Musterlösung der Hauptklausur zur Vorlesung Sicherheit Sommersemester 2012

Größe: px
Ab Seite anzeigen:

Download "Musterlösung der Hauptklausur zur Vorlesung Sicherheit Sommersemester 2012"

Transkript

1 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Sicherheit Sommersemester 2012 Vorname Nachname Matrikelnummer Ergebniscode Hinweise Für die Bearbeitung stehen Ihnen 60 Minuten zur Verfügung. Zum Bestehen der Klausur sind 20 der 60 möglichen Punkte hinreichend. Es sind keine Hilfsmittel zugelassen. Schreiben Sie Ihre Lösungen auf Aufgabenblätter und Rückseiten. Zusätzliches Papier erhalten Sie bei Bedarf von der Aufsicht. Aufgabe mögliche Punkte erreichte Punkte a b c d Σ a b c d Σ x1 10 Σ 60

2 Seite 1 Aufgabe 1 ( = 12 Punkte) a) Es seien die Primzahlen p = 101 und q = 83 gegeben. Wie lautet der entsprechende öffentliche RSA-Modulus n? Wie lautet der entsprechende geheime Schlüssel d zum öffentlichen Schlüssel e = 3? Lösung: Es ist n = p q = Der geheime Schlüssel berechnet sich zu: d = e 1 mod ϕ(n) = 3 1 mod 8200 = 2733 mod 8200 = 5467 Dabei verwendet man, dass = 8199 = 1 mod Alternativ kann man d natürlich auch mit dem ELBA berechnen. b) Skizzieren Sie, wie bei RSA-ES-OAEP eine Nachricht m mit dem öffentlichen Schlüssel (e, n) verschlüsselt wird und wie aus dem Chiffrat c mit dem privaten Schlüssel (d, n) wieder m zurückgewonnen werden kann. Lösung: Das Chiffrat ist c = (z 1 z 2 ) e mod n, wobei (z 1, z 2 ) folgendermaßen berechnet wird: Nachricht m Zufall r hash hash z 1 z 2 Zur Entschlüsselung gewinnt man (z 1, z 2 ) mittels (z 1 z 2 ) = c d mod n zurück und berechnet dann m folgendermaßen: z 1 z 2 hash hash Nachricht m

3 Seite 2 c) Warum ist es problematisch, bei RSA in der Lehrbuchvariante (ohne Padding und Hashing) als öffentlichen Verschlüsselungsschlüssel konstant e = 3 zu wählen? Lösung: Wird dieselbe verschlüsselte Nachricht c = m e an drei verschiedene Empfänger gesendet, die alle als öffentlichen Verschlüsselungsschlüssel e = 3 gewählt haben und paarweise verschieden Moduli n 1, n 2, n 3 verwenden, so kann man mittels des chinesischen Restsatzes ein eindeutiges c = m 3 mod n 1 n 2 n 3 finden und dann m = 3 c analytisch berechnen. (Genau genommen müsste man noch den Fall berücksichtigen, dass die n i nur paarweise verschieden aber nicht paarweise teilerfremd sind; dann kann man den chinesischen Restsatz nämlich nicht anwenden, findet jedoch mittels des ggt einen nicht-trivialen Teiler eines der Moduli und kann damit RSA einfach direkt angreifen.) d) Es seien ein RSA-Modulus n (mit unbekannter Primfaktorzerlegung), sowie ein öffentlicher Verschlüsselungsschlüssel e und der dazu passende Entschlüsselungsschlüssel d gegeben. Ferner sei ein weiterer öffentlicher Verschlüsselungsschlüssel ẽ (aber kein dazu passender Entschlüsselungsschlüssel) und ein entsprechendes Chiffrat c = mẽ mod n gegeben. Wie kann man aus e und d ein ganzzahliges Vielfaches von ϕ(n) berechnen? Wie kann man dies nutzen, um aus dem gegebenen Chiffrat c den geheimen Klartext m zurückzugewinnen? Lösung: Wegen e d = 1 mod ϕ(n) muss φ := e d 1 ein ganzzahliges Vielfaches von ϕ(n) sein. Wenn ẽ und φ teilerfremd sind, kann man mit dem ELBA d = ẽ 1 mod φ berechnen, womit folgt: ẽ d = 1 mod φ = 1 mod ϕ(n) und deshalb m = c d mod n Sind ẽ und φ nicht teilerfremd, sondern haben einen größten gemeinsamen Teiler g > 1, so hat man mit φ := φ ein ganzzahliges Vielfaches von ϕ(n) ohne g gemeinsamen Teiler mit ẽ und kann dann analog zu oben d = ẽ 1 mod φ und damit m = c d mod n berechnen.

