14 Ideale und Ringhomomorphismen
|
|
|
- Werner Kurzmann
- vor 8 Jahren
- Abrufe
Transkript
1 14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition Sei R ein Ring, I R. Dann nennt man I ein Ideal in R (oder von R) falls gilt: (I1) I ; (I2) I ist abgeschlossen unter der Addition: x, y I : x + y I; (I3) I ist abgeschlossen unter Multiplikation mit Elementen aus R: x I, λ R: λx I. Bemerkung (i) Falls I R ein Ideal ist, so gilt 0 I. Also kann (I1) ersetzt werden durch (I1 ): 0 I. (ii) Falls I R ein Ideal ist, so gilt (I, +) (R, +), also kann (I1)+(I2) ersetzt werden durch (I4): (I, +) (R, +). Bemerkung. Falls R nicht-kommutativ, so muss man unterscheiden zwischen Linksidealen, definiert wie oben, und Rechtsidealen, wo (I3) ersetzt wird durch: x I, λ R: xλ I. Man definiert dann ein 2-seitiges Ideal (oder kurz: Ideal) als eine Teilmenge, die sowohl Links- als auch Rechtsideal ist. Z.B. kann man zeigen, dass in M n (K) (K Körper) die einzigen 2-seitigen Ideale {0} und M n (K) sind, aber z.b. in M 2 (K) die Teilmenge {( ) } x 0 x, y K y 0 ein Links- aber kein Rechtsideal ist, und {( ) 0 0 x, y K } x y ein Rechts- aber kein Linksideal ist. Beispiel. (0) {0} und R sind Ideale im Ring R. (1) Die Untergruppen von (Z, +) sind genau die nz, n N 0. Man sieht leicht, dass dies auch Ideale in Z sind, dies sind dann also genau die Ideale in Z. 1
2 (2) R Ring, a R. Wir definieren Ra := {λa λ R}. Man sieht leicht: Ra ist ein Ideal in R, üblicherweise bezeichnet mit (a) := Ra, das von a erzeugte Ideal in R. Ein Ideal I R heißt Hauptideal falls a R mit I = (a). (3) Sei I = {2P (X) + XQ(X) P (X), Q(X) Z[X]} Z[X]. Man rechnet nach, dass I ein Ideal in Z[X] ist und man kann zeigen, dass I kein Hauptideal ist. Bemerkung (1) Beachte: (0) = R 0 = {0} und (1) = R 1 = R. (2) (a) = R a R. (3) R ist ein Körper die einzigen Ideale in R sind {0} und R. Wir wissen: Sei R ein Ring, I R ein Ideal. Dann gilt (I, +) (R, +) (beachte, dass (R, +) als Gruppe abelsch ist und daher jede Untergruppe Normalteiler ist. Man hat also die übliche Faktorgruppe R/I = {a + I a R} mit Addition (a + I) + (b + I) = (a + b) + I. Man definiert eine Multiplikation auf R/I auf die offensichtliche Weise: (a + I) (b + I) := ab + I. Man muss natürlich zeigen, dass dies wohldefiniert ist, also dass das Produkt unabhängig von der Wahl der Repräsentanten a und b in den Nebenklassen a + I, b + I ist. Damit erhält man: Satz und Definition Sei R ein Ring, I R ein Ideal. Dann ist R/I = {a + I a R} mit Addition (a + I) + (b + I) = (a + b) + I und Multiplikation (a+i) (b+i) := ab+i ein Ring mit Einselement 1 R/I = 1 R +I und Nullelement 0 R/I = 0 R + I = I und wird Faktorring oder Quotientenring von R bzgl. I oder von R modulo I genannt. Bemerkung. Statt a + I schreibt man oft a mod I oder [a] I oder a (aber Achtung: bei der Bezeichnung a geht die Information verloren, bzgl. welchen Ideals man die Nebenklasse nimmt). Beispiel. (1) I + R: R/R = {0 R/R }, ein 1-elementiger Ring mit 1 R/R = 0 R/R. (2) I = {0} = (0): a + (0) = {a}, also R/(0) = {{a} a R}, dieser Ring kann mit R identifiziert werden mittels a {a}. (3) Die Ideale in Z sind nz, n N 0. Z/nZ ist genau der Ring, in dem schon in 0 gerechnet wurde. Definition Seien A, B Ringe. Eine Abbildung f : A B heißt Ringhomomorphismus falls gilt: (RH1) x, y A: f(x + y) = f(x) + f(y); 2
