expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))

Größe: px
Ab Seite anzeigen:

Download "expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))"

Transkript

1 1 - Korrektur 2 - Abstrakte Datentypen für arithmetische Ausdrücke Der Datentyp Wir beginnen zunächst mit dem algebraischen Datentyp für Ausdrücke. Hierfür definieren wir einen Konstruktor Number für Zahlen, sowie je einen Konstruktor für die 4 Operationen: data Expr = Const Int Add Expr Expr Sub Expr Expr Mul Expr Expr Div Expr Expr deriving Show Eine konkreten Ausdruck wie beispielsweise (3 + 4) ((73 37)/6) können wir dann wie folgt definieren: expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6)) Das sieht jedoch relativ kompliziert aus (Scheme!?). Dies können wir lösen, indem wir nicht wie oben Präfixkonstruktoren, sondern stattdessen Infixkonstruktoren verwenden. Damit diese als solche erkannt werden können, müssen Infixkonstruktoren mit einem Doppelpunkt : beginnen und weitere Symbole enthalten. 1 data Exp 2 = Number Int 3 Exp :+: Exp 4 Exp :-: Exp 5 Exp :*: Exp 6 Exp :/: Exp 7 deriving Show Nun können wir den Ausdruck wie folgt notieren: 8 test :: Exp 9 test = (Number 3 :+: Number 4) :*: ((Number 73 :-: Number 37) :/: Number 6) Wir können optional auch noch Präzedenzen (Bindungsstärken) für die Konstruktoren festlegen um Klammern zu sparen: 10 infixl 6 :+:, :-: 11 infixl 7 :*:, :/: Dies definiert die 4 Konstruktoren wegen infixl als links-assoziativ, im Gegensatz zu infixr (rechtsassoziativ) und infix (nicht assoziativ), und die multiplikativen Operationen binden stärker. Damit kann der Ausdruck als 12 seven :: Exp 13 seven = Number 1 :+: Number 2 :*: Number 3 notiert werden. Auswertung Da Exp eine induktiv definierte Datenstruktur ist, versuchen wir zunächst für jeden Fall eine Gleichung anzugeben, und erhalten direkt die folgende Lösung: 1

2 14 eval :: Exp -> Int 15 eval (Number i) = i 16 eval (e1 :+: e2) = eval e1 + eval e2 17 eval (e1 :-: e2) = eval e1 - eval e2 18 eval (e1 :*: e2) = eval e1 * eval e2 19 eval (e1 :/: e2) = eval e1 `div` eval e2 Binärbäume Arithmetische Ausdrücke lassen sich gut als Termbäume darstellen, wobei an den Blättern Zahlen und an den Knoten die Operationen stehen. Wenn wir zunächst die 4 Konstruktoren für Operationen durch einen gemeinsamen Fall abdecken und anschließend die Beschriftungen (Zahlen und Operatornamen) durch Typvariablen ersetzen, erhalten wir schlussendlich eine Datenstruktur für Binärbäume mit prinzipiell unterschiedlichen Beschriftungen an den Blättern und den Knoten: 1. Gemeinsame Teile herausfaktorisieren: data Exp = Number Int Bin Op Exp Exp data Op = Add Sub Mul Div 2. Typen und Konstruktoren umbenennen: data Tree = Leaf Int Node Op Tree Tree data Op = Add Sub Mul Div 3. Beschriftungen verallgemeinern: data Tree a b = Leaf a Node b (Tree a b) (Tree a b) data Op = Add Sub Mul Div Somit lassen sich arithmetische Ausdrücke wie folgt darstellen: 20 data Tree a b = Leaf a Node b (Tree a b) (Tree a b) 21 deriving Show data Op = Add Sub Mul Div 24 deriving Show type Exp' = Tree Int Op Damit wir konkrete Ausdrücke einfacher konstruieren können, definieren wir uns die folgenden Hilfs(konstruktor)funktionen, auch Smartkonstruktoren genannt: 27 number :: Int -> Exp' 28 number = Leaf (.+.) :: Exp' -> Exp' -> Exp' 31 (.+.) = Node Add (.-.) :: Exp' -> Exp' -> Exp' 34 (.-.) = Node Sub (.*.) :: Exp' -> Exp' -> Exp' 37 (.*.) = Node Mul 38 2

