2 Restklassenringe und Polynomringe
|
|
|
- Sophie Mann
- vor 9 Jahren
- Abrufe
Transkript
1 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen modulo m schreiben wir Z/mZ = {a + mz a Z} = {mz, 1 + mz,..., (m 1) + mz}. Wir wollen die Menge Z/mZ zu einem Ring machen, indem wir Addition und Multiplikation von Restklassen erklären. Definition. Seien a, b Z. Setze 2.1 Bemerkung. (a + mz) + (b + mz) := (a + b) + mz (a + mz) (b + mz) := ab + mz a) Addition und Multiplikation sind unabhängig von der Wahl der Repräsentanten wohl definiert. b) Z/mZ ist ein Ring mit Null = mz, Eins = 1 + mz. c) Ist m = p eine Primzahl, so ist Z/pZ ein Körper. d) Ist m > 1 keine Primzahl, so ist Z/mZ kein Integritätsbereich. Beweis. Schreibe im Folgenden für mod m. a) Sei a + mz = a + mz und b + mz = b + mz. Zu zeigen: (a + b) + mz = (a + b ) + mz und ab + mz = a b + mz Nach Voraussetzung ist also a a und b b. Aus I. 5.5 folgt a + b a + b und ab a b, d.h. (a + b) + mz = (a + b ) + mz und ab + mz = a b + mz. 1
2 b) mz = 0+mZ und 1+mZ sind offenbar neutral bezüglich der Addition bzw. Multiplikation, und ( a) + mz ist ein Negatives von a + mz. Von den Rechenregeln zeigen wir exemplarisch das Distributivgesetz; für die übrigen Gesetze wären analoge Rechnungen durchzuführen. (a + mz) ((b + mz) + (c + mz)) = (a + mz) ((b + c) + mz) = = a(b + c) + mz = (ab + ac) + mz = (ab + mz) + (ac + mz) = = (a + mz)(b + mz) + (a + mz)(c + mz). c) Noch zu zeigen: Ist a + pz pz, so gibt es ein b mit (a + pz)(b + pz) = 1 + pz: a + pz pz = p a = (p, a) = 1 = I.6.4 Es gibt x, y Z mit px + ay = 1 = ay 1 mod p = ay + pz = 1 + pz, also auch (a + pz)(y + pz) = ay + pz = 1 + pz. d) Ist m = ab mit 0 < a b < m, so ist (a + mz)(b + mz) = ab + mz = m + mz = mz = 0, aber a + mz 0 und b + mz 0. Schreibe 1 für die Eins 1 + mz von Z/mZ und k für } 1 +. {{ } = (1 + mz) (1 + mz) = k + mz k mal Dann ist Z/Z = {0, 1, 2,..., m 1} und die Addition und Multiplikation in Z/mZ kann auch wie folgt beschrieben werden: (k + l Z/mZ) = (Divisionsrest modulo m von k + l Z) Beispiele für Verknüpfungstabellen m = = = 1 m = = = = 0 2
3 Einheiten und Nullteiler in Z/mZ. Setze a := a + mz Beispiele. m = 2 : 1 ist Einheit; 0 ist Nullteiler; ϕ(2) = 1 m = 3 : 1, 2 sind Einheiten; 0 ist Nullteiler; ϕ(3) = 2 m = 4 : 1, 3 sind Einheiten; 0, 2 sind Nullteiler; ϕ(4) = 2 m = 6 : 1 1 = 1, 2 3 = 6 = 0, 4 3 = 0, 5 5 = 25 = 1 = 1, 5 sind Einheiten; 0, 2, 3, 4 sind Nullteiler; ϕ(6) = 2 m = p Primzahl: Z/pZ ist ein Körper mit p Elementen = 0 ist Nullteiler, die übrigen p 1 Elemente sind Einheiten; ϕ(p) = p 1. Diese Rechnungen führen zur Vermutung. ϕ(m) = Anzahl der Einheiten von Z/mZ. 2.2 Satz. In Z/mZ gibt es genau ϕ(m) Einheiten, nämlich die primen Restklassen modulo m. (Dies sind die a+mz mit (a, m) = 1). Die übrigen Restklassen sind Nullteiler. Beweis. Sei (a, m) = 1. Nach I.7.8 gilt dann a ϕ(m) 1 mod m, d.h. (a + mz)(a ϕ(m) 1 + mz) = a ϕ(m) + mz = 1 + mz = 1. Damit ist a + mz Einheit in Z/mZ. Sei (a, m) = d > 1; m = dd, a = d d. Dann gilt ad = d dd = d m 0 mod m und 1 d < m. Also ist d + mz 0, aber (a + mz)(d + mz) = ad + mz = 0 + mz = Korollar. Das Produkt aller von Null verschiedenen Elemente von Z/pZ ist 1. Für alle r Z/pZ ist r p = r. Beweis. Nach dem Satz von Wilson ist (p 1)! 1 mod p, d.h. (1 + pz) (2 + pz)... ((p 1) + pz) = (p 1)! + pz = 1 + pz = 1 Sei r = a + pz. Nach 7.9 gilt a p a mod p, d.h. r p = (a + pz) p = a p + pz = a + pz = r. Polynomringe. Definition. Sei R ein Ring. Ein Polynom (in einer Unbestimmten X) über R ist ein Ausdruck f = a 0 + a 1 X + a 2 X a n X n = n a i X i 3
