Übung 14: Block-Codierung
|
|
|
- Alexander Weiss
- vor 9 Jahren
- Abrufe
Transkript
1 ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder Decoder Für den Fehlerschutz stehen ein linearer (3,2, t=2) Block-Code C sowie ein linearer (3,, t=5) Block-Code C 2 zur Verfügung. a) Bestimmen Sie die BER ohne FEC. Wieviele Bits pro Codewort sind im Durchschnitt fehlerhaft? b) Bestimmen Sie die Wahrscheinlichkeit P(m) für m=,,..., 5 Bitfehler pro Codewort. Approximieren Sie mit den gefundenen Werten die BER ohne FEC zwecks Verifikation. m P(m) c) Bestimmen Sie die Rate R von Code. Wie gross ist die Wahrscheinlichkeit, dass Decoder ein einzelnes Codewort korrigieren und korrekt decodieren kann? Wie gross ist die Wahrscheinlichkeit, dass eine Meldung mit 5 Infobits (5 Codeworten) bzw. 8 Infobits (48 Codeworten) mit Code fehlerfrei übertragen werden kann? d) Bestimmen Sie die Rate R 2 von Code 2. Wie gross ist die Wahrscheinlichkeit, dass Decoder 2 ein einzelnes Codewort korrigieren und korrekt decodieren kann? Wie gross ist die Wahrscheinlichkeit, dass eine Meldung mit 99 Infobits bzw. Infobits mit Code 2 korrekt übertragen werden kann? e) Wieviel mal länger dauert die Übertragung mit Code 2 als mit Code? Betrachten Sie nun den linearen (5, 34, t=2) Code C 3, mit dem ein einzelnes Codewort mit Wahrscheinlichkeit.958 korrigiert und korrekt decodiert werden kann. f) Bestimmen Sie die Rate R 3 von Code 3. Kann man mit dieser Rate grundsätzlich zuverlässig über den gegebenen BSC übertragen?
2 ZHW, NTM, 26/6, Rur 2 g) Wie gross ist die Wahrscheinlichkeit, dass eine Meldung mit 2 Infobits mit Code 3 korrekt übertragen werden kann? h) Was schliessen Sie, wenn Sie Codes, 2 und 3 vergleichen? Aufgabe 2: Table-Lookup-Decoding. Betrachten Sie den Block-Code C = {[], [], [], [], [], [], [], [ ]} a) Bestimmen Sie N, K sowie die Code-Rate R. b) Ist der Block-Code C systematisch, linear, zyklisch? c) Wieviele Fehler kann man mit C detektieren bzw. korrigieren? d) Bestimmen Sie die Generator-Matrix G in systematischer Form. Hinweis: Die Zeilen von G sind auch Codewörter. e) Drücken Sie die Parity-Check-Bits in Funktion der Informationsbits u, u und u 2 aus. f) Bestimmen Sie die Parity-Check-Matrix H. Hinweis: Verfizieren Sie, dass x H T =. g) Erstellen Sie eine Dekodiertabelle zur Bestimmung des Fehlervektors e. Welche Fehlervektoren e möchten Sie korrigieren können bzw. können Sie effektiv korrigieren? Syndrom s Fehlervektor e h) Betrachten Sie die Übertragung des Codeworts x = [ ]. Welches Codewort x e dekodieren Sie, wenn Sie y =[ ] bzw. y 2 =[ ] empfangen? Aufgabe 3: BCH-Code. a) Zeichnen Sie eine Encoder-Schaltung für den (5,,) BCH-Code (Hamming-Code). b) Bestimmen Sie das zum Infowort u =[ ] gehörende Codewort x. c) Zeichnen Sie eine Syndrom-Schaltung für den (5,,) BCH-Code. d) Bestimmen Sie das Syndrom s, wenn Sie y = x empfangen.