3 39 (./.) :: Exp' -> Exp' -> Exp' 40 (./.) = Node Div Somit könnte unser Ausdruck test von oben wie folgt in der Baumstruktur definiert werden: 41 test' :: Exp' 42 test' = (number 3.+. number 4).*. ((number number 37)./. number 6) Auch für diese Funktionen könnte man wie oben noch Präzedenzen festlegen. Auswertung Die Auswertungsfunktion ergibt sich wie oben, allerdings müssen wir noch einem Wert des Typs Op die dazugehörige Funktion als Bedeutung (Semantik) zuordnen. Wir nennen diese Funktion sem: 43 sem :: Op -> Int -> Int -> Int 44 sem Add = (+) 45 sem Sub = (-) 46 sem Mul = (*) 47 sem Div = div Nun können wir die Auswertung wie folgt definieren: 48 eval' :: Exp' -> Int 49 eval' (Leaf n) = n 50 eval' (Node op l r) = sem op (eval' l) (eval' r) Darstellung Üblicherweise möchte man Ausdrücke aber nicht nur ausrechnen, sondern vielleicht auch noch schön formatiert ausgeben. Wir definieren uns hierzu eine Funktion pshow (kurz für pretty show ): 51 pshow :: Exp' -> String 52 pshow (Leaf n) = show n 53 pshow (Node op l r) = concat ["(", pshow l, showop op, pshow r, ")"] showop :: Op -> String 56 showop Add = "+" 57 showop Sub = "-" 58 showop Mul = "*" 59 showop Div = "/" Faltung Es fällt auf, dass die Funktionen eval' und pshow insofern gleichartig vorgehen, als dass für Blätter die jeweilige Beschriftung verarbeitet wird, während bei Knoten die Teilbäume zunächst rekursiv verarbeitet und dann mit der Knotenbeschriftung kombiniert werden. Dies entspricht genau dem Konzept einer Faltung auf Binärbäumen: 60 foldtree :: (a -> c) -> (b -> c -> c -> c) -> Tree a b -> c 61 foldtree f _ (Leaf x) = f x 62 foldtree f g (Node y l r) = g y (foldtree f g l) (foldtree f g r) Somiz können wir beide Funktionen auch mittels foldtree implementieren: 63 eval2 :: Exp' -> Int 64 eval2 = foldtree id sem pshow2 :: Exp' -> String 67 pshow2 = foldtree show (\op s1 s2 -> concat ["(", s1, showop op, s2, ")"]) Beliebigstellige Operationen Um Operationen mit beliebiger Stelligkeit darstellen zu können, reicht es aus die beiden Teilbäume eines Knotens durch eine Liste von Teilbäumen zu ersetzen: 3

4 68 data NTree a b = NLeaf a NNode b [NTree a b] 69 deriving Show Diese Bäume werden in der Literatur übrigens oft als rose trees, zu deutsch Rhododendron-Bäume, bezeichnet. 3 - Suchbäume Wir beginnen mit dem Datentyp eines Suchbaums: 1 data SearchTree = Empty Branch SearchTree Int SearchTree 2 deriving (Eq, Show) Die insert-funktion fügt ein Element nur ein wenn es noch nicht vorhanden ist. In dem Fall wird für das Element ein neues Blatt erzeugt und so in den Baum gehängt, dass es rechts von kleineren und links von größeren Elementen steht. 3 insert :: Int -> SearchTree -> SearchTree 4 insert x Empty = Branch Empty x Empty 5 insert x (Branch l n r) 6 x == n = Branch l n r 7 x < n = Branch (insert x l) n r 8 otherwise = Branch l n (insert x r) Die Funktion iselem nutzt die Ordnung des Baums, um die richtige Beschriftung zu finden: 9 iselem :: Int -> SearchTree -> Bool 10 iselem _ Empty = False 11 iselem x (Branch l n r) 12 x == n = True 13 x < n = iselem x l 14 otherwise = iselem x r Zum Löschen einer Beschriftung gibt es unterschiedliche Strategien. Knoten mit weniger als zwei nicht-leeren Teilbäumen können einfach gelöscht werden, aber andere Knoten nicht, da dann zwei nicht-leere Teilbäume zu einem einzigen kombiniert werden müssen. Eine einfache Möglichkeit ist, den linken Teilbaum ganz links im rechten einzufügen oder umgekehrt. Dadurch wird die Höhe des Baumes aber unnötig groß. Besser ist es, eine geeignete Beschriftung aus einem der Teilbäume zu löschen und diese an die frei gewordene Stelle zu schreiben. Man kann entweder die größte (rechteste) Beschriftung des linken oder die kleinste (linkeste) des rechten Teilbaumes an diese Stelle schreiben. Für letzteres benötigt man eine Funktion splitmin, die die kleinste Beschriftung eines sortierten Baumes und den Restbaum als Ergebnis liefert. Da Funktionen nur ein Ergebnis liefern können, liefern wir ein Paar aus beiden Teilen: 15 splitmin :: SearchTree -> (Int, SearchTree) 16 splitmin Empty = error "splitmin: empty search tree" 17 splitmin (Branch Empty n r) = (n, r) 18 splitmin (Branch l n r) = (m, Branch t n r) 19 where (m, t) = splitmin l Die splitmin Funktion ist partiell, da sie nur für nicht-leere Bäume definiert ist. Sie wird aber auch nur auf solchen aufgerufen. Mit ihrer Hilfe können wir delete implementieren. Da jede Beschriftung höchstens einmal im Baum vorkommt, genügt es, die erste gefundene zu entfernen. 20 delete :: Int -> SearchTree -> SearchTree 21 delete _ Empty = Empty 4

