Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7

Größe: px
Ab Seite anzeigen:

Download "Fehlerdetektion. Cyclic Redanduncy Check. Grundlagen der Rechnernetze Übertragungssicherung 7"

Transkript

1 Fehlerdetektion Cyclic Redanduncy Check Grundlagen der Rechnernetze Übertragungssicherung 7

2 Modulo 2 Arithmetik Addition Modulo 2 Subtraktion Modulo 2 Multiplikation Modulo 2 A B A B A B A B A B A B Beispiel = Grundlagen der Rechnernetze Übertragungssicherung 8

3 Division Modulo : 1101 =???? Also: : 1101 = Rest Grundlagen der Rechnernetze Übertragungssicherung 9

4 CRC Idee : 1101 Grundlagen der Rechnernetze Übertragungssicherung 10

5 Cyclic Redundancy Check (CRC) n k Nullen an Datenblock D anhängen: Bestimmen von FCS F: n Bit Frame T k Bit Datenblock D (n k) Bit FCS F T ist immer durch P teilbar: (n k+1) Pattern P Zu versendender Frame T: Grundlagen der Rechnernetze Übertragungssicherung 11

6 Auswirkung von Fehlern Sender Empfänger T E T r Ein Fehler mit nicht teilbarem Fehler Pattern wird erkannt: Grundlagen der Rechnernetze Übertragungssicherung 12

7 CRC mit Polynomen Darstellung von Datenblock und Pattern als Polynom: Datenblock um n k Stellen (also hier 4 Stellen) verschieben: k Bit Datenblock D (n k+1) Pattern P Berechnung der FCS: Darstellung des zu versendenden Frames T Grundlagen der Rechnernetze Übertragungssicherung 13

8 Polynom Division Modulo 2 X 6 + X 4 + X 2 + X : X 3 + X = Grundlagen der Rechnernetze Übertragungssicherung 14

9 Auswirkung von Fehlern Sender Empfänger T E T r Für Generator P(X) und T(X)/P(X) = Q(X) werden nicht teilbare Fehler Pattern erkannt: Grundlagen der Rechnernetze Übertragungssicherung 15

10 Erkennbare und nicht erkennbare Fehler Ein Fehler ist nicht erkennbar genau dann wenn: Single Bitfehler ist immer erkennbar, wenn P(X) mindestens zwei Terme enthält Bitfehler Burst < Anzahl Check Bits ist immer erkennbar, wenn P(X) den Term 1 enthält Grundlagen der Rechnernetze Übertragungssicherung 16

11 Weitere CRC Fakten Double Bitfehler immer erkennbar, wenn P(X) einen Faktor mit drei Termen besitzt (ohne Beweis) Ungeradzahlige Bitfehler immer erkennbar, solange P(X) einen Faktor (X+1) enthält (ohne Beweis) Beliebte Polynome CRC 12 = X 12 + X 11 + X 3 + X CRC 16 = X 16 + X 15 + X CRC CCITT = X 16 + X 12 + X CRC 32 = X 32 + X 26 + X 23 + X 22 + X 16 + X 12 + X 11 + X 10 + X 8 + X 7 + X 5 + X 4 + X 2 + X + 1 Grundlagen der Rechnernetze Übertragungssicherung 17

12 Fehlerkorrektur Grundlagen der Rechnernetze Übertragungssicherung 18

13 Ablauf der Fehlerkorrektur Bildquelle: William Stallings, Data and Computer Communications, 2004 Grundlagen der Rechnernetze Übertragungssicherung 19

14 Beispiel Two Dimensional Parity Grundlagen der Rechnernetze Übertragungssicherung 20

15 Erkenn und Korrigierbarkeit von Fehlern Ein Bit Fehler immer korrigierbar Zwei Bit Fehler immer erkennbar Zwei Bit Fehler nicht immer korrigierbar Nicht erkennbarer Fehler Grundlagen der Rechnernetze Übertragungssicherung 21

16 Hamming Distanz Hamming Distanz d(v 1, v 2 ) zwischen zwei n Bit Sequenzen v 1 und v 2 Beispiel: vier 4 Bit Sequenzen mit einer paarweisen Hamming Distanz von mindestens 2 Wieviele Bit Fehler können erkannt werden? Grundlagen der Rechnernetze Übertragungssicherung 22

17 Block Codes Datenblock Codewort 00 -> > > > Allgemein: f : Datenblock Codewort Ablauf der Übertragung im Falle keiner Bitfehler Sender Empfänger Erkennen von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde b empfangen: Grundlagen der Rechnernetze Übertragungssicherung 23