3 ZHW, NTM, 26/6, Rur 3 Musterlösung Aufgabe a) BER=.3 bzw. 3% Im Durchschnitt ist 3.3 Bit pro Codewort fehlerhaft. b) Die Wahrscheinlichkeit für m Bitfehler pro Codewort (CW) ist gegeben durch 3 m 3 m m P(m-Fehler pro CW) = (.3).3 m P() BER.3729 / / / /3+.9 5/3 =.299 c) Coderate R = 2/3 2/3 P( CW korrekt) = =.9349 P(Meldung mit 5 Infobits bzw. 5 CW korrekt) = (.9349) 5 =.742 P(Meldung mit 8 Infobits bzw. 48 CW korrekt) = (.9349) 48 =.395 Mit Code ist es praktisch unmöglich, längere Meldungen fehlerfrei zu übertragen, ohne fehlerhafte Codewörter nochmals anzufragen (ineffizient). d) Coderate R 2 = /3 /3 P( CW korrekt) = =.9997 P(Meldung mit 99 Infobit bzw. 9 CW korrekt) = (.9997) 9 =.9973 P(Meldung mit Infobit bzw. 9 CW korrekt) = (.9997) 9 =.973 e) Mit Code 2 können die Meldungen viel zuverlässiger übertragen werden als mit Code (mehr redundante Bits). Dafür dauert die Übertragung doppelt so lange wie mit Code. f) ja, R 3 2/3 < C BSC (ε=.3) =.8 [bit / Kanalbenützung] g) P(Meldung mit 2 Infobits bzw. 3 CW korrekt) = (.958) 3 =.7432 h) Vergleich C und C 2 : Je mehr Redundanz, desto besser ist der Fehlerschutz, auf Kosten der Datenrate. Vergleich C und C 3 : Es ist grundsätzlich möglich, Daten mit Rate R 3 R 2/3 zuverlässig über den gegebenen BSC zu übertragen. Die Kapazität C BSC (ε=.3) =.8 [bit / Kanalbenützung]. Allerdings muss die Blocklänge dann schon sehr gross sein (komplexer Dekoder).
4 ZHW, NTM, 26/6, Rur 4 Aufgabe 2 a) N=6, K=3 und R=.5 b) Der Block-Code C ist systematisch und linear, aber nicht zyklisch. c) d min = w min = 3 => alle Muster mit oder 2 Fehler detektierbar (eigentlich sind nur 7 der 64 möglichen Fehlermuster nicht detektierbar). => alle Muster mit Fehler korrigierbar d) 3 x 6 Generator-Matrix G = e) Parity-Check-Bits: x = u XOR u 2, x = u XOR u 2, x 2 = u XOR u. f) 3 x 6 Parity-Check-Matrix H = Man kann verifizieren, dass x H T =, z.b. [] H T = [ ]. g) Weil wenig Fehler häufiger auftreten als viele Fehler, muss man die Fehlervektoren e mit kleinstem Gewicht korrigieren bzw. in die Dekodiertabelle unten eintragen. Weil der Code d min =3 hat, kann man sicher alle Fehlervektoren mit einem einzelnen Bit-Fehler bzw. w H (e)= korrigieren. Man kann aber auch ein einziges Fehlermuster e mit mehr als Fehler korrigieren, siehe s=[ ] unten, z.b. einen Doppelfehler, wobei leider nicht beide im Informationsteil des Codeworts liegen können. Syndrom s Fehlervektor e h) Empfang y : korrekte Entscheidung Schritt : s = y H T = [ ] H T = [ ] Schritt 2: aus Dekodiertabelle e = [ ] Schritt 3: x e = y +e = [ ] = x
5 ZHW, NTM, 26/6, Rur 5 Empfang y 2 : falsche Entscheidung Schritt : s = y 2 H T = [ ] H T = [ ] Schritt 2: aus Dekodiertabelle e = [ ] Schritt 3: x e = y 2 +e = [ ] x => Code hat d min =3. Es sind 2 Fehler aufgetreten. y = [ ] ist näher beim Codewort [ ] (Hamming-Distanz = ) als beim gesendeten Codewort [ ] (Hamming-Distanz = 2). Dekodierfehler! Aufgabe 3 a) Encoder-Schaltung für den (5,,) BCH-Code (Hamming-Code): g(d) = +D+D 4 Gate p p p 3 p 2 u=[u,..., u ] x=[p,...,p 3,u,..., u ] b) u =[ ] => x =[ ] x ist ein Codewort mit minimalem Hamming-Gewicht w min =3 c) Syndrom-Schaltung für den (5,,) BCH-Code: y=[y,..., y ] s s s 2 s 3 d) Bestimmen Sie das Syndrom s, wenn Sie y = x empfangen. => s = [ ] => s = [ ] => s = [ ] => s = [ ] => s = [ ] Das Syndrom s=, weil ein Codewort empfangen worden ist.
Übung 15: Faltungscodierung
ZHW, NTM, 26/6, Rur Übung 5: Faltungscodierung Aufgabe : R=/2, M=, Faltungscode. Gegeben ist der folgende R=/2, M= Faltungsencoder: x[2n] u[n] T b u[n-] x[.] x[2n+] a) Zeichnen Sie das Zustandsdiagramm
Übungsblatt 5 - Musterlösung
Universität Mannheim Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Christoph Kuhmünch, Gerald Kühne Praktische Informatik II SS 2000 Übungsblatt 5 - Musterlösung Aufgabe 1: Huffman-Codierung
Gruppe. Kanalcodierung
Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete
Kapitel 13: Syndromcodierung / Hamming Codes
Kapitel 3: Syndromcodierung / Hamming Codes Ziele des Kapitels Lineare Codes Zyklische Codes Copyright M. Gross, ETH Zürich 26, 27 2 Parity-Check-Matrix Theorem: Die Minimaldistanz eines linearen Codes
Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?
Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres
Einführung in die Kodierungstheorie
Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht
KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2
AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die
Fehlerschutz durch Hamming-Codierung
Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes
Gegeben ist ein systematischer (7,3)-Cod. Die drei seiner Codewörter lauten:
Prof. Dr.-Ing. H.G. Musmann INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 67 Hannover Gegeben ist ein systematischer (7,)-Cod. Die drei seiner
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3
Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?
Grundlagen der Technischen Informatik. 2. Übung
Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 2. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Hamming-Distanz Fehlererkennung
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.
Single Parity check Codes (1)
Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes
Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen
Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter
Zyklische Codes Rechnernetze Übung SS2010
Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch
(Prüfungs-)Aufgaben zur Codierungstheorie
(Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1
A3.9: Viterbi Algorithmus: Grundlegendes
A3.9: Viterbi Algorithmus: Grundlegendes Die Grafik zeigt ein Trellisdiagramm und definiert gleichzeitig die Fehlergrößen Γ i (S 0 ) und Γ i (S 1 ) zu den Zeitpunkten i = 0 bis i = 5. Aus diesem Trellis
Dekohärenz und Grundprinzip der Quantenfehlerkorrektur
Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Bachelorarbeit Gregor Wurm, Betreuer: Prof. E. Arrigoni Institut für Theoretische Physik der Technischen Universiät Graz 24. Sept. 2010 Übersicht
Grundlagen der Technischen Informatik. 2. Übung
Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei
Angewandte Informationstechnik
Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG
Klausur Informationstheorie und Codierung
Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte
Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006
Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Institut für Nachrichtentechnik und Hochfrequenztechnik Bitte beachten Sie: Sie dürfen das Vorlesungsskriptum, einen Taschenrechner
4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung
Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,
Ein (7,4)-Code-Beispiel
Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also
Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes
Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig
Die Mathematik in der CD
Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern
Praktikum Fehlerreduktionssysteme / Codierungstheorie
Fakultät Elektrotechnik und Informationstechnik Institut für Nachrichtentechnik Lehrstuhl Theoretische Nachrichtentechnik Prof. Eduard Jorswieck, Anne Wolf Praktikum Fehlerreduktionssysteme / Codierungstheorie
Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von
Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen
Fachprüfung. Nachrichtencodierung
Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:
Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011
Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?
Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7
Fehlerdetektion Cyclic Redanduncy Check Grundlagen der Rechnernetze Übertragungssicherung 7 Modulo 2 Arithmetik Addition Modulo 2 Subtraktion Modulo 2 Multiplikation Modulo 2 A B A B 0 0 0 1 1 0 1 1 A
6 Fehlerkorrigierende Codes
R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.
Fachprüfung. Nachrichtencodierung
Fachprüfung Nachrichtencodierung 23. Februar 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:
2. Tutorium Digitaltechnik und Entwurfsverfahren
2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Ein (7,4)-Code-Beispiel
Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also
Übung zu Drahtlose Kommunikation. 7. Übung
Übung zu Drahtlose Kommunikation 7. Übung 03.12.2012 Aufgabe 1 (Cyclic Redundancy Check) Gegeben ist das Generator-Polynom C(x) = x 4 + x 3 + 1 a) Zeichnen Sie die Hardware-Implementation zum obigen Generator-Polynom
Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2
Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)
Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012
Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?
Formelsammlung Kanalcodierung
Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:
Trellis Diagramme und Viterbi-Decoder
Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe
Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi [email protected]
Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi [email protected] Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität
Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19
Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen
Grundlagen Digitaler Systeme (GDS)
Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler
Bachelor-Prüfung SoSe 2015
Hochschule Landshut Fakultät Informatik Studiengang Informatik Name: Matr.-Nr: Bachelor-Prüfung SoSe 2015 Prüfungsfach: Prüfer: Datum / Zeit: Dauer: IB015 Grundlagen der Theoretischen Informatik Prof.
Modul Diskrete Mathematik WiSe 2011/12
Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen
Übung 13: Quellencodierung
ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten
Übungsblatt Nr. 7. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)
Fachprüfung. Nachrichtencodierung
Fachprüfung Nachrichtencodierung 14. Juli 2011 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name:... Matr.-Nr.:... Unterschrift:...
Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)
Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)
Die Hamming-Distanz definiert eine Metrik.
Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x
Informationstheorie und Codierung
Informationstheorie und Codierung 5. Fehlerkorrigierende Codierung Grundlagen Fehlererkennung, Fehlerkorrektur Linearcodes, Hamming-Codes Zyklische Codes und technische Realisierung Burstfehlerkorrektur
Fehler-korrigierende Codes
Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,
Übung zur Vorlesung. Informationstheorie und Codierung
Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.
Codierung Fehlerdetektion
Übersicht Elektromagnetische Wellen Frequenzen und Regulierungen Antennen Signale Signalausbreitung Multiplex Modulation Bandspreizverfahren Codierung Rauschen und Übertragungsfehler Fehlerdetektion Block-Codes
Einführung in die Codierungstheorie
Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................
Diskrete Mathematik II
Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2008 DiMA II - Vorlesung 01-07.04.2008 Einführung in die Codierungstheorie, Definition Codes 1 / 36 Organisatorisches
Informations- und Kodierungstheorie
Information Informations- und Kodierungstheorie Ziel: Sichere und effiziente Speicherung und Übertragung von Informationen: Gesendete Information soll unverfälscht beim Empfänger ankommen (räumlich, von
Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*
Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft [email protected] Elisabeth Pilgerstorfer [email protected] Johannes Kepler Universität Linz
Index. Chien-Suche, 220 CIRC, 234 Code, 2, 9 äquidistanter, 81
Index Abelsche Gruppe, 140 Abgeschlossenheit, 47, 140, 143 Abhängigkeit lineare, 53 Abtastfolge, 226 ACS-Operation, 279 Addition, 46, 163 Alphabet, 1 ARQ, 6, 174 Assoziativität, 47, 52, 140, 143 Audio-CD,
Error detection and correction
Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung
Codierungstheorie Teil 1: Fehlererkennung und -behebung
Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort
7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238
7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert
Grundlagen der Technischen Informatik. 3. Übung
Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe : Aufgabe 2: Aufgabe 3: Informationstheorie Huffman-Code Entropie
, 2016W Übungstermin: Fr.,
VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen
6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238
6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition
Codierung zur Fehlerkorrektur und Fehlererkennung
Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung
Man unterscheidet zwei Gruppen von Codes: Blockcodes und Faltungscodes.
Versuch: Kanalcodierung. Theoretische Grundlagen Kanalcodierungstechniken werden zur Erkennung und Korrektur von Übertragungsfehlern in digitalen Systemen eingesetzt. Auf der Sendeseite wird zur Originalinformation
Kodierungstheorie: Lineare Kodes
Kodierungstheorie: Lineare Kodes Seminararbeit Sommersemester 2015 Bearbeitet von: Sebastian Gombocz (Matrikelnummer: 48947) Christian Löhle (Matrikelnummer: 48913) Betreuer: Prof. Dr. Thomas Thierauf
Definition Information I(p)
Definition Information I(p) Definition I(p) Die Information I(p) eines Symbols mit Quellws p > 0 ist definiert als I(p) = log 1 p. Die Einheit der Information bezeichnet man als Bit. DiMa II - Vorlesung
Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)
Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer
Übungsaufgaben zur Vorlesung Quellencodierung
Übungsaufgaben zur Vorlesung Quellencodierung Aufgabe 1: Gegeben seien die Verbundwahrscheinlichkeiten zweier diskreter Zufallsvariablen x und y: P(x, y) x 1 = 1 x 2 = 2 x 3 = 3 y 1 = 1 0.1 0.1 0.1 y 2
Erzeugendensystem und Basis
Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination
Einführung in die Codierungstheorie
11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender
Fehlerkorrigierende Codes
Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................
Nachrichtentechnik 4 3 Kanalcodierung in der Nachrichtenübertragung
Beispiel für einen Wiederholungscode: n = 5 R C = /5 u = () c = ( ) und u 2 = () c 2 = ( ) gestörte Empfangsfolgen: f = ( ) und x = ( ) y = x + f = ( ) f 2 = ( ) und x 2 = ( ) y 2 = x 2 + f 2 = ( ) uˆ
4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140
4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}
Labor für Kommunikationssysteme
Labor für Kommunikationssysteme Leitung: Prof. Dr.-Ing. Diederich Wermser Versuch: Kanalcodierung Sommersemester 2017 Gruppe: Datum: Teilnehmer: Name: Matr.-Nr.: Name: Matr.-Nr.: Name: Matr.-Nr.: Laborumdruck
Grundbegrie der Codierungstheorie
Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2
Vorlesungsskript Kanalcodierung I WS 2011/2012
Vorlesungsskript Kanalcodierung I WS 2011/2012 von DR.-ING. VOLKER KÜHN aktualisiert von DR.-ING. DIRK WÜBBEN Fachbereich Physik/Elektrotechnik (FB 1) Arbeitsbereich Nachrichtentechnik Postfach 33 04 40