5 22 delete x (Branch Empty n r) 23 x == n = r 24 x < n = Branch Empty n r 25 otherwise = Branch Empty n (delete x r) 26 delete x (Branch l n Empty) 27 x == n = l 28 x < n = Branch (delete x l) n Empty 29 otherwise = Branch l n Empty 30 delete x (Branch l n r) 31 x == n = Branch l m t 32 x < n = Branch (delete x l) n r 33 otherwise = Branch l n (delete x r) 34 where (m, t) = splitmin r 4 - Polymorphe binäre Blatt-Bäume Der folgende Datentyp representiert Bäume mit Beschriftungen an Blättern. 1 data Tree a = Leaf a Tree a :&: Tree a 2 deriving (Eq,Show) Die flattree-funktion soll einen Baum von Bäumen zu einem einzigen Baum flach klopfen. Wir könnten sie rekursiv wie folgt definieren: 3 flattree' :: Tree (Tree a) -> Tree a 4 flattree' (Leaf x) = x 5 flattree' (s :&: t) = flattree s :&: flattree t Die interessante Regel ist die zweite, die den Leaf-Konstruktor der äußeren Baumstruktur löscht. Mit ein wenig Vorausschau können wir uns die Implementierung von flattree erleichtern. Wählen wir beim Typ von extendtree für die Typvariable a den konkreten Typ Tree b, dann ergibt sich genau der Typ von flattree. Aber nicht nur das, es ergibt sich auch die Implementierung: 6 flattree :: Tree (Tree a) -> Tree a 7 flattree = extendtree id Auch die maptree-funktion können wir entweder direkt oder mit Hilfe einer anderen Funktion implementieren. Hier die direkte Variante: 8 maptree' :: (a -> b) -> Tree a -> Tree b 9 maptree' f (Leaf x) = Leaf (f x) 10 maptree' f (s :&: t) = maptree f s :&: maptree f t Statdessen können wir auch wieder extendtree verwenden, indem wir die übergebene Funktion mit dem Leaf{.haskell}-Konstruktor kombinieren: 11 maptree :: (a -> b) -> Tree a -> Tree b 12 maptree f = extendtree (Leaf. f) Die Funktion extendtree können wir entweder direkt implementieren oder mit foldtree. Hier die direkte Implementierung: 13 extendtree' :: (a -> Tree b) -> Tree a -> Tree b 14 extendtree' f (Leaf x) = f x 15 extendtree' f (s :&: t) = extendtree' f s :&: extendtree' f t Und hier die Variante mit foldtree: 16 extendtree :: (a -> Tree b) -> Tree a -> Tree b 17 extendtree f = foldtree f (:&:) 5

6 Wenn wir die Implementierungen von flattree und maptree verwenden, die nicht auf extendtree basieren, können wir extendtree auch mit deren Hilfe definieren: 18 extendtree'' :: (a -> Tree b) -> Tree a -> Tree b 19 extendtree'' f = flattree'. maptree' f Die einzige Funktion, die wir direkt implementieren müssen, da wir sie nicht auf die anderen zurückführen können, ist foldtree. Sie bekommt für jeden Konstruktor des Tree-Datentyps ein Argument um diesen zu ersetzen: 20 foldtree :: (a -> b) -> (b -> b -> b) -> Tree a -> b 21 foldtree l _ (Leaf x) = l x 22 foldtree l f (s :&: t) = foldtree l f s `f` foldtree l f t 5 - Folds foldr (:) [] ist die Identitätsfunktion auf Listen. foldl (*) 1 [x1...xn] berechnet ((1*x1)*x2)...*xn, sprich das Produkt der Elemente der Liste. foldr (-) 1 [x1...xn] berechnet x1-(x2-...(xn-1)). foldl (-) 1 [x1...xn] berechnet ((1-x1)-x2)...-xn bzw. 1 - sum [x1...xn]. Die map Funktion erhält die Listenstruktur und bildet nur die Elemente auf neue ab. 9 mapr, mapl :: (a -> b) -> [a] -> [b] 10 mapr f = foldr ((:). f) [] Aber wie kommt man auf Ausdrücke wie (:). f? Indem man mit einer anonymen Funktion anfängt und diese systematisch umformt: 11 \x xs -> f x : xs 12 \x -> (f x :) 13 \x -> (:) (f x) 14 \x -> ((:). f) x 15 (:). f Funktionen ohne explizite Argumente nennt man übrigens punktfrei. Auch die map Funktion kann man mit foldl nur umständlich definieren, und das führt zur gleichen Verschlechterung der Laufzeit wie bei append: 16 mapl f = foldl (\xs x -> xs ++ [f x]) [] Die reverse-funktion hingegen implementiert man am besten mit foldl. Interessanterweise entspricht die Definition mit foldr genau der naiven (ineffizienten) Variante und die Definition mit foldl der effizienten Implementierung: 17 reverser, reversel :: Eq a => [a] -> [a] 18 reverser = foldr (\x xs -> xs ++ [x]) [] -- quadratisch 19 reversel = foldl (\xs x -> x : xs) -- linear reversel = foldl (flip (:)) [] Die zweite Definition nutzt das zweite Argument von foldl als Akkumulator, in dem die gegebene Liste umgedreht wird. unzip lässt sich recht leicht mit foldr implementieren, aber schwierig mit foldl: 20 unzipr, unzipl :: [(a, b)] -> ([a], [b]) 21 unzipr = foldr (\(a,b) (as,bs) -> (a : as, b : bs)) ([],[]) 22 unzipl = foldl (\(as,bs) (a,b) -> (as ++ [a], bs ++ [b])) ([],[]) 6