4 wobei n N und a o,..., a n Elemente aus R sind. Wir setzen noch a i = 0 für alle i N mit i > n. Die Elemente a i, i N nennt man die Koeffizienten von f. Ein Polynom über R ist also ein Ausdruck der Form f = a i X i mit Elementen a i R, wobei a i 0 nur für endlich viele Indizes i gilt. Beispiele X + 3 X 2 und X + 0 X X 3 sind Polynome über Z. Man schreibt dafür auch kürzer 1 + X + 3X 2 bzw. 1 + X 3, kann also in einem Polynom Summanden a i X i mit a i = 0 weglassen und X i anstelle von 1 X i schreiben. Definition. Polynome sind gleich, wenn sie die gleichen Koeffizienten haben. In Formeln: a i X i = b i X i genau dann, wenn a i = b i für i = 0, 1, 2,... Auswertung von Polynomen. Sei f = n a i X i ein Polynom über R und b R. Der Wert von f an der Stelle b ist das Element f(b) := a 0 + a 1 b a n b n = n a i b i R Bemerkung. Es kann vorkommen, daß verschiedene Polynome an allen Stellen von R den gleichen Wert annehmen. Beispiel. R = Z/2Z = {0, 1}. Die Polynome X, X 2, X 3,... haben an der Stelle 0 den Wert 0 und an der Stelle 1 den Wert 1. Bezeichne die Menge aller Polynome über R mit R[X]. Wir wollen R[X] zu einem Ring machen, in dem wir eine geeignete Addition bzw. Multiplikation von Polynomen einführen. Vorbetrachtung. Seien a 0,..., a n bzw. b 0,..., b m Elemente aus R. Setzt man noch a j = 0 für j > n und b j = 0 für j > m, so gilt nach den Rechengesetzen für R: (1) (a 0 + a 1 y a n y n ) + (b 0 + b 1 y b m y m ) = = (a 0 + b 0 ) + (a 1 + b 1 )y (a l + b l )y l, wenn l = Max (n, m) 4
5 und (2) (a 0 + a 1 y a n y n ) (b 0 + b 1 y b m y m ) = = c 0 + c 1 y c n+m y n+m, wobei c 0 = a 0 b 0, c 1 = a 0 b 1 + a 1 b 0, c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0,... c k = a 0 b k + a 1 b k a k 1 b 1 + a k b 0, für k = 0,..., n + m. Wegen a j = 0 für j > n und b j = 0 für j > m ist c n+m = a 0 b n+m a n b m + a n+1 b m a n+m b 0 = a n b m. Definiere nun Addition und Multiplikation von Polynomen so, als wäre X ein Element von R. a i X i + b i X i := ( ) ( ) a i X i b i X i c k = a 0 b k + a 1 b k a k 1 b 1 + a k b 0 = := (a i + b i )X i c k X k, wobei k=0 k a i b k i. ( n ) ( m ) Insbesondere ist a i X i b i X i = c 0 + c 1 X c n+m X n+m mit c 0 = a 0 b 0, c 1 = a 0 b 1 + a 1 b 0, und c n+m = a n b m (siehe (2)). Damit wird R[X] zu einem Ring mit Eins = 1 und Null = 0. Durch Vergleich mit (1) und (2) sieht man: 2.4 Bemerkung. Sind f, g Polynome aus R[X] und ist y R, so gilt (f + g)(y) = f(y) + g(y) und (fg)(y) = f(y) g(y). Offenbar ist R R[X] ein Unterring (bestehend aus den konstanten Polynomen a = a + 0 X + 0 X , a R). Das konstante Polynom 0 = 0 X i heißt auch Nullpolynom. Definition. Sei f = a 0 + a 1 X a n X n, n 0, a n 0, ein von 0 verschiedenes Polynom. Dann nennt man n den Grad von f und a n den Leitkoeffizienten von f. 2.5 Bemerkung. Sei R ein Integritätsbereich. Dann gilt 5
6 a) R[X] ist ebenfalls ein Integritätsbereich. b) Sind f, g R[X] von Null verschiedene Polynome, so ist Grad fg = Grad f + Grad g. c) Die Einheiten von R[X] sind die Einheiten von R. Beweis. a) b) Seien f = a 0 +a 1 X +...+a n X n 0 und g = b 0 +b 1 X +...+b m X m 0 mit n 0, m 0, a n 0, b m 0. Dann ist fg = c 0 + c 1 X c n+m X n+m, c n+m = a n b m. Da R integer ist, gilt c n+m = a n b m 0. Es folgt fg 0 und Grad fg = n + m = Grad f+ Grad g. c) Sei f R[X] eine Einheit. Dann gibt es ein g R[X] mit fg = 1. Es folgt Grad f + Grad g = Grad fg = Grad 1 = 0 und daher Grad f = Grad g = 0, d.h. f = a 0, g = b 0 und fg = a 0 b 0 = 1. Es folgt f = a 0 R. Umgekehrt ist jedes konstante Polynom f = a 0 mit a 0 R in R[X] eine Einheit. Division von Polynomen mit Rest. Sei K ein Körper. 2.6 Satz. Seien f und g Polynome aus K[X], g 0. Dann gibt es eindeutig bestimmte Polynome q, r K[X] mit (i) f = g q + r (ii) r = 0 oder r 0 und Grad r < Grad g. Beweis. Existenz: Es ist f = g 0 + f. Also ist die Menge {r K[X] Es gibt ein q K[X] mit f = g q + r } = M nicht leer (f M). 1. Fall. Ist 0 M, so ist f = gq + 0 und wir sind fertig. 2. Fall. Sei 0 M. Dann hat jedes r M einen Grad. Wähle ein r M von kleinstmöglichem Grad. Es gibt dann nach Definition von M ein q R[X] mit f = gq + r. Noch zu zeigen: Grad r < Grad g 6
7 Angenommen n := Grad r m := Grad g, r = n a i X i und g = m b i X i. Dann hat das Polynom a n b 1 m X n m g den Grad (n m) + m = n = Grad r und den Leitkoeffizienten a n b 1 m b m = a n, also r = a n X n + a n 1 X n und a n b 1 m b m X n m = a n X n + a n 1X n Setze r := r a n b 1 m X n m g = (a n 1 a n 1)X n 1 + niedriger Terme. Ferner ist f = gq + r = g(q + a n b 1 m X n m ) + r und daher r M, also r 0. Wir haben also ein r M gefunden mit Grad r n 1 < n = Grad r, im Widerspruch zur Minimalität von Grad r. Eindeutigkeit. Angenommen f = gq + r = gq + r mit Grad r < Grad g oder r = 0, und Grad r < Grad g oder r = 0. Es folgt g(q q ) = r r. Wäre q q, so wäre r r = g(q q ) 0 und daher Grad (r r) = Grad g+ Grad (q q ) Grad g, im Widerspruch zur Wahl von r und r. Also ist q = q, somit auch r r = g 0 = 0, also r = r. Rechenbeispiele. Betrachte die Polynome f = X 3 + X 2 2X 2 und g = X (i) als Polynome in Q[X] (ii) als Polynome in Z/3Z[X] Zu (i): (X 3 + X 2 2X 2) : (X 2 + 1) = X + 1 X 2 3X 2 3X 3 = (X 3 + X 2 2X 2) : (X 2 + 1) = X + 1 Rest 3X 3, d.h. X 3 + X 2 2X 2 = (X 2 + 1)(X + 1) 3X 3 Zu (ii): Mithilfe der obigen Verknüpfungsstabellen für Z/3Z erhält man (X 3 + X 2 2X 2) : (X 2 + 1) = X + 1 X 3 + X X
8 da in Z/3Z gilt: 3 = 0 und 1 = 2 = (X 3 + X 2 2X 2) : (X 2 + 1) = X + 1, d.h. X 3 + X 2 2X 2 = (X 2 + 1)(X + 1) 8
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.
3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei
30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine
30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,
Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe
2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
für alle a, b, x, y R.
Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)
Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen
7 Der kleine Satz von Fermat
7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle
Kapitel II. Algebraische Grundbegriffe
Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist
6.2. Ringe und Körper
62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv
15 Grundlagen der Idealtheorie
15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is
Kongruenz ist Äquivalenzrelation
Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b
1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:
1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht
a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.
Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.
Lineare Algebra I 5. Tutorium Die Restklassenringe /n
Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll
1 Algebraische Strukturen
Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen
Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.
3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und
Teilbarkeitslehre und Restklassenarithmetik
Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und
Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr
Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen
Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen
70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt
Seminar zum Thema Kryptographie
Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3
Unterlagen zu Polynomringen. Erhard Aichinger
Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein
(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring
5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL
3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.
