Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen"

Transkript

1 Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen

2 Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter unterscheiden. Beispiel : c c Hamming Abstand d( , ) = 3

3 Hamming-Abstand D eines vollständigen Codes C Der Hamming-Abstand D eines vollständigen Codes C = {c1, c2,..., cn} ist der minimale Hamming-Abstand d zweier Codewörter c1 und c2. D(C) = min{ d(c1, c2), c1, c2 C, c1 = c2}

4 Hamming-Abstand Code C: Distanzen d: Zeichen Codewort a b c d e Zeichen a b c d e a b c d e Hamming-Distanz D = 3 Anzahl garantiert korrigierbarer Bitfehler = 1

5 Hamming-Abstand Die Fähigkeit eines Hamming-Codes, Fehler zu erkennen und Fehler zu beheben, hängt von seinem Hamming-Abstand ab. Erkennen von n-bit Fehlern: Ein Abstand von n + 1 wird benötigt Beheben von n-bit Fehlern: Ein Abstand von 2n + 1 wird benötigt

6 Konstruktion eines Hamming-Codes Gegeben: Datenwörter von m-bit Länge Datenwörter sind durch eine Hammingcodierung so abzusichern, dass alle 1-Bit Fehler sicher korrigiert werden können Gesucht: Um r Redundanzbits angereicherte legale Codewörter der Länge n = m + r mit einem Hamming-Abstand D = 3

7 Konstruktion eines Hamming-Codes legale Codewörter = korrekt und ohne Fehler übertragene Codewörter illegale Codewörter = durch 1-Bit Fehler verfälschte Codewörter legale und illegale Codewörter müssen disjunkte Mengen bilden zu jedem illegalen Codewort gibt es höchstens ein legales Codewort mit Hamming-Abstand d = 1

8 Wieviel Redundanz braucht man? Das zu sichernde Datenwort bestehe aus m Bits. Das Codewort der Länge n besteht dann aus m Datenbits plus r Prüfbits: n = m + r, m Datenbits, r Prüfbits Frage: Wie viele Prüfbits werden benötigt, um jeden 1-Bit-Fehler beheben zu können?

9 Wieviel Redundanz braucht man? n = m + r, m Datenbits, r Prüfbits Es gibt 2 m legale Codewörter der Länge n Bits. Pro legalem Codewort gibt es mindestens n illegale Codewörter mit Hamming-Abstand 1. (Invertieren eines Bits soll zu einem illegalem Codewort führen.) 2 n ist die Gesamtzahl der darstellbaren Codewörter.

10 n = m + r, m Datenbits, r Prüfbits (n + 1) 2 m = 2 n = 2 m+r (n illegale + 1 legales Wort) (n + 1) = 2 r (m + r + 1) 2 r Das ergibt die untere Grenze für die erforderliche Anzahl der Prüfbits r

11 Wieviel Redundanz braucht man? Beispiele: Datenbreite Prüfbits Codebreite Prüfbits/Datenbits % % % % % % %

12 Konstruktion eines Hamming-Codes r Prüfbits ergeben 2 r verschiedene Prüfwerte Codewortbreite m + r ist auf jeden Fall kleiner als 2 r Ziel: Aus dem Prüfwert, also den r Prüfbits, auf einfache Art erkennen, ob ein Fehler bei der Übertragung aufgetreten ist und die Position des gekippten Bits ermitteln.

13 Konstruktion eines Hamming-Codes Der Hamming-Code besteht aus m Daten-Bits (D 0,D 1,...,D m 1 ) und r Redundanz-Bits (R 0,R 1,..R r 1 ), zusammen n = m + r Bits. Diese Bits werden von 1 (nicht von 0 an!) bis m wie folgt Durchnummeriert: Redundanzbit R i bekommt die Nummer 2 i Die Datenbits (D 0,D 1, D m 1 ) erhalten der Reihenfolge nach die jeweils freien Nummern, also D 0 die Nummer 3, D 1 die Nummer 5 usw. Diese Nummern entsprechen genau den n Bitpositionen im Codewort.