7 Die Variante mit foldr hat hier eine lineare Laufzeit bezogen auf die Listenlänge, die Variante mit foldl ist quadratisch. Bei nub verhält es sich ähnlich, wobei wegen des filter beide Implementierungen eine quadratische Laufzeit besitzen. 23 nubr, nubl :: Eq a => [a] -> [a] 24 nubr ys = foldr (\x xs -> x : filter (x/=) xs) [] ys 25 nubl ys = foldl (\xs x -> filter (x/=) xs ++ [x]) [] ys 7

Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I SS 2011 Funktionstypen Funktionen haben einen Datentyp, der folgende allgemeine Form hat: functionname :: T 1 -> T 2, wobei T 1, T 2 wiederum beliebige Datentypen sind Beispiel: T 1 T 2 Der Datentyp

Mehr

WS 2011/2012. Robert Giegerich Dezember 2013

WS 2011/2012. Robert Giegerich Dezember 2013 WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 robert@techfak.uni-bielefeld.de Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Funktionale Programmierung ALP I. Algebraische Datentypen und Abstrakte Datentypen. SS 2013 Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Algebraische Datentypen und Abstrakte Datentypen. SS 2013 Prof. Dr. Margarita Esponda. Prof. Dr. Funktionale Programmierung AP I Algebraische Datentypen und Abstrakte Datentypen SS 2013 Abstrakt Datentypen Beispiel: Algebraischen Datentypen für Bäume data SBTree = SBTree SBTree AP I: Margarita Esponda,

Mehr

WS 2012/2013. Robert Giegerich. 21. November 2012

WS 2012/2013. Robert Giegerich. 21. November 2012 WS 2012/2013 Robert AG Praktische Informatik 21. November 2012 Funktionen als Bürger erster Klasse Funktionen definieren kann man in jeder Programmiersprache. Eine funktionalen Programmiersprache erlaubt

Mehr

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung. Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur - Punkte: A1: 30, A2: 20, A3: 20, A4: 20, A5: 10, A6: 20 Punkte: /120 12.02.2012 Hinweis: Geben Sie bei allen

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

Paradigmen der Programmierung

Paradigmen der Programmierung SS 11 Prüfungsklausur 25.07.2011 Aufgabe 5 (6+9 = 15 Punkte) a) Bestimmen Sie jeweils den Typ der folgenden Haskell-Ausdrücke: ( 1, 2 :"3", 4 < 5) :: (Char, String, Bool) [(last, tail), (head, take 5)]

Mehr

Einführung in die funktionale Programmierung

Einführung in die funktionale Programmierung Einführung in die funktionale Programmierung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 26. Oktober 2006 Haskell - Einführung Syntax Typen Auswertung Programmierung

Mehr

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als Kapitel 4 Bäume 4.1 Bäume, Datenstrukturen und Algorithmen Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als eine Menge von Knoten und eine Menge von zugehörigen

Mehr

Einführung in die Informatik 2 9. Übung

Einführung in die Informatik 2 9. Übung Technische Universität München WS 2012/13 Institut für Informatik 11.11.2012 Prof. Tobias Nipkow, Ph.D. Abgabe: 18.12.2012, 15:30 Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Einführung in die

Mehr

Funktionale Programmierung und Typtheorie

Funktionale Programmierung und Typtheorie Funktionale Programmierung und Typtheorie 5. Fortgeschrittene Konzepte 5.1 Komprehensionen 5.2 Partielle Applikationen 5.3 Strikte und nichtstrikte Funktionen 5.4 Unendliche Datenstrukturen und verzögerte

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Programmierkurs II. Typsynonyme & algebraische Datentypen

Programmierkurs II. Typsynonyme & algebraische Datentypen Programmierkurs II Typsynonyme & algebraische Datentypen Um Dinge der realen Welt abzubilden, ist es nur in den seltensten Fällen komfortabel alles als Zahlen, Strings oder Listen zu kodieren. Wir benötigen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Wintersemester 2012/13 Lösungsblatt Endklausur 9. Februar 2013

Mehr

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Die Natur rekursiver Funktionen SS 2011 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen

Mehr

Workshop Einführung in die Sprache Haskell

Workshop Einführung in die Sprache Haskell Workshop Einführung in die Sprache Haskell Nils Rexin, Marcellus Siegburg und Alexander Bau Fakultät für Informatik, Mathematik und Naturwissenschaften Hochschule für Technik, Wirtschaft und Kultur Leipzig

Mehr

WS 2013/2014. Robert Giegerich. 11. Dezember 2013

WS 2013/2014. Robert Giegerich. 11. Dezember 2013 WS 2013/2014 Robert AG Praktische Informatik 11. Dezember 2013 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man höherer Ordnung.

Mehr

WS 2013/2014. Robert Giegerich. 11. Dezember 2013

WS 2013/2014. Robert Giegerich. 11. Dezember 2013 WS 2013/2014 Robert AG Praktische Informatik 11. Dezember 2013 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man höherer Ordnung.

Mehr

Informatik-Seminar Thema 6: Bäume

Informatik-Seminar Thema 6: Bäume Informatik-Seminar 2003 - Thema 6: Bäume Robin Brandt 14. November 2003 1 Robin Brandt Informatik-Seminar 2003 - Thema 6: Bäume Übersicht Definition Eigenschaften Operationen Idee Beispiel Datendefinition

Mehr

Einführung in Haskell

Einführung in Haskell Einführung in Haskell Axel Stronzik 21. April 2008 1 / 43 Inhaltsverzeichnis 1 Allgemeines 2 / 43 Inhaltsverzeichnis 1 Allgemeines 2 Funktions- und Typdefinitionen 2 / 43 Inhaltsverzeichnis 1 Allgemeines

Mehr

Die Definition eines Typen kann rekursiv sein, d.h. Typ-Konstruktoren dürfen Elemente des zu definierenden Typ erhalten.

Die Definition eines Typen kann rekursiv sein, d.h. Typ-Konstruktoren dürfen Elemente des zu definierenden Typ erhalten. 4.5.5 Rekursive Typen Die Definition eines Typen kann rekursiv sein, d.h. Typ-Konstruktoren dürfen Elemente des zu definierenden Typ erhalten. datatype IntList = Nil Cons o f ( i n t IntList ) ; Damit

Mehr

Programmieren in Haskell Das Haskell Typsystem

Programmieren in Haskell Das Haskell Typsystem Programmieren in Haskell Das Haskell Typsystem Peter Steffen Robert Giegerich Universität Bielefeld Technische Fakultät 22.01.2010 1 Programmieren in Haskell Belauscht... Lisa Lista: Ohne Typen keine korrekten

Mehr

Programmieren in Haskell Einstieg in Haskell

Programmieren in Haskell Einstieg in Haskell Programmieren in Haskell Einstieg in Haskell Peter Steffen Universität Bielefeld Technische Fakultät 24.10.2008 1 Programmieren in Haskell Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für diese Woche Programmieren

Mehr

9 Algebraische Datentypen

9 Algebraische Datentypen 9 Algebraische Datentypen Dieses Kapitel erweitert Haskells Typsystem, das neben Basistypen (Integer, Float, Char, Bool,... ) und Typkonstruktoren ([ ] und ( )) auch algebraische Datentypen kennt. Ganz

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition. 1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 13. November 2015 13. November 2015 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume

Mehr

Gliederung. Algorithmen und Datenstrukturen I. Binäre Bäume: ADT Heap. inäre Bäume: ADT Heap. Abstrakte Datentypen IV. D. Rösner

Gliederung. Algorithmen und Datenstrukturen I. Binäre Bäume: ADT Heap. inäre Bäume: ADT Heap. Abstrakte Datentypen IV. D. Rösner Gliederung Algorithmen und Datenstrukturen I Abstrakte Datentypen IV D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Winter 2009/10,

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für s Wochenende Programmieren

Mehr

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil III SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung. ALP I Lambda-Kalkül. Teil III SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I Lambda-Kalkül Teil III SS 2011 Parser Hilfsfunktionen: Die break-funktion ist eine Funktion Höherer Ordnung, die eine Liste beim ersten Vorkommen einer Bedingung in zwei Listen spaltet. break ::

Mehr

Funktionen höherer Ordnung. 3. Dezember 2014

Funktionen höherer Ordnung. 3. Dezember 2014 höherer Ordnung Universität Bielefeld AG Praktische Informatik 3. Dezember 2014 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man

Mehr

Frage, Fragen und nochmals Fragen

Frage, Fragen und nochmals Fragen Frage, Fragen und nochmals Fragen Berthold Hoffmann Universität Bremen and DFKI Bremen hof@informatik.uni-bremen.de In diesem Text stehen einige Fragen, die man sich zu den Folien der Veranstaltung Funktionales

Mehr

Programmieren in Haskell Abstrakte Datentypen

Programmieren in Haskell Abstrakte Datentypen Programmieren in Haskell Abstrakte Datentypen Peter Steffen Universität Bielefeld Technische Fakultät 09.01.2009 1 Programmieren in Haskell Einführung Man unterscheidet zwei Arten von Datentypen: konkrete

Mehr

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen, Bäume)

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen, Bäume) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 15 (Linearer Speicher, Listen,

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom : Typvariablen und Polymorphie

Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom : Typvariablen und Polymorphie Rev. 2749 1 [28] Praktische Informatik 3: Funktionale Programmierung Vorlesung 4 vom 04.11.2014: Typvariablen und Polymorphie Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [28] Fahrplan Teil