18 Korrigieren von Bitfehlern Datenblock Codewort 00 -> > > > Empfangen Nächstes gültiges CW Daten Korrigieren von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde b empfangen: Grundlagen der Rechnernetze Übertragungssicherung 24

19 Für k Daten Bits und n Bit Code Wörter gilt Eindeutiges C Wort für jeden D Block, also Benötigtes Verhältnis zwischen k und r=nk zum Korrigieren von allen 1 Bit Fehlern? Benötigte Anzahl gültiger Code Wörter Redundante Bits und Code Redundanz Code Rate Code Distanz für Code {b 1,...,b k } Grundlagen der Rechnernetze Übertragungssicherung 25

Korrigieren von Bitfehlern

Korrigieren von Bitfehlern Korrigieren von Bitfehlern Datenblock Codewort 00 -> 00000 01 -> 00111 10 -> 11001 11 -> 11110 Empfangen Nächstes gültiges CW Daten Korrigieren von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Kapitel 13: Syndromcodierung / Hamming Codes

Kapitel 13: Syndromcodierung / Hamming Codes Kapitel 3: Syndromcodierung / Hamming Codes Ziele des Kapitels Lineare Codes Zyklische Codes Copyright M. Gross, ETH Zürich 26, 27 2 Parity-Check-Matrix Theorem: Die Minimaldistanz eines linearen Codes

Mehr

Fehlererkennung. Fehlererkennung

Fehlererkennung. Fehlererkennung Fehlererkennung Seite 1 Prof. Dr. W. Kowalk Datenübertragung über physikalische Signale mehr oder minder hohe Anfälligkeit gegen Verfälschung der Signale Empfänger interpretiert Signal anders als von Sender

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Fehlererkennung und -behandlung. Paritätsverfahren

Fehlererkennung und -behandlung. Paritätsverfahren Fehlererkennung und -behandlung Gründe Thermische Elektronenbewegung in Halbleitern oder Leitungen Elektromagnetische Einstrahlung (Motoren, Blitze, benachbarte Leitungen) Bitfehlerrate ist die Wahrscheinlichkeit,

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Übung zu Drahtlose Kommunikation. 7. Übung

Übung zu Drahtlose Kommunikation. 7. Übung Übung zu Drahtlose Kommunikation 7. Übung 03.12.2012 Aufgabe 1 (Cyclic Redundancy Check) Gegeben ist das Generator-Polynom C(x) = x 4 + x 3 + 1 a) Zeichnen Sie die Hardware-Implementation zum obigen Generator-Polynom

Mehr

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018

Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 5 14. Mai 18. Mai 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

(eindimensionaler) Paritätscode: Codes (8a)

(eindimensionaler) Paritätscode: Codes (8a) (eindimensionaler) Paritätscode: Codes (8a) Cyclic Redundancy Check (CRC) view data bits, D, as a binary number choose r+ bit pattern (generator), G goal: choose r CRC bits, R, such that exactly

Mehr

Systeme II 4./5. Woche Sicherungsschicht. Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg

Systeme II 4./5. Woche Sicherungsschicht. Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Systeme II 4./5. Woche Sicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Fehlerkontrolle Zumeist gefordert von der Vermittlungsschicht

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 2. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Hamming-Distanz Fehlererkennung

Mehr

Übungsblatt 5 - Musterlösung

Übungsblatt 5 - Musterlösung Universität Mannheim Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Christoph Kuhmünch, Gerald Kühne Praktische Informatik II SS 2000 Übungsblatt 5 - Musterlösung Aufgabe 1: Huffman-Codierung

Mehr

Untersuchungen an Cyclic Redundancy Checks (CRC)

Untersuchungen an Cyclic Redundancy Checks (CRC) Untersuchungen an Cyclic Redundancy Checks (CRC) Autor: Luca Costa, HTW Chur, luca.costa@tet.htwchur.ch Dozent: Bruno Wenk, HTW Chur, bruno.wenk@fh-htwchur.ch Inhaltsverzeichnis 1 Cyclic Redundancy Checks

Mehr

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Rechnernetze 1 Vorlesung im SS 07

Rechnernetze 1 Vorlesung im SS 07 Rechnernetze 1 Vorlesung im SS 07 Roland Wismüller roland.wismueller@uni-siegen.de Tel.: 740-4050, H-B 8404 Zusammenfassung: Protokollhierarchie Schichten, Protokolle und Dienste ISO-OSI Referenzmodell

Mehr

Zyklische Codes & CRC

Zyklische Codes & CRC Zyklische Codes & CRC Copyright 2003 2011 Ralf Hoppe Revision : 257 Inhaltsverzeichnis 1 Einführung 2 2 Grundlagen 2 3 Erzeugung zyklischer Codes 2 4 Verifikation 3 4.1 Prinzip.......................................