14 Beispiel: Datenwörter der Länge 8, also Daten-Bits (D 0,D 1,...,D 7 ). Es werden 4 Redundanz-Bits gebraucht ( = =16 ). Anordnung der Bits im Codewort Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7

15 Jedes Redundanz-Bit wird nach dem even parity Verfahren berechnet unter Einbeziehung bestimmter Daten-Bits. Diese Datenbits befinden sich an bestimmten Bitpositionen im Codewort. Man sagt : Jedes Redundanz-Bit überwacht eine Reihe bestimmter Bitpositionen. Dabei gilt: Redundanz-Bit R i überwacht Bitposition k genau dann, wenn in der Binärdarstellung von k an Stelle i eine 1 ist. (Stellen werden beginnend mit 0 für das niederwertigste Bit gezählt.)

16 Beispiel 1: Bitposition 5 (Datenbit D 1 ) 5 10 = Eine 1 befindet sich an den Stellen 0 und 2. Position 5 wird also von den Redundanz-Bits R 0 und R 2 überwacht.

17 Beispiel 2: Redundanz-Bit R1 (Bitposition 2) Überwacht werden alle Bitpositionen mit einer 1 an Stelle 1 in der Binärdarstellung Das sind 00102, 00112, 01102, 01112, und 10112, also die Positionen 2, 3, 6, 7, 10 und und also 14 und 15 überschreiten die Codewortbreite, brauchen also nicht berücksichtigt zu werden.

18 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7 R R R R Binärdarstellung der Bitposition hier Position 510 =

19 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7 R R R R R 0 D 0 D 1 D 3 D 4 D 6 = 0 R 0 = D 0 D 1 D 3 D 4 D 6

20 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7 R R R R R 1 D 0 D 2 D 3 D 5 D 6 = 0 R 1 = D 0 D 2 D 3 D 5 D 6

21 Aufgabe 8 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7 R R R R R 2 D 1 D 2 D 3 D 7 = 0 R 2 = D 1 D 2 D 3 D 7

22 Aufgabe 8 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 D 5 D 6 D 7 R R R R R 3 D 4 D 5 D 6 D 7 = 0 R 3 = D 4 D 5 D 6 D 7

23 Berechnung der Prüfbits R 0 = D 0 D 1 D 3 D 4 D 6 R 1 = D 0 D 2 D 3 D 5 D 6 R 2 = D 1 D 2 D 3 D 7 R 3 = D 4 D 5 D 6 D 7

24 Hamming-Code: Codierung Schritt 1: Berechne die Prüfbits R i Schritt 2 Setze die Daten- und Prüfbits an die entsprechenden Bitpositionen im Codewort

25 Hamming-Code: Decodierung Schritt 1 Überprüfen der Paritätsgleichungen Setze Testwert auf 0 Für alle R i : Ist R i falsch, addiere 2 i zum Testwert Schritt 2 Eventuell Korrektur vornehmen Ergibt sich ein Testwert von 0, war die Übertragung korrekt Ergibt sich ein Testwert ungleich 0, ist das Bit an der Position gekippt, welche dem Testwert entspricht, also invertiere dieses Bit Schritt 3 Extrahiere die Datenbits

26 Beispiel Codieren Sie folgende Datenblöcke (D 0,...,D 4 ) indem Sie die Redundanzbits (R 0,...,R 3 ) berechnen und an den entsprechenden Positionen einfügen (Die Positionen 1 bis 9 geben Sie bitte wie in der Tabelle von links nach rechts an): 1) (01101) :

27 1) (D 0, D 1, D 2, D 3, D 4 ) = ( ) R 0 = D 0 D 1 D 3 D 4 = 0 R 1 = D 0 D 2 D 3 = 1 R 2 = D 1 D 2 D 3 = 0 R 3 = D 4 = 1 Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort)

28 1) (D 0, D 1, D 2, D 3, D 4 ) = ( ) Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort) x x 0 x x 1 Pos:R 3 R 2 R 1 R = = = Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort)