4 Seite 3 Aufgabe 2 (2+1+4 = 7 Punkte) Es seien zwei Primzahlen p und q gegeben, sowie eine zyklische Gruppe G F p mit Erzeuger g der Ordnung q. a) Wie berechnet man die entsprechende ElGamal-Signatur einer Nachricht m zum geheimen Schlüssel x (ohne Hashing) und welchen Wertebereich hat m? Lösung: σ(m) = (a, b) mit a = g k und b = k 1 (m x a) mod q für ein zufälliges k {1,..., q 1}. Dafür muss m {0,..., q 1} sein. b) Wie sieht der öffentliche Verfikationsschlüssel y aus und wie verifiziert man eine gegebene Signatur? Lösung: Es ist y = g x und zum Verifizieren testet man g m? = y a a b. c) Aus der Vorlesung ist bekannt, dass man für zwei verschiedene ElGamal- Signaturen nicht denselben Zufall verwenden darf. Ist das Verfahren sicher, wenn man den Zufall durch einen kryptographischen Hashwert h(m) ersetzt? Begründen Sie Ihre Antwort. Lösung: Das Verfahren wäre unsicher, da ein Angreifer aus m und σ(m) = (a, b) den geheimen Schlüssel x berechnen könnte: b = k 1 (m x a) mod q und somit x = a 1( ) m b h(m) mod q }{{} k

5 Seite 4 Aufgabe 3 ( = 14 Punkte) Wir betrachten den folgenden Betriebsmodus für Blockchiffren: m i m i+1 m i+2 c i c i+1 c i+2 a) Zeichnen Sie das entsprechende Entschlüsselungsschaltbild. Lösung: c i = (m i c i 1 ) m i 1 und somit m i = Dec k (c i m i 1 ) c i 1. Es ergibt sich folgendes Schaltbild: c i c i+1 c i+2 Dec k Dec k Dec k m i m i+1 m i+2

6 Seite 5 b) Bewerten Sie diesen Modus, indem Sie die folgenden Fragen beantworten: 1. Inwiefern kann ein Angreifer gezielt Nachrichten verändern (Bits kippen, Blöcke vertauschen/löschen/duplizieren)? 2. Auf wie viele Blöcke wirkt sich ein Übertragungsfehler (Bit-Flip) aus? 3. Lassen sich Ver- und/oder Entschlüsselung parallelisieren? 4. Muss ein Initialisierungsvektor übertragen werden? Wenn ja, wieviel Information (gemessen in Klartextblöcken) muss zusätzlich zum eigentlichen Chiffrat übertragen werden und was passiert, wenn man für mehrere Chiffrate denselben Initialisierungsvektor verwendet? Lösung: 1. Keiner der genannten Angriffe ist möglich. (Wenn man es ganz genau nimmt, kann ein Angreifer noch das Ende einer Nachricht abschneiden, wie bei allen anderen aus der Vorlesung bekannten Modi auch. Dies hier explizit zu erwähnen, wurde aber nicht erwartet.) 2. Außer dem fehlerhaften Block selbst sind auch alle nachfolgenden Blöcke betroffen. 3. Ver- und Entschlüsselung lassen sich nicht parallelisieren. 4. Ja, es wird ein Initialisierungsvektor benötigt. Man benötigt zwei Blöcke, kann aber für beide denselben Wert nehmen; es muss also nur ein Block zusätzlich übertragen werden. Wenn man denselben Initialisierungsvektor mehrfach verwendet, passiert dasselbe wie beim CBC: gleiche Nachrichtenanfänge werden erkennbar. (Eine andere gültige Antwort auf die letzte Teilfrage wäre auch, dass das Verfahren mit konstantem Initialisierungsvektor deterministisch ist und damit nicht mehr IND-CPA-sicher).