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes

Fehlerkorrektur. Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68 Flusskontrolle Grundlagen der Rechnernetze Übertragungssicherung 68 Data Link Layer Frame synchronization how to make frames Flow control adjusting the rate of data Error control correction of errors Addressing

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der

Mehr

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25

Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25 Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen

Mehr

Algorithmensammlung Codierungstheorie von Alfred Franz und Hauke Hund Sommersemester 2007

Algorithmensammlung Codierungstheorie von Alfred Franz und Hauke Hund Sommersemester 2007 Algorithmensammlung Codierungstheorie von Alfred Franz und Hauke Hund Sommersemester 2007 Inhaltsverzeichnis Hamming-Code... 2 Codewort überprüfen und ggf. korrigieren...2 BCH-Code... 2 Einen BCH-Code

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Theorie der Programmiersprachen

Theorie der Programmiersprachen slide 1 Vorlesung Theorie der Programmiersprachen Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Heute Komponenten eines Computers Speicher Die

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Spektrum und Bandbreite

Spektrum und Bandbreite Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Bitübertragungsschicht

Bitübertragungsschicht Bitübertragungsschicht Sicherungsschicht Digitale Basisband Modulation Beispiel: EIA-232 Bitübertragungsschicht 1 / 50 Kommunikationsnetze I 21.10.2009 Bitübertragungsschicht Sicherungsschicht Digitale

Mehr

5: Körper. 173 S. Lucks Diskr Strukt. (WS 16/17) 5: Körper

5: Körper. 173 S. Lucks Diskr Strukt. (WS 16/17) 5: Körper 5: Körper Vor Kurzem: Algebraische Strukturen (G, +) mit einer Operation Halbgruppe: 1 Operation (z.b. Addition ) Gruppe: 1 Operation und Umkehr-Operation ( Subtraktion ) Nun: Algebraische Strukturen (K,

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur

Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.

Mehr

7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt.

7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt. Informatik 3 Übung 07 Georg Kuschk 7.1) CRC-Verfahren 7.1 a) Für die Übertragung der Nachricht mittels des Polynoms T(x) werden 40 Bit benötigt. 32 Bit für die eigentliche Nachricht M(x) und 8 Bit für

Mehr

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013

Vorlesung Theoretische Grundlagen Fehlerkorrigierende Codes Jörn Müller-Quade 29. Januar 2013 Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 29. Januar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Sicherheit in der Informationstechnik Dipl.-Ing. (FH) Mario Lorenz Fakultät für Elektrotechnik und Informationstechnik

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Nonreturn to Zero (NRZ)

Nonreturn to Zero (NRZ) Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem

Mehr

Fehlerkorrektur. Allgemeines. Fehlerwerte und -arten. Prof. Dr. Horst Völz. aes.cs.tu-berlin.de/voelz

Fehlerkorrektur. Allgemeines. Fehlerwerte und -arten. Prof. Dr. Horst Völz. aes.cs.tu-berlin.de/voelz Prof. Dr. Horst Völz Fehlerkorrektur aes.cs.tu-berlin.de/voelz Allgemeines Kontinuierliche Geräte und Signal werden langsam schlechter, daher ist ein Ausfall voraus zu sehen Digitales fällt unvermittelt

Mehr

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch:

Fehlerkorrektur. Einzelfehler besitze die Wahrscheinlichkeit p. Es gelte Unabhängigkeit der Fehlereinflüsse Für ein Wort der Länge n gelte noch: Gliederung Kanalstörungen Einfache Verfahren Hamming-Abstand Technische Schaltungen Binäre Arithmetik Matrizenrechnung Typische Codes Fehlerkorrektur Fehlertypen Merksätze: Alle Fehler sind statistisch

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Johannes Buchsteiner, Sebastian Strumegger. June 10, Biometrische Kryptographie. Commitment Schema. Fehler Korrigieren. Fuzzy Commitment.

Johannes Buchsteiner, Sebastian Strumegger. June 10, Biometrische Kryptographie. Commitment Schema. Fehler Korrigieren. Fuzzy Commitment. ? Johannes Buchsteiner, Sebastian Strumegger s June 10, 2016 Inhalt? s 1? 2 3 s 4 ? Charakteristika? s Fingerabdruck Iris Handvenen Ohr Gesicht Stimme Unterschrift... Diese können benutzt werden um...

Mehr

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 30. Juni 2006

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 30. Juni 2006 Vernetzte Systeme Übungsstunde 30.06.2006 Adrian Schüpbach scadrian@student.ethz.ch 30. Juni 2006 Adrian Schüpbach (ETH Zürich) Vernetzte Systeme SS 2006 1 / 33 Letzte Serie! Letzte Serie! Adrian Schüpbach

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Cyclic Redundancy Code (CRC)

Cyclic Redundancy Code (CRC) .3..3 Cyclic Redundancy Code (CRC) Hat die Receive Machine die MAC PDU empfangen, ist nicht garantiert, daß alle Bits unbeschädigt angekommen sind. So ist die hardware-basierte Fehlererkennung durch den

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

Praktikum Fehlerreduktionssysteme / Codierungstheorie

Praktikum Fehlerreduktionssysteme / Codierungstheorie Fakultät Elektrotechnik und Informationstechnik Institut für Nachrichtentechnik Lehrstuhl Theoretische Nachrichtentechnik Prof. Eduard Jorswieck, Anne Wolf Praktikum Fehlerreduktionssysteme / Codierungstheorie

Mehr

2 Sicherungsschicht (Data Link Layer)

2 Sicherungsschicht (Data Link Layer) Übertragungsdauer Ausbreitungsgeschwindigkeit T ges = T s + T a In üblichen Medien (Kabel, Glasfaser) ist v 2 3 c 200 000km s Bandbreiten-Verzögerungs-Produkt auf dem Medium befindet. ist das Datenvolumen,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Trellis Diagramme und Viterbi-Decoder

Trellis Diagramme und Viterbi-Decoder Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

Labor für Kommunikationssysteme

Labor für Kommunikationssysteme Labor für Kommunikationssysteme Leitung: Prof. Dr.-Ing. Diederich Wermser Versuch: Kanalcodierung Sommersemester 2017 Gruppe: Datum: Teilnehmer: Name: Matr.-Nr.: Name: Matr.-Nr.: Name: Matr.-Nr.: Laborumdruck

Mehr

Kap. 4. Sicherungs-Schicht ( Data Link Schicht)

Kap. 4. Sicherungs-Schicht ( Data Link Schicht) Kap. 4 Sicherungs-Schicht ( Data Link Schicht) Sicherungs-Schicht (Data-Link-Schicht) Rolle: Beförderung eines Datagramms von einem Knoten zum anderen via einer einzigen Kommunikationsleitung. 4-2 Dienste

Mehr

Über Polynome mit Arithmetik modulo m

Über Polynome mit Arithmetik modulo m Über Polynome mit Arithmetik modulo m Um den Fingerprinting-Satz über die Fingerabdrücke verschiedener Texte aus dem 37. Algorithmus der Woche ( http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo37.php

Mehr

in der Mathematik-Ausbildung

in der Mathematik-Ausbildung Fehler-korrigierende in der Mathematik-Ausbildung Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB DMV-Jahrestagung, Erlangen 15.-19.9.2008 Agenda Bedeutung ECC-Speicher HDD

Mehr

Technische Grundlagen der Informatik Test Minuten Gruppe A

Technische Grundlagen der Informatik Test Minuten Gruppe A Technische Grundlagen der Informatik Test 1 24.03.2017 90 Minuten Gruppe A Matrikelnr. Nachname Vorname Unterschrift Deckblatt sofort ausfüllen und unterschreiben! Bitte deutlich und nur mit Kugelschreiber

Mehr

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls Perfekte Codes Definition Perfekter Code Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls ( ) d 1 M V n = 2 n. 2 D.h. die maximalen disjunkten Hammingkugeln um die Codeworte partitionieren {0,

Mehr

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238

7. Woche Extra-Material: - Beispiele von Codes. 7. Woche: Beispiele von Codes 144/ 238 7 Woche Extra-Material: - Beispiele von Codes 7 Woche: Beispiele von Codes 144/ 238 Hamming-Matrix H(h) und Hammingcode H(h) Wir definieren nun eine Parity-Check Matrix H(h) von einem neuen Code: Parametrisiert

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Fachprüfung. Nachrichtencodierung

Fachprüfung. Nachrichtencodierung Fachprüfung Nachrichtencodierung 6. August 2009 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Vorlesungsscript, Übungsaufgaben Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Codes on Graphs: Normal Realizations

Codes on Graphs: Normal Realizations Codes on Graphs: Normal Realizations Autor: G. David Forney, Jr. Seminarvortrag von Madeleine Leidheiser und Melanie Reuter Inhaltsverzeichnis Einführung Motivation Einleitung Graphendarstellungen Trellis

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Interne Links auf dieser Seite: Abbildungsverzeichnis Inhaltsverzeichnis Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Man löse die Gleichung x 3 2x 2 112 = 0 Dies ist eine kubische Gleichung.

Mehr