29 Beispiel Decodieren Sie die folgende empfangenen Codewörter: 1) :

30 Aufgabe 13 2) ( ) Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort) R 0 = D 0 D 1 D 3 D 4 = 1 richtig R 1 = D 0 D 2 D 3 = 0 falsch R 2 = D 1 D 2 D 3 = 1 falsch R 3 = D 4 = 0 richtig gekipptes Bit: = 6 10 ändere D 2 von 1 auf 0. Nachricht (D 0,D 1,D 2,D 3,D 4 ) = (10000) 30

31 1) ( ) Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort) = = = = falsch 6 10 D 2 => 0 Nachricht (D 0,D 1,D 2,D 3,D 4 ) = (10000)

32 2) ( ) Bitposition Inhalt R 0 R 1 D 0 R 2 D 1 D 2 D 3 R 3 D 4 (Codewort) = = = korrekt Nachricht (D 0,D 1,D 2,D 3,D 4 ) = (10000)

33

34 Bitfolgen interpretiert als Polynome Beispiel: entspricht dem Polynom : M(x) = 1 x x x x x x x x 0 = x 7 + x 4 + x 3 + x 1

35 polynomielle Arithmetik modulo 2 Koeffizienten entweder 0 oder 1 kein Übertrag zu berücksichtigen Addition und Subtraktion identisch, XOR

36 Wollen wir eine Bitfolge M(x) angereichert mit CRC-Information übertragen, senden wir eine um k Bits verlängerte Bitfolge M'(x), welche ohne Rest durch C(x) teilbar ist. 1. Multipliziere M(x) mit x k, d.h. hänge k Nullen an M(x) an. Sei T (x) dieses Produkt. 2. Teile T (x) durch C(x) und berechne den Rest R(x). 3. Subtrahiere den Rest R(x) von T (x). Das Ergebnis ist das gesuchte M'(x).

37 Was wird also übertragen, wenn gilt: 1) M (x) = C (x) = M' (x) =?

38 1) Was wird also übertragen, wenn gilt: M(x) = und C(x) = = 1 x x 2 +0 x 1 +1 x 0 => x 3 +x 2 +x 0 C(x) ist vom Grad 3, also an M(x) 3 Nullen anhängen. => T(x) =

39 T (x) : C (x) : : = Quotient Q(x) Rest R (x)

40 1) M(x) = und C(x) = C(x) ist vom Grad 3, also an M(x) 3 Nullen anhängen. => T(x) = R(x) = => M'(x) = T(x) R(x) = M'(x) =

41 T (x) : C (x) : : = Q(x) R (x)

42 Welche Fehler können mit CRC erkannt werden? Alle Einzelbitfehler, solange die Terme x k und x 0 Koeffizienten ungleich Null haben. Alle Doppelbitfehler, solange C(x) einen Faktor mit mindestens drei Termen hat. Jede ungerade Fehlerzahl, solange C(x) den Faktor (x + 1) enthält. Jeden Burstfehler, bei denen die Burstlänge weniger als k Bit beträgt.

43 Leichte Hardware-Implementation mittels Master-Slave Flip-Flops und XOR-Gattern XOR-Gatter vor Bit n, wenn im Generator der Term x n enthalten ist Nachricht bitweise einschieben Rest steht zum Schluß in Master-Slave-Flip-Flops Anzahl Flip-Flops : Anzahl Bits - 1, XOR-Gatter ( ) : vor jedem Term x n (Anzahl Einsen - 1) Beispiel: Generator x5 x 4 x 2 x 0 (110101) Es werden 5 Flip-Flops und 3 XOR Gatter benötigt.

44

45

46

47

48

49

50

51

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7

Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7 Fehlerdetektion Cyclic Redanduncy Check Grundlagen der Rechnernetze Übertragungssicherung 7 Modulo 2 Arithmetik Addition Modulo 2 Subtraktion Modulo 2 Multiplikation Modulo 2 A B A B 0 0 0 1 1 0 1 1 A

Mehr

Grundlagen der Rechnernetze

Grundlagen der Rechnernetze Grundlagen der Rechnernetze Übertragungssicherung Übersicht Fehlerdetektion Fehlerkorrektur Flusskontrolle Fehlerkontrolle Framing Grundlagen der Rechnernetze Übertragungssicherung 2 Fehlerdetektion Grundlagen

Mehr

Grundlagen der Rechnernetze. Übertragungssicherung

Grundlagen der Rechnernetze. Übertragungssicherung Grundlagen der Rechnernetze Übertragungssicherung Übersicht Fehlerdetektion Fehlerkorrektur Flusskontrolle Fehlerkontrolle Framing Grundlagen der Rechnernetze Übertragungssicherung 2 Fehlerdetektion Grundlagen

Mehr

Übungsblatt 5 - Musterlösung

Übungsblatt 5 - Musterlösung Universität Mannheim Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Christoph Kuhmünch, Gerald Kühne Praktische Informatik II SS 2000 Übungsblatt 5 - Musterlösung Aufgabe 1: Huffman-Codierung

Mehr

Systeme II 3. Die Datensicherungsschicht

Systeme II 3. Die Datensicherungsschicht Systeme II 3. Die Datensicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 12.05.2016 1 Fehlererkennung: CRC Effiziente

Mehr

Grundlagen der Rechnernetze. Übertragungssicherung

Grundlagen der Rechnernetze. Übertragungssicherung Grundlagen der Rechnernetze Übertragungssicherung Übersicht Fehlerdetektion Fehlerkorrektur Flusskontrolle Fehlerkontrolle Framing Grundlagen der Rechnernetze Übertragungssicherung 2 Fehlerdetektion Grundlagen

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 2. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Hamming-Distanz Fehlererkennung

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Codierung Fehlerdetektion

Codierung Fehlerdetektion Übersicht Elektromagnetische Wellen Frequenzen und Regulierungen Antennen Signale Signalausbreitung Multiplex Modulation Bandspreizverfahren Codierung Rauschen und Übertragungsfehler Fehlerdetektion Block-Codes

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt.

7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt. Informatik 3 Übung 07 Georg Kuschk 7.1) CRC-Verfahren 7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt. 32 Bit für die eigentliche Nachricht M(x) und 8 Bit für

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz

Übungsblatt 8. Aufgabe 1 Datentransferrate und Latenz Übungsblatt 8 Abgabe: 15.12.2011 Aufgabe 1 Datentransferrate und Latenz Der Preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz.

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 3 am 19.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

Untersuchungen an Cyclic Redundancy Checks (CRC)

Untersuchungen an Cyclic Redundancy Checks (CRC) Untersuchungen an Cyclic Redundancy Checks (CRC) Autor: Luca Costa, HTW Chur, luca.costa@tet.htwchur.ch Dozent: Bruno Wenk, HTW Chur, bruno.wenk@fh-htwchur.ch Inhaltsverzeichnis 1 Cyclic Redundancy Checks

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Übung zu Drahtlose Kommunikation. 7. Übung

Übung zu Drahtlose Kommunikation. 7. Übung Übung zu Drahtlose Kommunikation 7. Übung 03.12.2012 Aufgabe 1 (Cyclic Redundancy Check) Gegeben ist das Generator-Polynom C(x) = x 4 + x 3 + 1 a) Zeichnen Sie die Hardware-Implementation zum obigen Generator-Polynom

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe : Aufgabe 2: Aufgabe 3: Informationstheorie Huffman-Code Entropie

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 04.11.2016 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

grundzüge der informatik - tutorium 4/2 - arnaud moreau mittwoch

grundzüge der informatik - tutorium 4/2 - arnaud moreau mittwoch grundzüge der informatik - tutorium 4/2 - arnaud moreau mittwoch 11.11.05 fahrplan polynomdivision polynomcodes codieren decodieren zahlensysteme zahlendarstellungen polynomdivision (x 4-4x 3 +4x 2 +4x-5):(x

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Praktikum Fehlerreduktionssysteme / Codierungstheorie

Praktikum Fehlerreduktionssysteme / Codierungstheorie Fakultät Elektrotechnik und Informationstechnik Institut für Nachrichtentechnik Lehrstuhl Theoretische Nachrichtentechnik Prof. Eduard Jorswieck, Anne Wolf Praktikum Fehlerreduktionssysteme / Codierungstheorie

Mehr

5. Übungsserie. Sophia Schumann Matr. XXX

5. Übungsserie. Sophia Schumann Matr. XXX 5. Übungsserie Montag, 23. November 2009 1. Aufgabe Es soll die Bitfolge 101001100111 mit dem Hammingcode zum Senden aufbereitet werden. Die Bitfolge hat eine Länge von 12 Bits. Deshalb legt man sich eine

Mehr

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)

Mehr

Fehlererkennung. Fehlererkennung

Fehlererkennung. Fehlererkennung Fehlererkennung Seite 1 Prof. Dr. W. Kowalk Datenübertragung über physikalische Signale mehr oder minder hohe Anfälligkeit gegen Verfälschung der Signale Empfänger interpretiert Signal anders als von Sender

Mehr

Theorie der Programmiersprachen

Theorie der Programmiersprachen slide 1 Vorlesung Theorie der Programmiersprachen Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Heute Komponenten eines Computers Speicher Die

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

Rechnernetze 1 Vorlesung im SS 07

Rechnernetze 1 Vorlesung im SS 07 Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller roland.wismueller@uni-siegen.de Tel.: 740-4050, H-B 8404 Zusammenfassung: Protokollhierarchie Schichten, Protokolle und Dienste ISO-OSI Referenzmodell

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Kapitel 13: Syndromcodierung / Hamming Codes

Kapitel 13: Syndromcodierung / Hamming Codes Kapitel 3: Syndromcodierung / Hamming Codes Ziele des Kapitels Lineare Codes Zyklische Codes Copyright M. Gross, ETH Zürich 26, 27 2 Parity-Check-Matrix Theorem: Die Minimaldistanz eines linearen Codes

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 24.03.2017 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

Gruppe. Kanalcodierung

Gruppe. Kanalcodierung Kanalcodierung Ziele Mit diesen rechnerischen und experimentellen Übungen wird die prinzipielle Vorgehensweise zur Kanalcodierung mit linearen Block-Codes und mit Faltungscodes erarbeitet. Die konkrete

Mehr

Trellis Diagramme und Viterbi-Decoder

Trellis Diagramme und Viterbi-Decoder Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238 7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur

Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Bachelorarbeit Gregor Wurm, Betreuer: Prof. E. Arrigoni Institut für Theoretische Physik der Technischen Universiät Graz 24. Sept. 2010 Übersicht

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

Binäre Darstellung ganzer Zahlen

Binäre Darstellung ganzer Zahlen Vorlesung Objektorientierte Softwareentwicklung Exkurse use Binäre Darstellung ganzer Zahlen Binärdarstellung natürlicher Zahlen Ganze Zahlen im Einerkomplement Ganze Zahlen im Zweierkomplement Elementare

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 08.04.2016 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 5 14. Mai 18. Mai 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Fehlererkennung und -behandlung. Paritätsverfahren

Fehlererkennung und -behandlung. Paritätsverfahren Fehlererkennung und -behandlung Gründe Thermische Elektronenbewegung in Halbleitern oder Leitungen Elektromagnetische Einstrahlung (Motoren, Blitze, benachbarte Leitungen) Bitfehlerrate ist die Wahrscheinlichkeit,

Mehr

Korrigieren von Bitfehlern

Korrigieren von Bitfehlern Korrigieren von Bitfehlern Datenblock Codewort 00 -> 00000 01 -> 00111 10 -> 11001 11 -> 11110 Empfangen Nächstes gültiges CW Daten Korrigieren von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Zyklische Codes & CRC

Zyklische Codes & CRC Zyklische Codes & CRC Copyright 2003 2011 Ralf Hoppe Revision : 257 Inhaltsverzeichnis 1 Einführung 2 2 Grundlagen 2 3 Erzeugung zyklischer Codes 2 4 Verifikation 3 4.1 Prinzip.......................................