3 (RH2) x, y A: f(xy) = f(x)f(y); (RH3) f(1 A ) = 1 B. Einen bijektiven Ringhomomorphismus nennt man Ringisomorphismus. Einen Ringhomomorphismus f : A A nennt man Ringendomorphismus von A. Einen bijektiven Ringendomorphismus von A nennt man Ringautomorphismus von A. Für einen Ringhomomorphismus definiert man den Kern und das Bild wie folgt: Kern(f) := {x A f(x) = 0 B } Bild(f) := {f(x) x A} Bemerkung. (RH1) impliziert: Jeder Ringhomomorphismus f : A B ist insbesondere ein Gruppenhomomorphismus (A, +) (B, +), daher sicher f(0 A ) = 0 B. Lemma Sei f : A B ein Ringhomomorphismus. Dann gilt: (i) Kern(f) ist ein Ideal in A. (ii) Bild(f) ist ein Unterring von B. (iii) f injektiv Kern(f) = {0 A }. (iv) Falls f ein Ringisomorphismus ist, so ist die Umkehrabbildung f 1 : B A auch ein Ringisomorphismus. (v) Ist g : B C ein weiterer Ringhomomorphismus, so ist g f : A C auch ein Ringhomomorphismus. Beispiel. Sei R ein Ring, I R ein Ideal. Betrachte π : R R/I : a a + I. Dies ist ein surjektiver Ringhomomorpismus mit Kern(π) = I. Beispiel. Sei A ein Unterring eines Ringes B, und b B. Dann können wir P (X) = a 1 +a 1 X +...+a n X n A[X] in b auswerten (evaluieren): P (b) = a 1 + a 1 b+...+a n b n B. Wir erhalten die Auswertungs- oder Evaluierungsabbildung ev b : A[X] B : P (X) P (b) Dies ist ein Ringhomomorphismus mit Kern(ev b ) = {P (X) A[X] P (b) = 0}, also der Kern besteht aus den Polynomen, die b als Nullstelle haben. (1) ev i : C[X] C (wobei i 2 = 1). Dann hat man Kern(ev i ) = {(X i)p (X) P (X) C[X]} = (X i) 3
4 (2) ev i : R[X] C. Hier kann man nun zeigen (dies wird in späteren Kapiteln klarer): Kern(ev i ) = {(X 2 + 1)P (X) P (X) R[X]} = (X 2 + 1) Satz 14.7 (Hauptsatz über Ringisomorphismen). Sei f : A B ein Ringhomomorphismus, und sei I A ein Ideal mit I Kern(f). Dann ist die Abbildung f : A/I Bild(f) : a + I f(a) ein wohldefinierter surjektiver Ringhomomorphismus. Ferner gilt: f ist injektiv I = Kern(f); in diesem Fall ist f also ein Ringisomorphismus und es gilt A/ Kern(f) = Bild(f) Lemma Seien R ein Ring, S R ein Unterring und I R ein Ideal. Dann ist S I ein Ideal in S. Bemerkung. In dieser Situation haben wir id S : S R : x x und π : R R/I, und damit ϕ := π id S : x x + I mit Kern(ϕ) = S I. Man erhält so einen injektiven Ringhomomorphismus ϕ : S/(S I) R/I : x + (S I) x + I Insbesondere kann man so S/S I auf natürliche Weise mit einem Unterring von R/I identifizieren. Korollar Sei f : A B ein Ringhomomorphismus und J B ein Ideal. Dann gilt: (i) J Bild(f) ist ein Ideal im Unterring Bild(f) von B. (ii) f 1 (J) = {a A f(a) J} ist ein Ideal in A. Ferner gilt f 1 (J) = f 1 (J Bild(f)). (iii) A/f 1 (J) = Bild(f)/(J Bild(f)). Insbesondere ist A/f 1 (J) isomorph zu einem Unterring von B/J. Korollar Sei f : A B ein surjektiver Ringhomomorphismus und I A ein Ideal. Dann gilt: (i) f(i) ist ein Ideal in B. (ii) f 1 (f(i)) = I + Kern(f). 4
5 (iii) A/(I + Kern(f)) = B/f(I). Beispiel. (1) ev 0 : Q[X] Q ist ein surjektiver Ringhomomorphismus mit Kern(ev 0 ) = (X), also Q[X]/(X) = Q. (2) ev 1 : R[X] R ist ein surjektiver Ringhomomorphismus mit Kern(ev 1 ) = (X 1), also R[X]/(X 1) = R. (3) ev i : R[X] C ist ein surjektiver Ringhomomorphismus mit Kern(ev i ) = (X 2 + 1), also R[X]/(X 2 + 1) = C. 5
14 Ideale und Ringhomomorphismen
14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein
15 Grundlagen der Idealtheorie
15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is
Kap. II Ringe und Körper
Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen
Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung
Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :
Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen
70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a, b a b Die Verknüpfung heißt assoziativ falls gilt: a (b c = (a b c a, b, c M; kommutativ falls
Algebra I. Zwischenprüfung. 19. Februar 2016
Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)
Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):
Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen
2 Ringe. Beweis: Übg. (R i ) i I Ringe. Dann : i I. R i ist wieder ein Ring.
2 Ringe Definition (Ring): Eine Menge R gemeinsam mit 2 Verknüpfungen + und heißtring, wenngilt: (R1) (R, +) abelsche Gruppe (R2) (R, ) assoziatives Verknüpfungsgebilde (R3) (R, +, ) distributiv, d.h.