7 Seite 6 c) Wir wollen unseren neuen Betriebsmodus nun nicht zum Verschlüsseln, sondern als MAC verwenden. Dazu wird die zu authentifizierende Nachricht einfach mit dem Authentication Key als Schlüssel und leerem Initialisierungsvektor verschlüsselt und der letzte Chiffratblock als MAC übertragen (die anderen Chiffratblöcke werden nicht benötigt und deswegen gar nicht erst ausgegeben). Für eine Nachricht m = m 1 m 2 m 3 sieht das folgendermaßen aus: m 1 m 2 m 3 Mac k (m) Wieso ist dieses Verfahren kein sicherer MAC für Nachrichten, die aus beliebig vielen Blöcken bestehen? Geben Sie einen Angreifer an, der die entsprechende Sicherheitsdefinition aus der Vorlesung verletzt. Lösung: Für Nachrichten m, die nur einen Block lang sind, gilt Mac k ( m) = ( m). Ein Angreifer mit Zugriff auf ein MAC-Orakel O kann folgendermaßen Mac k (m) für die Beispielnachricht m = m 1 m 2 m 3 berechnen, ohne m als solches an das Orakel zu senden (wir nennen die drei -Box-Ausgaben c 1, c 2 und c 3 ): 1. Sende m 1 an O und lerne c 1 = (m 1 ). 2. Sende c 1 m 2 an O und lerne c 2 = (c 1 m 2 ). 3. Sende m 1 c 2 m 3 an O und lerne c 3 = (m 1 c 2 m 3 ). 4. Berechne Mac k (m) = m 2 c 3.

8 Seite 7 d) Der folgende Verschlüsselungsmodus schützt die Vertraulichkeit nur sehr schlecht. Warum? m i m i+1 m i+2 c i c i+1 c i+2 Lösung: Die zweite OR-Verknüpfung (jeweils in der unteren Hälfte des Schaltbilds) kann ein Angreifer leicht zurückrechnen und erhält damit die Ausgänge der -Box. Wenn nun mehrere gleiche Klartextblöcke m j = m j+1 =... aufeinanderfolgen, sind die entsprechenden -Box-Ausgänge ab dem zweiten Block (also ab m j+1 ) Verschlüsselungen der Null. In diesem Modus verschlüsselte Bilder, bei denen immer wieder viele gleichfarbige Pixel aufeinanderfolgen (z. B. bei Schwarzweiß-Bildern i. d. R. der Fall), sind damit ähnlich gut zu erkennen wie beim ECB-Modus.

9 Seite 8 Aufgabe 4 (4+4 = 8 Punkte) a) Es sei eine injektive Einwegfunktion h : {0, 1} n {0, 1} n gegeben. Zeigen Sie: Die Abbildung g : {0, 1} n {0, 1} n, x h(h(x)) ist ebenfalls eine injektive Einwegfunktion. Lösung: Zunächst sind h und g offensichtlich bijektiv. Wir nehmen nun an, dass g keine Einwegfunktion ist; d. h. zu einem zufälligen Bild y {0, 1} n können wir mit signifikanter Wahrscheinlichkeit das Urbild x = g 1 (y) effizient berechnen. Damit können wir zu y aber auch ein Urbild x unter h effizient berechnen, nämlich x = h(x). Dies ist ein Widerspruch zur Voraussetzung, dass h eine Einwegfunktion ist; also muss g ebenfalls eine Einwegfunktion sein. b) Es sei eine Funktion h : {0, 1} {0, 1} n ohne Einweg-Eigenschaft gegeben, bei der man zu jedem Bild y {0, 1} n ein passendes Urbild x h 1 (y) effizient berechnen kann; der entsprechende Algorithmus heiße A. Zeigen Sie: Die Funktion h ist nicht kollisionsresistent. Geben Sie dazu einen (effizienten!) Algorithmus B an, der wenigstens mit Wahrscheinlichkeit 1 eine Kollision für h ausgibt. Dabei 4 darf A natürlich als Unterprogramm genutzt werden. (Zur Lösung der Aufgabe genügt es, den Algorithmus B anzugeben. Weitergehende Erläuterungen sind nicht erforderlich.) Lösung: 1. Ziehe gleichverteilt zufällig ein x {0, 1} n+1 und berechne y = h(x). 2. Gib y an A; es bezeichne x die entsprechende Ausgabe von A. 3. Gib (x, x ) aus. Erklärung (war nicht gefordert): Wenigstens für die Hälfte aller Elemente in {0, 1} n+1 muss eine Kollision existieren (einfaches Abzählargument). Wenn für das gewählte x eine Kollision existiert, gilt Pr[x = x ] 1, denn die Ausgabe 2 von A ist unabhängig davon, welches Urbild von y in Schritt 1 gezogen wurde. Insgesamt folgt, dass Pr[x x ] 1 und nach Konstruktion haben wir sowieso 4 immer h(x) = h(x ).

