Binärbäume: Beispiel
|
|
|
- Walter Hafner
- vor 8 Jahren
- Abrufe
Transkript
1 Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des Binärbaums) mit einem Inhalt (der Beschriftung) und zwei (möglicherweise leeren) Binärbäumen: dem rechten Sohn und dem linken Sohn Die Beschriftung (die im Baum gespeicherten Werte) ist beliebig wir werden im Beispiel (wie schon im Listenbeispiel) einen int-wert verwenden -1-
2 Binärbäume: Beispiel Leere Binärbäume sind hier durch einen Pfeil in's Nichts angedeutet (später werde ich sie einfach weglassen) Die Beschriftungen brauchen (noch) keinen Regeln zu folgen Tiefe eines Knotens: Abstand von der Wurzel (des Gesamtbaums, hier '8') plus 1: '8' hat Tiefe 1, '10' hat Tiefe 5 Tiefe des Baums: maximale Tiefe eines Knotens (hier: 5) -2-
3 Realisierung in C Die Realisierung in C sieht ganz ähnlich aus wie bei den Listen, nur dass es statt eines Nachfolgers jetzt zwei Söhne gibt: struct knoten { // Beschriftung int x; // Linker und rechter Sohn struct knoten *l, *r; }; Ein Baum wird nun repräsentiert durch einen Zeiger auf seine Wurzel oder den Nullzeiger Wer mag, kann sich einen Typnamen definieren: typedef struct knoten *baum; -3-
4 -4- Baumwachstum Das Anlegen eines neuen Baums hat als Parameter die Wurzelbeschriftung sowie die beiden Söhne: // Neuer Binärbaum mit Beschriftung xneu, // und Söhnen links und rechts struct knoten *neu(int xneu, struct knoten *links, struct knoten *rechts) { struct knoten *b = new struct knoten; b->x = xneu; b->l = links; b->r = rechts; return b; }
5 Ein Beispielbaum Geschachtelte Aufrufe von neu sind nun schon bei kleinen Bäumen etwas unübersichtlich: 2 struct knoten *b; b = neu(2, 1 3 neu(1, NULL, NULL), neu(3, NULL, NULL)); x l 2 Vielleicht doch lieber mit Hilfsvariablen: r struct knoten *b1, *b2, *b; b1 = neu(1, NULL, NULL); b2 = neu(3, NULL, NULL); b = neu(2, b1, b2); x l r x l r 1 NULL NULL 3 NULL NULL -5-
6 Baum ausdrucken Auch das Ausdrucken des Baums entsteht schnell aus dem Listendrucken (eine passende Funktion zum Einrücken einer Druckzeile sei hier vorausgesetzt): void drucke(struct knoten *b, int tiefe) { if (b) { einruecken(tiefe); std::cout << "Beschriftung: " << b->x << '\n'; einruecken(tiefe); std::cout << "Linker Sohn:\n"; drucke(b->l, tiefe+1); einruecken(tiefe); std::cout << "Rechter Sohn:\n"; drucke(b->r, tiefe+1); } -6-
7 Suchbäume Binärbäume kann man verwenden, um Ordnung zu halten, d.h., Dinge so abzulegen, dass wir sie leicht wiederfinden Das geht z.b. mittels Suchbäumen. Ein Suchbaum ist ein Binärbaum, bei dem für jeden Knoten gilt: Alle Knotenbeschriftungen des linken Sohns (des Baums, nicht nur des Knotens!) sind kleiner oder gleich der Wurzelbeschriftung Alle Knotenbeschriftungen des rechten Sohns sind größer oder gleich der Wurzelbeschriftung Insbesondere ist der leere Baum ein Suchbaum Ein größeres Beispiel für einen Suchbaum findet man auf Folie 3-7-
8 Finden im Suchbaum Für die Suche nach einem Wert ist praktisch, dass wir mit einem Vergleich mindestens einen der beiden Söhne mit allen seinen Nachkommen ausschließen können Diese Funktion gibt einen Zeiger auf einen Baumknoten mit Beschriftung y zurück (NULL, wenn's keinen gibt): struct knoten *finde(struct knoten *b, int y) { if (b) { if (y<b->x) return finde(b->l, y); else if (y>b->x) return finde(b->r, y); else return b; // gefunden } else return NULL; // leerer Baum } Vorausgesetzt ist, dass b auch wirklich ein Suchbaum ist -8-
9 Test, ob Suchbaum Wer seinen Bäumen nicht traut, kann auch nachsehen, ob es sich um einen Suchbaum mit Einträgen im Bereich min..max handelt: bool istsuchbaum(struct knoten *b, int min, int max) { if (b) { // std::cout << "Inhalt: " << b->x // << " min: " << min // << " max: " << max << '\n'; if (b->x < min b->x > max) return false; else return istsuchbaum(b->l, min, b->x) && istsuchbaum(b->r, b->x, max); } else return true; // leerer Baum } -9-
10 In Suchbaum einfügen Wenn wir ein neues Element in unsern Suchbaum einfügen wollen, müssen wir die richtige Stelle finden: struct knoten *einfuegen(struct knoten *b, int xneu) { if (b) { if (xneu < b->x) b->l = einfuegen(b->l, xneu); else b->r = einfuegen(b->r, xneu); return b; } else { return neu(xneu, NULL, NULL); } } Ergebnis ist der vergrößerte Suchbaum -10-
11 -11- Suchbaum aufbauen Die Funktion kann man z.b. so nutzen: struct knoten *b = NULL; b = einfuegen(b, 3); b = einfuegen(b, 1); b = einfuegen(b, 2); b = einfuegen(b, 4); b = einfuegen(b, 8); drucke(b, 1); Beim Aufbau des Suchbaums entstehen je nach Reihenfolge des Einfügens ganz unterschiedliche Bäume
12 In Suchbaum einfügen (2) Vielleicht habe wir lieber eine Variante, bei der der Baum ein Variablenparameter ist: void einfuegen2(struct knoten **bp, int xneu) { struct knoten *b; b = *bp; if (b) { if (xneu < b->x) einfuegen2(&(b->l), xneu); else einfuegen2(&(b->r), xneu); } else { *bp = neu(xneu, NULL, NULL); } } -12-
13 -13- Suchbaum aufbauen (2) Die neue Funktion kann man z.b. so nutzen: struct knoten *b = NULL; einfuegen2(&b, 3); einfuegen2(&b, 1); einfuegen2(&b, 2); einfuegen2(&b, 4); einfuegen2(&b, 8); drucke(b, 1); Für das Verständnis dieser Funktion ist wesentlich, dass wir hier eine Zeigervariable als Variablenparameter haben das erklärt die Deklaration struct knoten **bp
14 -14- Aus dem Suchbaum löschen (1) Das Löschen eines Knotens im Suchbaums ist schon schwieriger man muss darauf achten, dass die Suchbaumeigenschaft erhalten bleibt, auch wenn wir einen Knoten mitten aus dem Baum entfernen Das mit allen Sonderfällen richtig ausprogrammiert gibt schon ein verhältnismäßig unübersichtliches Programm; deshalb sei hier nur das Prinzip erklärt Unproblematisch sind die Fälle, in denen wenigstens einer der Söhne leer ist in diesem Fall kann der andere Sohn den (gelöschten) Vater ersetzen Wenn keiner der Söhne leer ist, sucht man (vom zu löschenden Knoten ausgehend) den mit der nächstgrößeren Beschriftung (ein Schritt nach rechts, dann so viele Schritte nach links wie möglich)
15 Aus dem Suchbaum löschen (2) Dann löscht man den so gefundenen Knoten und deponiert seine Beschriftung in dem Knoten, den man ursprünglich löschen sollte (Man darf natürlich auch symmetrisch dazu die nächstkleinere Beschriftung suchen) Als Parameter bekommt die Funktion am besten einen Baum als Variablenparameter ( Lösche die Wurzel dieses Baums ), also wieder struct knoten **bp Wenn man es ausprogrammiert: es ist ohne weiteres erlaubt, einen Zeiger auf eine Strukturkomponente zu bilden (das sind Lvalues!), z.b. &((*bp)->r) wie schon beim Einfügen mit Variablenparameter -15-
16 Suchbäume: Effizienz Die typischen Operationen auf Suchbäumen (Einfügen, Suchen, Löschen) brauchen im schlimmste Fall größenordnungsmäßig so viele Operationen wie die Tiefe des Baums (Maximaler Abstand eines Knotens von der Wurzel plus 1) Ein Baum der Tiefe t hat minimal t, maximal 2 t -1 Knoten, ein Baum mit n Knoten also minimal Tiefe log 2 (n+1) und maximal Tiefe n Für die Effizienz unseres Verfahrens ist es daher entscheidend, dass unsere Bäume schön üppig bleiben (kleine Tiefe bei vielen Knoten) es gibt Verfahren, um das durch passendes Umordnen des Baums sicherzustellen (z.b. AVL-Bäume) -16-
17 Bäume Eine zu Binärbäumen verwandte Datenstruktur sind Bäume. Die haben eine verschränkt-rekursive Definition: Ein Wald ist eine Menge von Bäumen Ein Baum besteht aus einer Wurzel (mit Beschriftung) und einem Wald von Unterbäumen, den Söhnen Sieht zuerst nach einer Verallgemeinerung der Binärbäume aus (beliebig viele Söhne) Bei Binärbäumen können wir aber linken und rechten Sohn unterscheiden (insbesondere, wenn genau einer der beiden leer ist),was in einer Menge nicht geht Noch was: es gibt einen leeren Binärbaum, aber keinen leeren Baum -17-
18 -18- Datenstruktur für Bäume Problem bei der Implementierung: Mengen sind heikler zu implementieren als Listen, daher unterstellen wir unsern Wäldern ab jetzt eine Anordnung ihrer Bäume ( Sohn Nummer 1 bis Sohn Nummer n ) Ein Strukturtyp für Bäume könnte dann enthalten die Beschriftung die Söhne, d.h., einen Zeiger auf das erste Element der Sohnliste und noch einen Zeiger auf den nächsten Bruder (unser Baum ist ja Element einer verketteten Liste)
19 -19- Bäume und Binärbäume Als C-Datenstruktur aufgeschrieben sehen wir, dass die gleiche Datenstruktur rauskommt wie für unsere Binärbäume! Wir können also unsere Binärbäume auch verwenden, um Bäume zu speichern Die Verwandtschaftsbeziehungen in dem Binärbaum sind dabei aber völlig andere als die im dargestellten Baum Mit Ausnahme des leeren Binärbaums gehört übrigens zu jedem Binärbaum auch ein auf diese Weise dargestellter Baum
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr
Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1
Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
Praxis der Programmierung
Dynamische Datentypen Institut für Informatik und Computational Science Universität Potsdam Henning Bordihn Einige Folien gehen auf A. Terzibaschian zurück. 1 Dynamische Datentypen 2 Dynamische Datentypen
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen
Mehrwegbäume Motivation
Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung
Informatik Abitur Bayern 2017 / II - Lösung
Informatik Abitur Bayern 2017 / II - Lösung Autoren: Wolf (1) Wagner (2) Scharnagl (3-5) 1a 5 1b Diese Methode vergleicht den Namen des Interpreten eines jeden Elements der Liste mit dem gegebenen Namen.
Kapitel 12: Induktive
Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
Algorithmen und Datenstrukturen I Bruder-Bäume
Algorithmen und Datenstrukturen I Bruder-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 11.12.2017 10:50 Algorithmen und Datenstrukturen I, Bruder-Bäume 1/24 Definition ein binärer Baum heißt ein Bruder-Baum,
Verkettete Datenstrukturen: Bäume
Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Einführung in die Programmierung II. 5. Zeiger
Einführung in die Programmierung II 5. Zeiger Thomas Huckle, Stefan Zimmer 16. 5. 2007-1- Bezüge als Objekte Bisher kennen wir als Bezüge (Lvalues) nur Variablennamen Jetzt kommt eine neue Sorte dazu,
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
7. Sortieren Lernziele. 7. Sortieren
7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche
Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.
Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten
! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -
! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck
Programmieren in C. Rekursive Strukturen. Prof. Dr. Nikolaus Wulff
Programmieren in C Rekursive Strukturen Prof. Dr. Nikolaus Wulff Rekursive Strukturen Häufig müssen effizient Mengen von Daten oder Objekten im Speicher verwaltet werden. Meist werden für diese Mengen
Motivation Binäre Suchbäume
Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in
Geordnete Binärbäume
Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (21 - Balancierte Bäume, AVL-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei
368 4 Algorithmen und Datenstrukturen
Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dynamische Datenobjekte Pointer/Zeiger, Verkettete Liste Eigene Typdefinitionen 1 Zeigeroperatoren & und * Ein Zeiger ist die Speicheradresse irgendeines Objektes. Eine
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
C- Kurs 09 Dynamische Datenstrukturen
C- Kurs 09 Dynamische Datenstrukturen Dipl.- Inf. Jörn Hoffmann [email protected] leipzig.de Universität Leipzig InsAtut für InformaAk Technische InformaAk Flexible Datenstrukturen Institut für
Informatik II Prüfungsvorbereitungskurs
Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo [email protected] 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] [email protected] Gefädelte
a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:
1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem
1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.
1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 13. November 2015 13. November 2015 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume
2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Prioritätswarteschlangen Maike Buchin 18. und 23.5.2017 Prioritätswarteschlange Häufiges Szenario: dynamische Menge von Objekten mit Prioritäten, z.b. Aufgaben, Prozesse, in der
1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.
1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 17. November 2017 17. November 2017 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume
Logische Datenstrukturen
Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse
Datenstrukturen. einfach verkettete Liste
einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)
ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten
Algorithmen und Datenstrukturen I AVL-Bäume
Algorithmen und Datenstrukturen I AVL-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 01.12.2017 14:42 Algorithmen und Datenstrukturen I, AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
ContainerDatenstrukturen. Große Übung 4
ContainerDatenstrukturen Große Übung 4 Aufgabenstellung Verwalte Kollektion S von n Objekten Grundaufgaben: Iterieren/Auflistung Suche nach Objekt x mit Wert/Schlüssel k Füge ein Objekt x hinzu Entferne
7 Weitere Baumstrukturen und Heapstrukturen
7 Weitere Baumstrukturen und Heapstrukturen Man kann kurze Suchzeiten in Baumstrukturen erreichen durch Rebalancierung bei Einfügungen und Löschungen (AVL Bäume, gewichtsbalancierte Bäume, Bruderbäume,
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Tutoraufgabe 1 (2 3 4 Bäume):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe ( Bäume): a) Löschen Sie den Wert aus dem folgenden Baum und geben Sie den dabei
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 6 Suchbäume Version vom 25. November 2016 1 / 75 Vorlesung 10 22. November 2016 2
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
13. Bäume: effektives Suchen und Sortieren
Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische
Balancierte Suchbäume
Foliensatz 10 Michael Brinkmeier echnische Universität Ilmenau Institut für heoretische Informatik Sommersemester 2009 U Ilmenau Seite 1 / 74 Balancierte Suchbäume U Ilmenau Seite 2 / 74 Balancierte Suchbäume
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Heaps Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 469 Prioritätswarteschlange Problem Häufig ist das Prinzip einer einfachen Warteschlangen-Datenstruktur
Wörterbücher ihre Implementierung mit AVL Bäumen
Wörterbücher ihre Implementierung mit AVL Bäumen Wörterbücher - der Dictionar AD Auch in diesem Vorlesungsthema geht es um die Verwaltung von Objekten mit einem Schlüssel. Wir nennen die aus einem Schüssel
Übung 4: Die generische Klasse AvlBaum in Java 1
Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (
4.3 Bäume. Definition des Baumes. Bäume sind eine sehr wichtige Datenstruktur der Informatik.
4.3 Bäume Bäume sind eine sehr wichtige Datenstruktur der Informatik. Definition des Baumes Ein Baum besteht aus einer nichtleeren Menge von Knoten und einer Menge von Kanten. Jede Kante verbindet genau
Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda
Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Sortierte Folgen Maike Buchin 30.5., 1.6., 13.6.2017 Sortierte Folgen Häufiges Szenario: in einer Menge von Objekten mit Schlüsseln (aus geordnetem Universum) sollen Elemente
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Klausur "ADP" SS 2016
PD Dr. J. Reischer 29.7.2016 Klausur "ADP" SS 2016 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) Bitte füllen Sie zuerst den Kopf des Angabenblattes aus! Die Klausur
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Klausur Software-Entwicklung März 01
Aufgabe 1: minimaler Punktabstand ( 2+5 Punkte ) Matrikelnr : In einem Array punkte sind Koordinaten von Punkten gespeichert. Ergänzen Sie in der Klasse Punkt eine Klassen-Methode (=static Funktion) punktabstand,
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Motivation. Vorlesung 10: Binäre Suchbäume
Übersicht Datenstrukturen und lgorithmen Vorlesung : Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-/dsal/ 1 Suche Einfügen
Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische
Dokumentation zum AVL-Baum (C++)
Dokumentation zum AVL-Baum (C++) Christian Blaar Monique Argus Januar 2007 Institut für Informatik Martin-Luther-Universität Halle-Wittenberg NODE.H Node.h Node legt die Grundlage für jeden Baum, denn
Informatik II Vorlesung am D-BAUG der ETH Zürich
Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Elementare Datenstrukturen Array Linked List Stack Queue Tree (Feld) (Verkettete Liste) (Stapel) (Warteschlange) (Baum) Einschub:
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
t-äre Bäume können - wie Binärbäume - degenerieren, d.h. durch ungünstige Einfügereihenfolge kann ein unausgewogener Baum mit großer Höhe entstehen.
.3 B-Bäume t-äre Bäume können - wie Binärbäume - degenerieren, d.h. durch ungünstige Einfügereihenfolge kann ein unausgewogener Baum mit großer Höhe entstehen. Wird der t-äre Baum zur Verwaltung von Daten
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1
Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.
Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur
Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO
Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Informatik B Sommersemester Musterlösung zur Klausur vom
Informatik B Sommersemester 007 Musterlösung zur Klausur vom 0.07.007 Aufgabe : Graphen und Graphalgorithmen + + + () Punkte Für eine beliebige positive, ganze Zahl n definieren wir einen Graphen G n =
Algorithmen & Datenstrukturen Midterm Test 2
Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann
C für Java-Programmierer
Carsten Vogt C für Java-Programmierer ISBN-10: 3-446-40797-9 ISBN-13: 978-3-446-40797-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40797-8 sowie im