1.4 Gruppen, Ringe, Körper
14 Gruppen, Ringe, Körper Definition 141 Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M : (a,b) a b Die Verknüpfung heißt assoziativ falls a,b,c M gilt: a (b c) = (a b) c; kommutativ falls
5 Noethersche Ringe und Moduln
5 Noethersche Ringe und Moduln Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen sind äquivalent: (i) A
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)
Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar
2.4 Lineare Abbildungen und Matrizen
24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus
3. Ringtheorie. 3.1 Definition, Ideale, Kongruenzen
20 3. Ringtheorie 3.1 Definition, Ideale, Kongruenzen Definition 1. a) Eine nicht leere Menge R gemeinsam mit zwei Verknüpfungen + und heißt ein Ring (mit Einselement), wenn folgendes gilt: (R1) (R, +)
Halbgruppen, Gruppen, Ringe
Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die
Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.
3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei
2 Gruppen, Ringe, Körper, Algebren
2 Gruppen, Ringe, Körper, Algebren 2.1 Gruppen Definition 2.1. Sei G eine Menge, 1 G G, sowie : G G G eine Abbildung (statt (g,h) schreiben wir meistens g h und nennen eine binäre Verknüpfung). Wir nennen
Lineare Algebra und Analytische Geometrie I*
Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 27. Juni 2007 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 5 0.1 Mengentheoretische Grundlagen........................
Lineare Algebra und Analytische Geometrie I*
Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 28. August 2006 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 4 0.1 Mengentheoretische
Lineare Algebra 1. Detlev W. Hoffmann (in Anlehnung an das Skript von Rudolf Scharlau) WS 2011/12, TU Dortmund
Lineare Algebra 1 Detlev W. Hoffmann (in Anlehnung an das Skript von Rudolf Scharlau) WS 2011/12, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Notation. N (ohne Null), N 0 (mit Null), Z,
Ringe und Körper. Das Homomorphieprinzip für Ringe
Ringe und Körper Das Homomorphieprinzip für Ringe Wir beginnen mit einem Beispiel. R = Z/m Z sei die Faktorgruppe von Z nach der Untergruppe m Z, m IN. Für m = 0 ist der kanonische Homomorphismus Z Z/m
Klausur Grundlagen der Algebra und Computeralgebra
Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.
3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)
Gruppen, Ringe, Körper
Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x
ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß
Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen
8. Algebraische Strukturen - Themenübersicht
8. Algebraische Strukturen - Themenübersicht Mengen mit einer Operation Halbgruppen Monoide Gruppen Mengen mit zwei Operationen Körper Ringe Strukturerhaltende Abbildungen Prof. Dr. Bernhard Steffen Mathematik
Klausur vom Algebra I. Rolf Farnsteiner
Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ
Klausur vom Algebra I. Rolf Farnsteiner
Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist
3.1 Homomorphismen, Ideale und Faktorringe
Algebra I c Rudolf Scharlau, 2002 2012 123 3.1 Homomorphismen, Ideale und Faktorringe Aus dem Einleitungskapitel 1.5 sind uns folgende Begriffe bereits bekannt: Ring, kommutativer Ring mit Eins, Teilring
2 Algebraische Grundstrukturen
30 2 Algebraische Grundstrukturen Definition. Eine Verknüpfung auf einer Menge G ist eine Abbildung : G G G (a, b) a b. Schreibweise. a b, a b, ab, a + b. Beispiele. (i) G = N : N N N (a, b) a + b. G =
(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?
Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten
(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring
5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche
1 Herangehensweise an eine Aufgabe
Im Folgenden seien sofern nicht anders angegeben G eine Gruppe, R, S Ringe, I, J Ideale, K, L Körper, p Z eine Primzahl und m Z. 1 Herangehensweise an eine Aufgabe Soll man einen gewissen Sachverhalt A
7. Ringe und Körper. 7. Ringe und Körper 51
7. Ringe und Körper 51 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich
C: Algebraische Strukturen
C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen
Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr
TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,
Übungen zur Diskreten Mathematik I Blatt 6
1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,
15. Gruppen, Ringe und Körper
Chr.Nelius: Lineare Algebra II (SS2005) 1 15. Gruppen, Ringe und Körper A) Mengen mit Verknüpfungen (15.1) DEF: Eine Verknüpfung (oder Rechenoperation) auf einer nichtleeren Menge M ordnet je zwei Elementen
Ringe. Kapitel Einheiten
Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,
Chinesischer Restsatz für Ringe
Chinesischer Restsatz für Ringe Lena Wehlage 22. Mai 2017 1 1 Einleitung Ziel dieses Vortrags zum allgemeinen chinesischen Restsatz ist es, den im letzten Vortrag kennengelernten chinesischen Restsatz
Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 [email protected]
Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 [email protected] Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.
Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,
Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge
Aufgabe 1. 9.Übungsblatt Algebra I. Stefan K. gegeben: Polynome f, g Q[x] : f = x 3 + 2x 2 2x 1, g = x 2 + x 2. Untersuchung der Polynome:
Stefan K. 9.Übungsblatt Algebra I Aufgabe 1 gegeben: Polynome f, g Q[x] : Untersuchung der Polynome: f = x 3 + 2x 2 2x 1, g = x 2 + x 2 Nullstellen von g in Q: 1,-2 Faktorisierung: g = (x 1)(x + 2) Nullstellen
Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe
Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind
Übungsblatt 2: Ringe und Körper
Übungsblatt 2: Ringe und Körper 1. RINGE 1.1. Zeigen Sie, dass die Menge R n n der n n-matrizen über einem Ring R mit den üblichen Operationen einen Ring bildet. Lösungshinweise: Man kopiert die Beweise
Lineare Abbildungen und Darstellungsmatrizen
KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt
3.2 Operationen von Gruppen auf Mengen und Faktorgruppen
Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen
Einführung in die Algebra Blatt 1 Abgabe
Blatt 1 Abgabe 2.5.2017 Begründen Sie, dass die folgende Menge mit der dazugehörigen Multiplikation eine Halbgruppe bildet. Entscheiden Sie, welche der Halbgruppen eine Gruppe ist. (i) G = Z 1 versehen
1 2. Körpererweiterungen
1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine
Moduln - Teil 1. Moduln und Modulhomomorphismen. Thomas Poguntke. 23. April Definition 1: Beispiele: Definition 2:
Moduln - Teil 1 Thomas Poguntke 23. April 2010 Moduln und Modulhomomorphismen Es sei R ein kommutativer Ring. Definition 1: Ein R-Modul ist eine abelsche Gruppe (M, +) mit einer Skalarmultiplikation µ
3.5 Faktorzerlegung von Polynomen
Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,
Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.
3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und
3. Zahlbereiche und algebraische Strukturen
technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche
Algebra WS 2008/ Übungsblatt
Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.
Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer
Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Algebra. 0 = (f g)(x) = f(x) g(x).
Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,
Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur
HRZ-Benutzername: Modulteilprüfung Grundlagen der Algebra (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 10. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (7 einschließlich zweier Deckblätter)
1 Lineare Abbildungen
1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V
Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.
Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst
Übungen zur Einführung in die Algebra
Blatt 1, 17.10.2013 Aufgabe 1.1. Bestimme alle Untergruppen und Normalteiler der symmetrischen Gruppe S 3. Aufgabe 1.2. Es seien E, I, J, K M(2 2; C) die folgenden Matrizen: ( ) ( ) ( ) ( ) 1 0 0 1 0 i
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist
Skript zur Vorlesung Algebra I Wintersemester 2004/2005 Prof. Dr. Annette Werner
Skript zur Vorlesung Algebra I Wintersemester 2004/2005 Prof. Dr. Annette Werner Inhaltsverzeichnis Einführung 1 1 Gruppentheorie 2 2 Ringe 14 3 Polynomringe 38 4 Algebraische Körpererweiterungen 51 5
Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch
Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
6. Musterlösung zu Mathematik für Informatiker II, SS 2004
6 Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 61 (Quadrismus) (7 Punkte) Wir wollen untersuchen, was Quadrieren in den multiplikativen Gruppen Z p mit p
4 Homomorphismen von Halbgruppen und Gruppen
4 Homomorphismen von Halbgruppen und Gruppen Bei der Betrachtung der Gruppe S 3 hatten wir auf die Ähnlichkeit im Verhalten der Permutationen von 1,2,3} mit dem der Symmetrien (Deckbewegungen) eines gleichseitigen
01. Gruppen, Ringe, Körper
01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert
Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe
2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:
Joachim Gräter. Algebra und Arithmetik
Joachim Gräter Algebra und Arithmetik Potsdam, September 2004 Prof. Dr. J. Gräter Universität Potsdam, Institut für Mathematik Am Neuen Palais 10, 14469 Potsdam Die neueste Version dieses Skriptes ist
Aufgaben zur linearen Algebra und analytischen Geometrie I
Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und
Mathematik für Informatiker I,
Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine