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 5. Aufgabenblatt 1. Aufgabe: Kanalkodierung Zweck der Kanalcodierung: - Abbildung der information bits des Quellkodes

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Kapitel 4 Zyklischer Redundanzcode (CRC) mit Fehlererkennung

Kapitel 4 Zyklischer Redundanzcode (CRC) mit Fehlererkennung Kapitel 4 Zyklischer Redundanzcode (CRC) mit Fehlererkennung 4. Einleitung Es sei X eine Nachrichtenquelle, die Zeichen aus ihrem Zeichenvorrat X = {x, x2, LL,xn} über einen Binärkanal an eine Nachrichtensenke

Mehr

5: Körper. 173 S. Lucks Diskr Strukt. (WS 16/17) 5: Körper

5: Körper. 173 S. Lucks Diskr Strukt. (WS 16/17) 5: Körper 5: Körper Vor Kurzem: Algebraische Strukturen (G, +) mit einer Operation Halbgruppe: 1 Operation (z.b. Addition ) Gruppe: 1 Operation und Umkehr-Operation ( Subtraktion ) Nun: Algebraische Strukturen (K,

Mehr

2. Übung zur Vorlesung Rechnernetze 1, WS05/ (Abgabe am )

2. Übung zur Vorlesung Rechnernetze 1, WS05/ (Abgabe am ) UNIVERSITÄT ULM Fakultät für Informatik Verteilte Systeme Prof. Dr. Peter Schulthess Markus Fakler 2. Übung zur Vorlesung Rechnernetze 1, WS05/06 25.11.2005 (Abgabe am 9.12.2005) Aufgabe 1: Leitungscodierung

Mehr

Rechentraining. 4 a) b) c) d) e) f) g) h)

Rechentraining. 4 a) b) c) d) e) f) g) h) Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88

Mehr

3.4 Codierung mit 0 und 1 ist überall 3.4. CODIERUNG MIT 0 UND 1 IST ÜBERALL 17. Prüfung einer IBAN

3.4 Codierung mit 0 und 1 ist überall 3.4. CODIERUNG MIT 0 UND 1 IST ÜBERALL 17. Prüfung einer IBAN 3.4. CODIERUNG MIT 0 UND 1 IST ÜBERALL 17 Prüfung einer IBAN Hierfür muss das Verfahren umgekehrt gedacht werden: Man nimmt für DE38 24050110 0012345674 nun 240501100012345674, hängt die Länderkennung

Mehr

ChaosSeminar - Informationstheorie

ChaosSeminar - Informationstheorie Alexander.Bernauer@ulm.ccc.de Stephanie.Wist@ulm.ccc.de 18. November 2005 Motivation schnelle Übertragung von Daten über gestörten Kanal Shannon48 Was ist Information? Information ist Abnahme von Unsicherheit

Mehr

Die Größe A(n, d) und optimale Codes

Die Größe A(n, d) und optimale Codes Die Größe A(n, d) und optimale Codes Definition Optimaler Code Wir definieren A(n, d) = max{m binärer (n, M, d) Code} Ein (n, M, d)-code heißt optimal, falls M = A(n, d). Bestimmung von A(n, d) ist offenes

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Übungsklausur WS 13/14

Übungsklausur WS 13/14 Übungsklausur WS 13/14 Name, Vorname: Geburtsdatum: Matrikelnummer: Datum: Für die Bearbeitung der Klausur dürfen keine Bleistifte oder Stifte mit roter Farbe verwendet werden. Zusatzblätter, welche nicht

Mehr

Praktische Informatik II FSS 2012 Programmierklausur

Praktische Informatik II FSS 2012 Programmierklausur Praktische Informatik II FSS 2012 Programmierklausur Prof. Dr. Heiner Stuckenschmidt 20.04.2012 Name, Vorname: Matrikelnummer: CVS-Username: CVS-Password: automatisch generierter Benutzername automatisch

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 3.1: Codierungen a) Vervollständigen Sie folge Tabelle,

Mehr

Übungsblatt Nr. 7. Lösungsvorschlag

Übungsblatt Nr. 7. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)

Mehr

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019

Kanalkodierung. 6 Kanalkodierung Zielstellung. Störungen der übertragenen Daten. 6 Kanalkodierung Zielstellung WS 2018/2019 Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 2018/2019 6. Kanalkodierung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 6 Kanalkodierung Zielstellung en der

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr