Logische Datenstrukturen
|
|
|
- Katja Böhm
- vor 8 Jahren
- Abrufe
Transkript
1 Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse des logischen Listenanfangs - Schlüssel; Ordnungskriterium - Adresse des logischen Nachfolgers - Datensatz- - leere Adresse; logisches Ende der Liste Seite 2
2 Lineare Liste Beispiel *Biber Biber *Dachs Dachs *Eule Eule *Maus Maus *Uhu Uhu Seite 3 Operationen in linearen Listen Einfügen am Anfang Adler *Biber *Adler Biber *Dachs Dachs *Eule Eule *Maus Maus *Uhu Uhu Seite 4
3 Operationen in linearen Listen Einfügen am Anfang Algorithmus: Speichern des neuen Listenelementes auf beliebigen freien Speicherplatz Adresse der bisherigen Wurzel in des neuen Listenelementes eintragen Adresse des neuen Listenelementes in first eintragen Seite Operationen in linearen Listen Einfügen innerhalb der Liste Adler *Biber Katze *Maus *Adler Biber *Dachs Dachs *Eule Eule *Katze Maus *Uhu Uhu Seite 6
4 Operationen in linearen Listen Einfügen innerhalb der Liste Algorithmus: Speicherung des neuen Elementes auf beliebigen freien Speicherplatz Suchen der Einfügestelle (sequentielles Durchlaufen der Liste) Adresse des logischen Nachfolgers aus des logischen Vorgängers in des neuen Elementes eintragen Adresse des neuen Elementes in des logischen Vorgängers eintragen Seite Operationen in linearen Listen Einfügen am Ende der Liste Adler *Adler *Biber Katze *Maus Zebra Biber *Dachs Dachs *Eule Eule *Katze Maus *Uhu Uhu *Zebra Seite
5 Operationen in linearen Listen Einfügen am Ende der Liste Algorithmus: Speicherung des neuen Elementes auf beliebigen freien Speicherplatz Suchen der Einfügestelle (sequentielles Durchlaufen der Liste) Adresse aus des logischen Vorgängers in des neuen Elementes eintragen Adresse des neuen Elementes in des bisherigen logisch letzten Elementes eintragen Seite 9 Operationen in linearen Listen Löschen eines Elementes der Liste Adler *Adler *Biber Katze *Maus Zebra Biber *Dachs Dachs *Katze Eule *Katze Maus *Uhu Uhu *Zebra Seite 10
6 Operationen in linearen Listen Löschen eines Elementes der Liste Algorithmus: Suchen des zu löschenden Elementes (sequentielles Durchlaufen der Liste) Adresse des logischen Nachfolgers des zu löschenden Elementes aus dieses Elementes in des logischen Vorgängers eintragen (anstelle der Adresse des zu löschenden Elementes) Speicherplatz des gelöschten Elementes freigeben Seite 11 Lineare Liste Implementierung Voraussetzung: Direktzugriffsspeicher Notwendiger Speicherplatz: für n Datensätze zu je m Bytes = n*m Bytes Speicherplatz für Anker Verwaltung des Speichers durch Programm durch Betriebssystem Satzaufbau: Schlüsselattribut Satzinhalt / Daten Zeiger auf logisch nächsten Datensatz Seite 12
7 Lineare Liste Implementierung Probleme: aufwändiges Durchsuchen: Rückwärtsverkettung zusätzlich, Mehrfachverkettung Speicherverwaltung der leeren Datensätze: Bitmap (1 bit/datensatz) oder Lineare Liste freier Datensätze (Ankeradresse + Kettung der leeren Datensätze) oder...? logische Reihenfolge entspricht nicht physischer Reihenfolge: Reorganisation = Herstellen der Übereinstimmung von logischer und physischer Folge Seite 13 Lineare Liste Mehrfach-Verkettung first prev prev prev prev last Seite 14
8 Stapel LIFO: last in - first out stack end Prinzip: last in - first out (LIFO) Synonyme: Kellerspeicher, Stapel, stack Operationen: Hinzufügen eines Eintrags: stack[end] = new; end++; Entnehmen eines Eintrags: last = stack[end-1]; end--; Zustände des Stacks: voll; leer Seite 1 Warteschlange FIFO: first in - first out queue front end Prinzip: first in - first out (FIFO) Synonyme: Wartschlange, Schlange, queue Operationen: Hinzufügen eines Eintrags: queue[end] = new; end++; Entnehmen eines Eintrags: old = queue[front]; front++; Zustände der Warteschlange: voll; leer Seite 16
9 Binärbäume Begriffe Baum (tree) = endlicher, schwach zusammenhängender Graph, für dessen Knoten gilt: genau ein Knoten hat keinen Eingang (Wurzel, root) alle anderen Knoten haben genau einen Eingang endlicher Graph = Menge Knoten N (nodes) + Menge Kanten E (edges) Binärer Baum (binary tree) = geordneter Baum, der leer ist oder für dessen Knoten gilt: außer den Endknoten haben alle Knoten genau zwei Ausgänge maximal ein "Kind" jedes "Elternknotens" ist leer Seite 1 Binärbäume Begriffe Vollständiger Baum: alle Knoten besetzt Tiefe 0 Wurzel Tiefe 1 3 Unterbaum Tiefe Blätter Unausgeglichener Baum: ungleiche Tiefe Vorgänger Direkter Nachfolger Brüder Seite 1
10 Binärbäume Begriffe Ausgeglichener Baum: gleiche Tiefe oder max. eine Ebene Unterschied Seite Binärer Suchbaum Erzeugen Ausgangspunkt: Liste Seite 20
11 Binärer Suchbaum Hinzufügen Ausgangspunkt: ausgeglichener Binärbaum Hinzufügen: (in dieser Reihenfolge) Algorithmus: Durchlaufen des Baumes bis zu einem Blatt Anhängen des neuen Knotens Seite 21 Binärer Suchbaum Löschen Löschen: 3 20 (in dieser Reihenfolge) Algorithmus: Durchlaufen des Baumes bis zum zu löschenden Knoten Fallunterscheidung: Endknoten Knoten mit nur einem Nachfolger: Nachfolger ersetzt den zu löschenden Knoten Knoten mit zwei Nachfolgern: "größter" Knoten im "linken" Unterbaum bzw. "kleinster" Knoten im "rechten" Unterbaum ersetzt den zu löschenden Knoten Seite 22
12 Binärer Suchbaum Löschen Ergebnis (1. Schritt): Seite 23 Binärer Suchbaum Löschen Ergebnis (2. Schritt): Seite 24
13 Binärer Suchbaum Durchmustern / Durchlaufen Durchmustern berührt alle Knoten des Baumes, Durchlaufen nur einen Teil Durchmustern in Präordnung: Reihenfolge: Wurzel des Unterbaums links rechts also: () ( (4 2 _) 6) ( ( _ 9) _) symmetrisches Durchmustern: Reihenfolge: links Wurzel rechts also: ((2 4 _) 6) (_ 9) _) Durchmustern in Postordnung: Reihenfolge: links rechts Wurzel also: ((2 _ 4) 6 ) ((_ 9 ) _ ) Durchlaufen eines Baumes: von der Wurzel zu einem definierten Knoten "laufen" Seite 2 Binärer Suchbaum Suchen / Durchlaufen Algorithmus: Durchlaufen des Baumes bis zum gesuchten Knoten oder zu einem Blatt (bzw. "nicht gefunden") Beispiel: maxtiefe = 20 Anzahl der Knoten eines Baumes: n B = 2 (maxtiefe + 1) Durchschnittliche Anzahl der Zugriffe: v B = ( maxtiefe+1) / 2 10, Anzahl der Zugriffe in einer Liste (zum Vergleich): v L = ( n L + 1 ) / Seite 26
14 Syntaxbäume Darstellung der Syntax arithmetischer Ausdrücke: x+y x*y + * x y x y a*(b+c) a*((b+c)*(d*e-f/g)) * * a + a y* b c x+ y- b c x* yx/ d e f g Seite 2 Binärbäume Speichern von Binärbäumen Prinzip: *left *right *left *right *left *right Beispiel: * * 4 6 *4 *6 * *2 *9 2 9 Seite 2
15 Binärbaum Balancierte Bäume Problem: zufällig erzeugte Bäume können sehr unsymmetrisch sein Suchoperationen werden dann aufwändig Lösung: zusätzliche Bedingungen beim Einfügen und Löschen berücksichtigen Beispiel: AVL-Bäume Seite 29 Binärbaum AVL-Bäume zurückzuführen auf Adelson-Velskij und Landis (62) Definition: Für jeden Knoten p eines AVL-Baumes gilt, dass sich die Höhe des linken Teilbaumes maximal um 1 von der des rechten Teilbaumes unterscheidet. Besonderheiten: Suchen in AVL-Bäumen geht mit O(log N) bei N Datensätzen Nach jedem Einfügen und Löschen muss überprüft werden, ob noch ein AVL-Baum vorliegt; sonst Wiederherstellung durch "Rotation" oder "Doppelrotation". Seite 30
Datenstrukturen. einfach verkettete Liste
einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
Informatik I 2. Kapitel. Elementare Datenstrukturen. Datenstrukturen. Datenstrukturen. Rainer Schrader. 28. Mai 2008
Informatik I. Kapitel Rainer Schrader Elementare Zentrum für Angewandte Informatik Köln 8. Mai 008 / / bisher haben wir nur Arrays verwendet, Gliederung Einführung abstrakte Datentypen Listen Stacks und
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (21 - Balancierte Bäume, AVL-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei
Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1
Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer
Verkettete Datenstrukturen: Bäume
Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller
1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee
AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke
Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale
13. Bäume: effektives Suchen und Sortieren
Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder
Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":
Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
11. Elementare Datenstrukturen
11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische
Suchbäume mit inneren Knoten verschiedener Knotengrade.
Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in
3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr
3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:
Listen. Für die Verarbeitung von Listen durch den Rechner ist relevant:
Listen Für die Verarbeitung von Listen durch den Rechner ist relevant: Anzahl der Listenelemente - beim erstmaligen Erstellen der Liste bekannt/unbekannt - stabil vs. wechselhaft - Existenz eines Maximalwerts
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda
Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume
C- Kurs 09 Dynamische Datenstrukturen
C- Kurs 09 Dynamische Datenstrukturen Dipl.- Inf. Jörn Hoffmann [email protected] leipzig.de Universität Leipzig InsAtut für InformaAk Technische InformaAk Flexible Datenstrukturen Institut für
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit
Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06
Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter
Informatik 11 Kapitel 2 - Rekursive Datenstrukturen
Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Leitprogramm der Informatik Binäre Suchbäume
Leitprogramm der Informatik Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Ein ETH-Leitprogramm für die Informatik Adressaten und Institutionen Das Leitprogramm
Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen. 1. Fall: zu löschendes Element ist Blatt: löschen
Nachtrag zu binären Suchbäumen (nicht (nur) AVL Bäumen: Löschen von Elementen in binären Suchbäumen 3 1. Fall: zu löschendes Element ist Blatt: löschen 1 2 4 9 10 11 12 13 2. Fall: zu löschendes Element
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Elementare Datenstrukturen Array Linked List Stack Queue Tree (Feld) (Verkettete Liste) (Stapel) (Warteschlange) (Baum) Einschub:
Informatik B Sommersemester Musterlösung zur Klausur vom
Informatik B Sommersemester 007 Musterlösung zur Klausur vom 0.07.007 Aufgabe : Graphen und Graphalgorithmen + + + () Punkte Für eine beliebige positive, ganze Zahl n definieren wir einen Graphen G n =
Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10
Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien
Binärbäume: Beispiel
Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des
Copyright, Page 1 of 8 AVL-Baum
www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist
Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder
Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Informatik II Vorlesung am D-BAUG der ETH Zürich
Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Advanced Programming in C
Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Struktur am Beispiel einer Liste
Struktur am Beispiel einer 1 Einfügen(neues element ) Aktiv Wartend knoten knoten 2 Einfügen(neues element ) Aktiv Wartend knoten knoten 3 Einfügen(neues element ) Aktiv Wartend knoten knoten 4 Aha, ich
INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani
INTERVALLBÄUME Tanja Lehenauer, Besart Sylejmani Datenstrukturen in der Informatik Baumstrukturen Warum Intervallbäume? Centered Interval Tree Konstruktion Suchen eines Punktes Suchen eines Intervalls
Stand der Vorlesung. Vergleich verkettete Liste und sequentielle Liste
Stand der Vorlesung Kapitel 5 Elementare Datenstrukturen Felder: Folge gleichartiger Elemente Repräsentiert als statische Liste, sequentiell verwaltete Elemente Feste Länge, statische Struktur Direkter
7. Sortieren Lernziele. 7. Sortieren
7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:
Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
ADS: Algorithmen und Datenstrukturen
ADS: Algorithmen und Datenstrukturen Teil VII Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 08.
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1
Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können
Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig
Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Janosch Maier 3. August 2011 Inhaltsverzeichnis 1 Sortieren 3 1.1 Externes Sortieren..........................
Nachtrag zu binären Suchbäumen
Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement
Balancierte Suchbäume
Foliensatz 10 Michael Brinkmeier echnische Universität Ilmenau Institut für heoretische Informatik Sommersemester 2009 U Ilmenau Seite 1 / 74 Balancierte Suchbäume U Ilmenau Seite 2 / 74 Balancierte Suchbäume
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Bäume, Anwendung und Begriffe
Bäume Sie wissen, was Bäume in der Informatik sind Sie kennen das Besucher-Entwurfsmuster Sie kennen Binärbäume Sie können die Bäume auf unterschiedliche Arten traversieren Sie wissen, wie man in Binärbäumen
Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen
Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen
2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die
10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm
10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen
Informatik II. PVK Part1 Severin Wischmann [email protected] n.ethz.ch/~wiseveri
Informatik II PVK Part1 Severin Wischmann [email protected] n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent
Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.
Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Bäume, Suchbäume und Hash-Tabellen
Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche
Übung zur Vorlesung Algorithmische Geometrie
Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)
Einstieg in die Informatik mit Java
1 / 15 Einstieg in die Informatik mit Java Collections Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 15 1 Überblick Collections 2 Hierarchie von Collections 3 Verwendung
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
12. Dynamische Datenstrukturen
Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste 0 04 Motivation: Stapel ( push, pop, top, empty
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch
Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Willkommen zur Vorlesung. Algorithmen und Datenstrukturen
Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
