbaum beschränkt Definition: Sei B ein binärer Suchbaum mit n > 0 Knoten, von denen sich n l Knoten im linkem Tochterbaum B l befinden ρ(b) = n l +1 n+1 heißt die Wurzelbalance von B Ein Baum B heißt gewichtsbalanciert, BB(α), oder von beschränkter Balance α, wenn für jeden Tochterbaum B von B gilt: α ρ(b ) 1 α Nievergelt and Reingold (197), Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
18 Gewichtsbalancierte Suchbäume II Wahl des Parameters α: Wartung α = 1/: Balancierungskriterium akzeptiert nur vollständige Binärbäume α < 1/: Strukturbeschränkung wird zunehmend gelockert α = 0: keine Beschränkung der Baumstruktur Einsatz derselben Rotationstypen wie beim AVL-Baum Rebalancierung ist gewährleistet durch eine Wahl von 1 α 1 Kosten für Suche und Aktualisierung: O(log n) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
19 Positionssuche mit balancierten Bäumen I Balancierte Suchbäume sind linearen Listen in fast allen Grundoperationen überlegen Lösung des Auswahlproblems bzw Positionssuche (Suche nach k-tem Element der Sortierreihenfolge) kann jedoch noch verbessert werden Definition: Der Rang eines Knotens ist die um 1 erhöhte Anzahl der Knoten seines linken Tochterbaums (Blattknoten haben Rang 1) Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
20 Positionssuche mit balancierten Bäumen II Rangzahlen erlauben Bestimmung eines direkten Suchpfads im Baum für Positionssuche nach dem k-ten Element Position p := k; beginne Suche am Wurzelknoten Wenn Rang r eines Knotens = p, gilt: Element gefunden falls r > p: Suche im linken Tochterbaum des Knotens weiter falls r < p: Ersetze p := p - r und setze Suche im rechten Tochterbaum fort Die Wartungsoperationen erfordern etwas mehr Aufwand: Nach Einfügen / Löschen eines Knotens müssen die Rangwerte auf dem kompletten Suchpfad angepasst werden Uwe Quasthoff (ASV, Uni LE) ADS1, V9 1 Dezember / 0
Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06
Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Übung zur Vorlesung Algorithmische Geometrie
Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen
Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes
Balancierte Suchbäume
Foliensatz 10 Michael Brinkmeier echnische Universität Ilmenau Institut für heoretische Informatik Sommersemester 2009 U Ilmenau Seite 1 / 74 Balancierte Suchbäume U Ilmenau Seite 2 / 74 Balancierte Suchbäume
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Übung Algorithmen I
Übung Algorithmen I.6.5 Christoph Striecks [email protected] (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen
Copyright, Page 1 of 8 AVL-Baum
www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist
RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51
RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.
Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen
Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6
Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Suchbäume mit inneren Knoten verschiedener Knotengrade.
Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,
3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6
Kompaktübersicht Bäume Diese Übersicht entstand im Wintersemester 2003/04 parallel zur Vorlesung Grundzüge der Informatik III an der Technischen Universität Darmstadt (TUD) und soll die behandelten Aspekte
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2 Einführung Binäre Suchbäume Höhe h O(h) für Operationen
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen
6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang
12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem &
Algorithmen und Datenstrukturen Kapitel 7 Dynamische Mengen, das Suchproblem & Frank Heitmann [email protected] 25. November 2015 Frank Heitmann [email protected] 1/122
Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier
Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier [email protected] 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,
Grundlagen der Programmierung 2. Bäume
Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1
Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Wörterbucher. Das Wörterbuch 1 / 71
Wörterbucher Das Wörterbuch 1 / 71 Der abstrakte Datentyp Wörterbuch Ein Wörterbuch für eine gegebene Menge S besteht aus den folgenden Operationen: insert(x): Füge x zu S hinzu, d.h. setze S = S {x}.
BÄUME BALANCIERTE BÄUME. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm. 10. Kapitel (Teil 2)
10. Kapitel (Teil 2) BÄUME BALANCIERTE BÄUME Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Übersicht 1 1. Einführung 2. Algorithmen 3. EigenschaDen von Programmiersprachen 4. Algorithmenparadigmen
Teil XII. Datenstrukturen: Bäume, Stacks und Queues. Scientific Computing in Computer Science, Technische Universität München
Teil XII Datenstrukturen: Bäume, Stacks und Queues IN8008, Wintersemester 2011/2012 251 Stacks (Kellerspeicher/Stapel) Funktioniert wie ein natürlicher Stapel (z.b. Papierstapel auf dem Schreibtisch) Elemente
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda
Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen
2.5 Bäume 2.5.1 Binäre Suchbäume 2.5.2 Optimale Suchbäume 2.5.3 Balancierte Bäume 2.5.4 Skip-Listen 2.5.5 Union-Find-Strukturen 1 Balancierte Bäume Nachteil bei normalen Suchbäumen: Worst-case Aufwand
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
6-1 A. Schwill Grundlagen der Programmierung II SS 2005
6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen
Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen 3 1. Fall: zu löschendes Element ist Blatt: löschen 1 2 4 9 10 11 12 13 2. Fall: zu löschendes Element
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Amortisierte Analysen
Amortisierte Analysen 26. Mai 2016 1 Einleitung Es gibt viele Datenstrukturen, bei deren Komplexitätsanalyse das Problem auftaucht, dass die Ausführung mancher Operationen Einfluss auf die Komplexität
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write
B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Programmiertechnik II
2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität
Geometrische Algorithmen
Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung
Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter
UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:
Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder
Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen
Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)
Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien
Sortierte Folgen 250
Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte]
UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH 4056 Basel Assistenten Bernhard Egger Andreas Forster Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Vorlesung 4 BETWEENNESS CENTRALITY
Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/
Programmierung und Modellierung
Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:
Bäume, Suchbäume und Hash-Tabellen
Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche