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I 16:02:05 2017-01-17 1 [38] Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 15.11.2016: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester 2016/17 PI3 WS 16/17

Mehr

ProInformatik: Funktionale Programmierung. Punkte

ProInformatik: Funktionale Programmierung. Punkte ProInformatik: Funktionale Programmierung 27.7-22.8.2008, M. Knobelsdorf Probeklausur Ihre persönliche Klausurnummer: Vorname, Nachname: Aufgabe 1 2 3 4 5 6 7 8 Punkte 12 4 4 4 4 2 4 6 40 Erz. Punkte Zum

Mehr

Grundlagen der Programmierung 3 A

Grundlagen der Programmierung 3 A Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Haskell, Typen, und Typberechnung Ziele: Haskells Typisierung Typisierungs-Regeln

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Manuel Eberl, Lars Hupel, Lars Noschinski Wintersemester 2014/15 Lösungsblatt Endklausur 13. Februar 2015 Einführung in

Mehr

Typ-Polymorphismus. November 12, 2014

Typ-Polymorphismus. November 12, 2014 Typ-Polymorphismus Universität Bielefeld AG Praktische Informatik November 12, 2014 Das Haskell Typ-System Wir beginnen mit einer Wiederholung des Bekannten: In allen Programmiersprachen sind Typ-Konzepte

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Benutzerdefinierte Datentypen Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 1. Aufzählungstypen 2. Typen mit zusammengesetzten

Mehr

Grundlagen der Programmierung 3 A

Grundlagen der Programmierung 3 A Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2016 Haskell, Typen, und Typberechnung Ziele: Haskells Typisierung Typisierungs-Regeln

Mehr

Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Einige andere Programmiersprachen. Typisierung in Haskell

Haskell, Typen, und Typberechnung. Grundlagen der Programmierung 3 A. Einige andere Programmiersprachen. Typisierung in Haskell Haskell, Typen, und Typberechnung Grundlagen der Programmierung 3 A Typen, Typberechnung und Typcheck Prof. Dr. Manfred Schmidt-Schauß Ziele: Haskells Typisierung Typisierungs-Regeln Typ-Berechnung Milners

Mehr

Abstrakte Datentypen II

Abstrakte Datentypen II 7 Abstrakte Datentypen II Nachdem wir im letzten Kapitel die grundlegenden Eigenschaften abstrakter Datentypen beschrieben haben und dabei eher einfache Beispiele betrachtet haben, soll es in diesem Kapitel

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Prüfung Funktionale Programmierung

Prüfung Funktionale Programmierung Hochschule für angewandte Wissenschaften München Fakultät für Informatik und Mathematik Studiengruppe IF, IB, IC Sommersemester 2015 Prüfung Funktionale Programmierung Datum : 23.07.2015, 10:30 Uhr Bearbeitungszeit

Mehr

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition. 1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 17. November 2017 17. November 2017 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume

Mehr

13 Abstrakte Datentypen

13 Abstrakte Datentypen 13 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen auf den Elementen (Konstruktoren, Selektoren, Typprädikate) Eigenschaften abgeleitet Jetzt: Abstrakte Datentypen (ADT)

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 10.01.2012 Ziele

Mehr

Grundlagen der Programmierung 2 B

Grundlagen der Programmierung 2 B Grundlagen der Programmierung 2 B Haskell: Listen-Komprehensionen Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Listenausdrücke, Listen-Komprehensionen Analog zu Mengenausdrücken, aber Reihenfolge

Mehr

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure 7. Dynamische Datenstrukturen Bäume Informatik II für Verkehrsingenieure Übersicht dynamische Datenstrukturen Wozu? Oft weiß man nicht von Beginn an, wieviele Elemente in einer Datenstruktur untergebracht

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

2.2.1 Algebraische Spezifikation (Fortsetzung)

2.2.1 Algebraische Spezifikation (Fortsetzung) 2.2.1 Algebraische Spezifikation (Fortsetzung) Algebraische Spezifikation: Mengen Types Set, Bool, t Signature > creates :: Eq t => Set t > isempty :: Eq t => Set t -> Bool > insert :: Eq t => t -> Set

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

2.3 Spezifikation von Abstrakten Datentypen

2.3 Spezifikation von Abstrakten Datentypen Abstrakte Datentypen (ADT) 2.3 Spezifikation von Abstrakten Datentypen Sichtbare Schnittstelle: Typbezeichner Signaturen der Operationen Spezifikation der Operationen Abstraktionsbarriere Implementierung

Mehr

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 13 (Queues, Binary Search)

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 13 (Queues, Binary Search) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 13 (Queues, Binary Search)

Mehr

Grundlagen der Programmierung 2 (2.B)

Grundlagen der Programmierung 2 (2.B) Grundlagen der Programmierung 2 (2.B) Prof. Dr. Manfred Schmidt-Schauß Künstliche Intelligenz und Softwaretechnologie 5. Mai 2010 Listenausdrücke, Listen-Komprehensionen; (list comprehensions) Analog zu

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Typ-Klassen und SS 2011 Überladung von Datentypen Funktionen sollen oft auf verschiedene Datentypen anwendbar sein, aber nicht auf beliebige Datentypen. Beispiel: Die (+)

Mehr

Programmieren in Haskell. Abstrakte Datentypen

Programmieren in Haskell. Abstrakte Datentypen Programmieren in Haskell Abstrakte Datentypen Einführung Man unterscheidet zwei Arten von Datentypen: konkrete Datentypen: beziehen sich auf eine konkrete Repräsentation in der Sprache. Beispiele: Listen,

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I Rev. 2766 1 [33] Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [33] Fahrplan Teil

Mehr

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float).