10 Seite 9 Aufgabe 5 (3+3+3 = 9 Punkte) Wir betrachten das folgende System im Bell-LaPadula-Modell: Subjektmenge S = {Alice, Bob, Carol} Objektmenge O = {D 1, D 2, D 3, D 4 } Menge der Zugriffsoperationen A = {read, write, append} Menge der Sicherheitsstufen L = {intim, privat, dienstlich, öffentlich} mit der folgenden partiellen Ordnung: intim privat öffentlich intim dienstlich öffentlich Wir betrachten den folgenden Systemzustand (B, M, F ): Die Menge der aktuellen Zugriffe B ist gegeben durch: D 1 D 2 D 3 D 4 Alice r,w r r r B = Bob r,w Carol Die Zugriffskontrollmatrix M ist gegeben durch: D 1 D 2 D 3 D 4 Alice r,w r,w r,w r M = Bob r r,w,a r,w,a Carol r,w,a r,w,a r,a r,a Die Zuordnung der Sicherheitsstufen F = (f S, f C, f O ) ist gegeben durch: f S f C Alice intim öffentlich Bob dienstlich öffentlich Carol intim privat D 1 D 2 D 3 D 4 f O intim privat dienstlich öffentlich a) Geben Sie für jedes Subjekt eine Zugriffsanforderung an, die ausschließlich (andere Antworten geben noch die halbe Punktzahl) die ss-eigenschaft verletzt. Notieren Sie ebenfalls, falls dies für ein Subjekt nicht möglich ist. Lösung: Alice: nicht möglich Bob: nicht möglich Carol: nicht möglich b) Geben Sie für jedes Subjekt eine Zugriffsanforderung an, die ausschließlich (andere Antworten geben noch die halbe Punktzahl) die -Eigenschaft verletzt. Lösung: Alice: write D 2 /D 3 Bob: read D 2, write/append D 4 Carol: append D 3 /D 4 c) Geben Sie für jedes Subjekt eine Zugriffsanforderung an, die ausschließlich (andere Antworten geben noch die halbe Punktzahl) die ds-eigenschaft verletzt. Lösung: Alice: append D 1 Bob: append D 1 Carol: nicht möglich

11 Seite 10 Aufgabe 6 (10 Punkte) Bei dieser Multiple-Choice-Aufgabe gibt jede richtige Antwort 1 Punkt; für jede e Antwort wird 1 Punkt abgezogen, die Gesamtpunktzahl der Aufgabe kann jedoch nicht negativ werden. Für nicht beantwortete Fragen (kein Kreuz) werden keine Punkte abgezogen. CRT-RSA ist besonders anfällig gegen Fault-Induction-Angriffe. Bei einer Blockchiffre im CBC-Modus kann die Entschlüsselung parallelisiert werden, die Verschlüsselung aber nicht. Ein EUF-CMA-sicheres Signaturverfahren ist nicht notwendigerweise sicher gegen Key-Substitution-Angriffe. Es bezeichne n einen RSA-Modulus mit unbekannter Primfaktorzerlegung. Wenn die RSA-Annahme gilt, ist keines der folgenden Probleme effizient lösbar: a) Berechnung von ϕ(n) b) Wurzelziehen für zufällige Quadrate z Z n c) Faktorisierung von n Eine Funktion f : {0, 1} {0, 1} n, welche alle Eingaben auf denselben Wert abbildet, ist eine informationstheoretisch sichere Einwegfunktion, weil die Funktionsausgabe keinerlei Information darüber enthält, was die Funktionseingabe war. RSA-ES-OAEP ist im Random-Oracle-Modell IND-CCA-sicher. Wenn man k N hinreichend groß wählt, ist die folgende Funktion vernachlässigbar (hierbei bezeichne exp die Exponentialfunktion): µ : N R 0, x 1 x exp(k) Wenn µ eine vernachlässigbare Funktion ist, dann auch die Abbildung x e µ(x) 1 (hierbei bezeichne e die Eulersche Zahl). Das SRP-Verfahren besitzt unter der DDH-Annahme beweisbar die Forward-Security-Eigenschaft. Die Sicherheitslevels bei den Common Criteria sind linear geordnet in dem Sinne, dass z. B. ein nach EAL-5 zertifiziertes Produkt damit insbesondere auch nach EAL-1 bis EAL-4 zertifiziert ist.

Nachklausur zur Vorlesung Sicherheit Sommersemester 2012

Nachklausur zur Vorlesung Sicherheit Sommersemester 2012 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nachklausur zur Vorlesung Sicherheit Sommersemester 2012 Vorname Nachname Matrikelnummer Ergebniscode Hinweise Für die Bearbeitung

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Musterlösung der Nachklausur zur Vorlesung Sicherheit Sommersemester 2012

Musterlösung der Nachklausur zur Vorlesung Sicherheit Sommersemester 2012 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Nachklausur zur Vorlesung Sicherheit Sommersemester 2012 Vorname Nachname Matrikelnummer Ergebniscode Hinweise Für

Mehr

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung Institut für Theoretische Informatik Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2017 Klausur Lösung 02.08.2017 Vorname: Nachname: Matrikelnummer: Klausur-ID: Hinweise - Schreiben

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Klausur 26.07.2013 Vorname: Nachname:

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur Lösung 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Nachklausur 29.09.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösungsvorschlag Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösungsvorschlag Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Nachklausur Lösungsvorschlag 29.09.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für

Mehr

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Technische Universität Graz 29. Dezember 2008 Überblick Unterschied zwischen symmetrischen und asymmetrischen Verschlüsselungsverfahren

Mehr

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 3 Aufgabe 1. Beurteilen Sie für die folgenden Konstruktionen jeweils, ob es sich

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Übungsblatt 3

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Übungsblatt 3 Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 3 Hinweis: Übungsblätter können freiwillig bei Florian Böhl, Raum 255, Geb.

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

VII. Hashfunktionen und Authentifizierungscodes

VII. Hashfunktionen und Authentifizierungscodes VII. Hashfunktionen und Authentifizierungscodes Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit Lauschen - Authentizität Tauschen des Datenursprungs - Integrität

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell

Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Hashfunktionen und MACs

Hashfunktionen und MACs 3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten

Mehr

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k

Mehr

Socrative-Fragen aus der Übung vom

Socrative-Fragen aus der Übung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52

Übung zur Vorlesung Sicherheit Übungsblatt 3. Björn Kaidel 1 / 52 Übung zur Vorlesung Sicherheit 21.05.2014 Übungsblatt 3 Björn Kaidel bjoern.kaidel@kit.edu 1 / 52 Kummerkasten Bitte helleren Laserpointer verwenden. Sind die Skriptlinks vertauscht? Nein! Wegen allgemeiner

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 20.04.2014 1 / 28 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung

Mehr

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen

Zahlen. Vorlesung Mathematische Strukturen. Sommersemester Zahlen. Zahlen Vorlesung Mathematische Strukturen Sommersemester 2016 Prof. Barbara König Übungsleitung: Christine Mika & Dennis Nolte Division mit Rest Seien a, b Z zwei ganze mit a 0. Dann gibt es eindeutig bestimmte

Mehr

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017 Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola Stammvorlesung Sicherheit im Sommersemester 2017 Übungsblatt 4 Aufgabe 1. Wir instanziieren das ElGamal-Verschlüsselungsverfahren

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Sicherheit von Merkle Signaturen

Sicherheit von Merkle Signaturen Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 5 Hinweis: Übungsblätter können freiwillig bei Jessica Koch, Raum 256, Geb.

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018 Digitale Signaturen Andreas Spillner Kryptografie, SS 2018 Ausgangspunkt Digitale Signaturen bieten unter anderem das, was man auch mit einer eigenhändigen Unterschrift auf einem Dokument bezweckt. Beispiel:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 08.05.2017 1 / 32 Überblick 1 Blockchiffren Erinnerung Varianten von DES Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Jiaxin Pan (Slides from Björn Kaidel and Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-10-26 B. Kaidel Digitale

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Asymmetrische Kryptographie WS 2012/2012 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip asymmetrischer (Konzelations-)Systeme 2 Mathematische Grundlagen

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 32 Kummerkasten In der Übung lauter und deutlicher sprechen: Wir geben

Mehr

Name:... Vorname:... Matrikel-Nr.:... Studienfach:...

Name:... Vorname:... Matrikel-Nr.:... Studienfach:... Christian Forler DHBW Mosbach 2. April 2015 Klausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 32 Kummerkasten In der Übung lauter und deutlicher sprechen: Wir geben

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 18.05.2015 1 / 30 Überblick 1 Asymmetrische Authentifikation von Nachrichten Erinnerung

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Das Generalized Birthday Problem

Das Generalized Birthday Problem Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

6. Übung - Kanalkodierung/Datensicherheit

6. Übung - Kanalkodierung/Datensicherheit 6. Übung - Kanalkodierung/Datensicherheit Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Kanalkodierung a) Bestimmen Sie die Kodeparameter (n, l, d min ) des zyklischen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 30.04.2018 1 / 35 Überblick 1 Hashfunktionen Motivation Formalisierung Die Merkle-Damgård-Konstruktion (Weitere) Angriffe auf Hashfunktionen Zusammenfassung

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-01 B. Kaidel Digitale Signaturen:

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel

Übung zur Vorlesung Sicherheit Übungsblatt 2. Alexander Koch Björn Kaidel Übung zur Vorlesung Sicherheit 07.05.2014 Übungsblatt 2 Alexander Koch alexander.koch@kit.edu Björn Kaidel bjoern.kaidel@kit.edu 1 / 39 Werbung: KASTEL-Zertifikat Nachweis für Spezialisierung in IT-Sicherheit

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Digitale Signaturen Prof. Jörn Müller-Quade mit Folien von G. Hartung und B. Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-01-25 J.

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten.

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten. Merkle-Baum Idee: Konstruktion von Merkle-Bäumen Ersetze Signaturkette durch Baum (sogenannter Merkle-Baum). Verwenden Baum der Tiefe n für Nachrichten der Länge n. Die Wurzel erhält Label ɛ. Die Kinder

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Das TCP/IP-Schichtenmodell Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP IP IP IP PPP

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie LÖSUNGSHINWEISE FB 3: Mathematik/Naturwissenschaften Prof. Dr. P. Ullrich/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 06.04.2016 Name: Vorname:

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

7: Grundlagen der Public-Key-Kryptographie

7: Grundlagen der Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie 214 7: Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie Wiederholung: Symmetrische Kryptographie 1 Schlüssel für Sender und Empfänger Benötigt

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Kryptographie. Klausur mit Lösung zum Wintersemester 2008/2009. Name, Vorname:... Matrikelnummer:... Studiengang:... Diplom Bachelor Master

Kryptographie. Klausur mit Lösung zum Wintersemester 2008/2009. Name, Vorname:... Matrikelnummer:... Studiengang:... Diplom Bachelor Master Einführung in die Kryptographie WS 2008/2009 Technische Universität Darmstadt Fachbereich Informatik Prof. Johannes Buchmann Erik Tews 25. Februar 2009 Klausur mit Lösung zum Wintersemester 2008/2009 Name,

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Attacken auf RSA und Das Rabin Kryptosystem

Attacken auf RSA und Das Rabin Kryptosystem Attacken auf RSA und Das Rabin Kryptosystem Institut für Informatik Universität Potsdam 4. Januar 2005 Überblick Wiederholung: RSA Das RSA Kryptosystem Attacken auf RSA RSA-FACTOR Wieners Algorithmus Das

Mehr

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom

Vorlesung Digitale Signaturen im Wintersemester 2017/-18. Socrative-Fragen aus der Vorlesung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Dozenten: Björn Kaidel Vorlesung Digitale Signaturen im Wintersemester 2017/-18 Socrative-Fragen aus der Vorlesung vom 17.11.2017 1 Quiz 1:

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel

Übung zur Vorlesung. Sicherheit Übungsblatt 5 Björn Kaidel Übung zur Vorlesung Sicherheit 30.06.2016 Übungsblatt 5 Björn Kaidel bjoern.kaidel@kit.edu https://b.socrative.com/login/student/ Room: SICHERHEIT Bitte gleich einloggen! 1 / 55 Evaluation (siehe Evaluations-PDF)

Mehr

Name:... Vorname:... Matrikel-Nr.:... Studienfach:...

Name:... Vorname:... Matrikel-Nr.:... Studienfach:... Stefan Lucks Medien Bauhaus-Univ. Weimar Probeklausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige

Mehr

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,

Mehr