3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es
Der Divisionsalgorithmus
Der Divisionsalgorithmus Alexandre Wolf Seminar: Computeralgebra Fachbereich Mathematik der Universität Dortmund Dortmund, November 2006 Inhaltsverzeichnis 1 Einführende Beispiele 1 2 Divisionsalgorithmus
Chinesischer Restsatz für Ringe
Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls
Serie 3: Ringe, Körper, Vektorräume
D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l
Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form
3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und
2.2.2 Polynomringe. Sei (R, +, ) ein Ring. Wir definieren
2.2.2 Polynomringe Einige von Ihnen haben in der Schule vermutlich mit Polynomen gearbeitet, und dabei die Menge der Polynome mit R[x] oder R[X] oder R[T ] bezeichnet. Wir werden hier Polynomringe über
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Algebraische Strukturen
Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt
1.2 Modulare Arithmetik
Algebra I 8. April 2008 c Rudolf Scharlau, 2002 2008 11 1.2 Modulare Arithmetik Wir erinnern an die Notation für Teilbarkeit: m c für m, c Z heißt, dass ein q Z existiert mit qm = c. Definition 1.2.1 Sei
Euklidische Algorithmus, Restklassenringe (Z m,, )
Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der
Ringe. Kapitel Einheiten
Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,
8. Polynome. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1
8. Polynome Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1 Polynome über Körpern Definition (Polynome) Sei K ein Körper und X ein Unbekannte/Variable. Ein Ausdruck der Form
Galoiskörper GF(2 n ) (Teschl/Teschl 4)
Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring
Galoiskörper GF(2 n ) (Teschl/Teschl 4)
Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten
8. Musterlösung zu Mathematik für Informatiker II, SS 2004
8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in
Diskrete Mathematik Kongruenzen
Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie
Kapitel 6: Das quadratische Reziprozitätsgesetz
Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im
UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN
UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei
3.5 Faktorzerlegung von Polynomen
Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)
Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden
Kapitel II. Vektoren und Matrizen
Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft
2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.
2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist
Mersennesche Primzahlen
Mersennesche Primzahlen Michael E. Pohst Technische Universität Berlin Die Zahlen von Mersenne Zu einer natürlichen Zahl n wird die zugehörige Mersennezahl M n als M n = 2 n 1 definiert. Für n = 2, 3,
Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe
Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind
Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.
Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring
1.5 Restklassen, Äquivalenzrelationen und Isomorphie
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.
1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl
Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl
3. Zahlbereiche und algebraische Strukturen
technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche
In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i
2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls
31 Polynomringe Motivation Definition: Polynomringe
31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome
Der Lucas Lehmer Test
Michael E. Pohst Der Lucas Lehmer Test Dieser Vortrag wird gehalten am 12. Juni 2004 anläßlich der Langen Nacht der Wissenschaften http://www.math.tu-berlin.de/~kant/mersenne.html
Algebraische Körpererweiterungen I
Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3
Hilbertpolynom von I, i.z. a HP I.
9.4.4 Korollar/Def. Sei (1) I k[x 1,..., X n ] ein Ideal. Dann ist die affine Hilbertfunktion a HF I (s) für s 0 ein Polynom in s mit Koeffizienten in Q; es heißt das affine Hilbertpolynom von I, i.z.
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1
Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +
Ganzzahlige Division mit Rest
Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in
Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016
Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare
Der kleine Satz von Fermat
Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................
14 Ideale und Ringhomomorphismen
14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein
Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik
Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische
Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus
Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in
Halbgruppen, Gruppen, Ringe
Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die
1 Der Ring der ganzen Zahlen
1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich
Diskrete Strukturen Vorlesungen 13 und 14
Sebastian Thomas RWTH Aachen, WS 2016/17 01.12.2016 07.12.2016 Diskrete Strukturen Vorlesungen 13 und 14 11 Kongruenzen und Restklassenringe In diesem Abschnitt wollen wir eine ganze Serie von neuen Ringen
Erweiterter Euklidischer Algorithmus
Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:
Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.
Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige
Kanonische Primfaktorzerlegung
Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften
Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.
Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst
Testklausur II mit Lösungen
Fachbereich Mathematik/Informatik 2. Juli 2011 Prof. Dr. H. Brenner Körper- und Galoistheorie Testklausur II mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben
5 Kongruenzrechnung. Definition. Zwei Zahlen heißen kongruent modulo m, wenn sie bei der Division durch m den gleichen Rest lassen.
5 Kongruenzrechnung Sei m > 0 fest vorgegeben Nach wissen wir: Jede Zahl a läßt sich auf eindeutige Weise durch m mit Rest dividieren, dh: Es gibt genau ein Zahlenpaar q, r mit der Eigenschaft ( ) a =
2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).
17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften
1 Der Ring der ganzen Zahlen
1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich
Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014
Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition
ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß
Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen
Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):
Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen