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). Haskell Funktionen Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). circlearea :: Float -> Float circlearea radius = 2 * pi * radius^2 Definieren

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 6 vom : Funktionen Höherer Ordnung II und Effizienzaspekte

Praktische Informatik 3: Funktionale Programmierung Vorlesung 6 vom : Funktionen Höherer Ordnung II und Effizienzaspekte 16:02:08 2017-01-17 1 [34] Praktische Informatik 3: Funktionale Programmierung Vorlesung 6 vom 22.11.2016: Funktionen Höherer Ordnung II und Effizienzaspekte Christoph Lüth Universität Bremen Wintersemester

Mehr

WS 2011/2012. Robert Giegerich. October 30, 2013

WS 2011/2012. Robert Giegerich. October 30, 2013 WS 2011/2012 Robert AG Praktische Informatik October 30, 2013 Algebraische Datentypen Neue Datentypen werden als algebraische Datentypen eingeführt. Werte des Datentyps sind Formeln, die aus Konstruktoren

Mehr

Bemerkung: Heapsort. Begriffsklärung: (zu Bäumen) Begriffsklärung: (zu Bäumen) (2) Heapsort verfeinert die Idee des Sortierens durch Auswahl:

Bemerkung: Heapsort. Begriffsklärung: (zu Bäumen) Begriffsklärung: (zu Bäumen) (2) Heapsort verfeinert die Idee des Sortierens durch Auswahl: Heapsort Bemerkung: Heapsort verfeinert die Idee des Sortierens durch Auswahl: Minimum bzw. Maximum wird nicht durch lineare Suche gefunden, sondern mit logarithmischem Aufwand durch Verwendung einer besonderen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel, Lars Noschinski, Dr. Jasmin Blanchette Wintersemester 2013/14 Abschlussklausur 21. Februar 2014 Einführung

Mehr

Programmierung WS18/19 Übungsblatt 9 (Abgabe Freitag, den um 12 Uhr)

Programmierung WS18/19 Übungsblatt 9 (Abgabe Freitag, den um 12 Uhr) Prof. aa Dr. J. Giesl S. Dollase, M. Hark, D. Korzeniewski Aufgabe 2 (Datenstrukturen in Haskell): (2 + 1 + 2 + 2.5 + 3.5 = 11 Punkte) In dieser Aufgabe geht es darum, arithmetische Ausdrücke auszuwerten.

Mehr

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül HASKELL KAPITEL 2.1 Notationen: Currying und das Lambda-Kalkül Bisheriges (Ende VL-Teil 1) weite :: (Float,Float) ->Float weite (v0, phi) = (square(v0)/9.81) * sin(2 * phi) (10, 30 ) smaller ::(Integer,

Mehr

3. Funktionales Programmieren 3.2 Algorithmen auf Listen und Bäumen. Heapsort verfeinert die Idee des Sortierens durch Auswahl:

3. Funktionales Programmieren 3.2 Algorithmen auf Listen und Bäumen. Heapsort verfeinert die Idee des Sortierens durch Auswahl: Heapsort 3. Funktionales Programmieren 3.2 Algorithmen auf Listen und Bäumen Heapsort verfeinert die Idee des Sortierens durch Auswahl: Minimum bzw. Maximum wird nicht durch lineare Suche gefunden, sondern

Mehr

Klausur Programmierung WS 2002/03

Klausur Programmierung WS 2002/03 Klausur Programmierung WS 2002/03 Prof. Dr. Gert Smolka, Dipl. Inf. Thorsten Brunklaus 14. Dezember 2002 Leo Schlau 45 Vor- und Nachname Sitz-Nr. 4711 007 Matrikelnummer Code Bitte öffnen Sie das Klausurheft

Mehr

Funktionale Programmierung

Funktionale Programmierung Grundlagen der funktionalen Programmierung II LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 7. Mai 2009 Aus Grundlagen I Terminänderung: Vorlesung am Mo

Mehr

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen.

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen. Universität Bielefeld AG Praktische Informatik 5. Januar 2015 Themen-Vorschau Module In der Software-Entwicklung unterscheidet zwei Arten von : konkrete beziehen sich auf eine konkrete Repräsentation in

Mehr

Binärbäume: Beispiel

Binärbäume: Beispiel Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des

Mehr

Alexander Nutz. 3. Dezember 2007

Alexander Nutz. 3. Dezember 2007 3. Dezember 2007 1 / 21 Aufgabe: die zeit- und platzeziente Implementierung von abstrakten Datentypen, z.b. eines Wörterbuches oder einer Zahlenmenge, für Programme bekannte : Listen,, Heaps,, Stacks,...

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 11.11.011 Ziele

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Die Definition wichtiger Begriffe im Zusammenhand mit Bäumen zu kennen. Markierte Bäumen, insbesondere Suchbäume,

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Grundlagen der Programmierung 2 (2.B)

Grundlagen der Programmierung 2 (2.B) Grundlagen der Programmierung 2 (2.B) Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 11. Juni 2008 Reduktionsregel zum case case-reduktion (case (c t 1... t n ) of... (c

Mehr

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel Algorithmen und Datenstrukturen Bäume M. Herpers, Y. Jung, P. Klingebiel 1 Lernziele Baumstrukturen und Ihre Verwendung kennen Grundbegriffe zu Bäumen anwenden können Baumstruktur in C anlegen können Suchbäume

Mehr

Einführung in die Informatik 2 6. Übung

Einführung in die Informatik 2 6. Übung Technische Universität München WS 2012/13 Institut für Informatik 20.11.2012 Prof. Tobias Nipkow, Ph.D. Abgabe: 27.11.2012, 15:30 Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Einführung in die

Mehr

Einführung in die Informatik 2 8. Übung

Einführung in die Informatik 2 8. Übung Technische Universität München WS 2013/14 Institut für Informatik 03.11.2012 Prof. Tobias Nipkow, Ph.D. Abgabe: 10.12.2012, 15:30 Lars Noschinski, Lars Hupel, Dr. Jasmin Blanchette Einführung in die Informatik

Mehr

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1

Kapitel 3: Eine einfache Programmiersprache. Programmieren in Haskell 1 Kapitel 3: Eine einfache Programmiersprache Programmieren in Haskell 1 Datentypen, Datentypdefinitionen data Instrument = Oboe HonkyTonkPiano Cello VoiceAahs data Musik = Note Ton Dauer Pause Dauer Musik

Mehr

10 Abstrakte Datentypen

10 Abstrakte Datentypen 10 Abstrakte Datentypen abstrakte Datentypen generische Implementierung datengesteuerte Programmierung Operationstabelle 10.1 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen

Mehr

13 Berechenbarkeit und Aufwandsabschätzung

13 Berechenbarkeit und Aufwandsabschätzung 13 Berechenbarkeit und Aufwandsabschätzung 13.1 Berechenbarkeit Frage: Gibt es für jede Funktion, die mathematisch spezifiziert werden kann, ein Programm, das diese Funktion berechnet? Antwort: Nein! [Turing

Mehr

Fahrplan. Inhalt. Ähnliche Funktionen der letzten Vorlesung. Muster der primitiven Rekursion. Ähnliche Funktionen der letzten Vorlesung

Fahrplan. Inhalt. Ähnliche Funktionen der letzten Vorlesung. Muster der primitiven Rekursion. Ähnliche Funktionen der letzten Vorlesung Fahrplan Teil I: Funktionale Programmierung im Kleinen Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester

Mehr

Geheimnisprinzip: (information hiding principle, Parnas 1972)

Geheimnisprinzip: (information hiding principle, Parnas 1972) 2. Abstrakte Datentypen 2.0 Begriffe Geheimnisprinzip: (information hiding principle, Parnas 1972) Zugriffe auf Teile einer Programmeinheit, die für die reguläre Benutzung nicht erforderlich sind, sollten

Mehr

Einführung in die Programmierung (EPR)

Einführung in die Programmierung (EPR) Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Einführung in die Programmierung (EPR) (Übung, Wintersemester 2014/2015) Dr. S. Reiter, M. Rupp, Dr. A. Vogel, Dr. K.

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Tutoraufgabe 1 (Implementierung eines ADTs):

Tutoraufgabe 1 (Implementierung eines ADTs): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung (Abgabe.05.0) F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Implementierung eines ADTs): Wir spezifizieren den ADT

Mehr

Kapitel 7: Benutzerdefinierte Datentypen

Kapitel 7: Benutzerdefinierte Datentypen Kapitel 7: Benutzerdefinierte Datentypen Andreas Abel LFE Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München 10. Juni 2011 Quelle: Martin Wirsing, Benutzerdefinierte

Mehr

Tutoraufgabe 1 (Auswertungsstrategie):

Tutoraufgabe 1 (Auswertungsstrategie): Prof. aa Dr. M. Müller C. Aschermann, J. Hensel, J. Protze, P. Reble Allgemeine ˆ Die Hausaufgaben sollen in Gruppen von je 3 Studierenden aus der gleichen Kleingruppenübung (Tutorium) bearbeitet werden.

Mehr

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 11 (Parser II)

Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 11 (Parser II) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2015/16) Wiederholungstutorium Lösungsblatt 11 (Parser II) Hinweis: Dieses

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Funktionen höherer Ordnung Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 6 Funktionen höherer Ordnung 1. Funktionen als Parameter und Wert von

Mehr