Moderne Experimente der Kernphysik
|
|
|
- Hinrich Wolf
- vor 8 Jahren
- Abrufe
Transkript
1 Moderne Experimente der Kernphysik Wintersemester 2011/12 Vorlesung Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
2 Superschwere Elemente (SHE) Strutinsky- Methode zur Schalenkorrektur Definition: Was sind superschwere Elemente? Produktion und Nachweis superschwerer Elemente Spektroskopie (fast) superschwerer Kerne Massen superschwerer Kerne Chemie (und Atomphysik) superschwerer Elemente (kurz) Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
3 Flüssigkeitstropfenmodell (LDM) R b a ε = 1 b2 a 2 Coulombabstossung bevorzugt Deformation Oberflächenenergie bevorzugt sphärische Form BE( ε) > BE( ε = dann Spaltung Spaltbarriere muß überwunden werden für Z<104 0) Liquid drop energy (MeV/A) Deformation β Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
4 Stabilisierung von SHE durch Schaleneffekte LDM 152 LDM LDM 162 LDM LDM 184 LDM Schaleneffekte erlauben Existenz von Kernen mit Z>104 Deformierte (Unter)schalenabschlüsse Sphärischen Schalenabschlüsse Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
5 Fusion Spaltung oder Neutronenemission Sehr schematisch!!! Kein Compoundkern gebildet Compoundkern spaltet sofort Kein Compoundkern gebildet Energie Emission von Neutron(en) Spaltbarriere höher, Compoundkern überlebt Abstand zwischen den Protokernen Fusionskerne überleben nur in einem engen Energiefenster Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
6 Produktion / Identifikation von SHE n 70 Zn 208 Pb CN MeV 280 μs 269 Hs MeV 110 μ s 265 Sg 9.23 MeV 19.7 s bekannt 261 Rf 4.60 MeV (escape) 7.4 s Kinematische Separation in flight 253 Fm Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung No 8.34 MeV 15.0 s Date: 09-Feb-1996 Time: 22:37 h 8.52 MeV 4.7 s Identifizierung durch α-α Korrelationen hinunter zu bekannten Isotopen
7 Massenmessungen von SHE Zur Erinnerung: M M ΔM 1 12 Kern Atom M ( Z, A) ( Z, A) = Atom Atom ( 12 2 = Z mp + N mn BN ( Z, A) / c Kernmasse M ( Z, A) Kern M ( Z, A) + Z Atom ( Z, A) m 1 A M 12 C) 1u = 931.5MeV / c e B 2 e ( Z) / c Atom ( 12 2 C) Atomare Masse Massendefekt Atomare Masseneinheit Massenmessungen werden häufig relativ zu einer wohlbekannten Referenzmasse durchgeführt. Gewählt wurde als Standard das neutrale 12 C-Atom, da sich daraus leicht schwere Referenzmassen bilden lassen: Kohlenwasserstoffe (C n -H m ) Fullerene (C n ) Die chem. Bindungsenergien sind dabei wesentlich besser bekannt als die Fehler der Massenmessungen. Sie tragen also nicht zum Fehler der Masse bei. Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
8 Massenmessungen von SHE Z=106, N=154 Z=108, N=156 Z=104, N=152 Z=102, N=150 Emission von α-teilchen Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
9 Massenmessungen von SHE Wie mißt man die Masse von superschweren Kernen? Indirekte Methode über Energie des α-teilchens M ( Z, A) = M ( Z 2, A 4) + M ( 4 He) + E α ( Z, A) / c 2 = M ( Z 4, A 8) + 2 M ( 4 He) + E α ( Z, A) / c 2 + E α ( Z 2, A 4) / c 2 usw. bis Zerfallsprodukt mit bekannter Masse erreicht ist. Probleme: - Meßgenauigkeit limitiert durch α-energie, Fehler summieren sich auf! - α-zerfall bevölkert nicht notwendigerweise den Grundzustand des Tochterkerns Direkte Massenmessung z.b. in einer Penningfalle Meßprinzip: Massenmessung auf eine Frequenzmessung zurückführen Frequenzen kann man sehr genau messen Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
10 Gasstopper und Buncher Kerne von SHE werden nicht implantiert, sondern in einem Gasvolumen abgestoppt, extrahiert und zur Falle transportiert. Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
11 Experimente Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
12 Das Gesamtkonzept für f r SHIPTRAP Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
13 Massenmessungen in Penning-Falle Meßprinzip: Massenmessung auf eine Frequenzmessung zurückführen Umlauffrequenz einer Ladung in einem homogenen Magnetfeld (Zyklotronfrequenz): ω Zyklotron = q m B Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
14 Massenmessung von No in SHIPTRAP Zyklotronbewegung wird in lineare Bewegung umgewandelt : Observable ist dann Flugzeit Messung relativ zu 133 Cs 1+ (Cs-Strahl läßt sich leicht mit Ofen erzeugen) ω ω ( 133 Zyklotron Zyklotron( Cs 1+ No ) 2+ ) = M. Block et al., Nature 463, 785 (2010) Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
15 Massenmessung von No in SHIPTRAP Massendefekt ( mass excess ): ΔM ( ΔM ( ΔM ( = 2 = 565(21) kev No) = (31) MeV / c No) = (13) MeV / c No) = (14) MeV / c Neutronenpaarungsenergie aus drei benachbarten Massen: Δ n ( Z = 102, N = 151) [ ]c 2 [kev] [ ( No) ( No) 2 ( No) ] M + M M T 1 = 1.62 min / 2 (253 No) T s 1 / 2 (252 No) = Massenevalutation α-zerfallsspektrum kompliziert T 2( / No) = 51s Leichtere No-Isotope zu kurzlebig für diese Methode (derzeit) Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
16 Nilsson-Schema der Einteilchenorbitale Z=106 oder 108 abgeschlossene Schale??? Oblate Prolate Deformation β=0.25 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
17 Nilsson-Schema der Einteilchenorbitale Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
18 Systematik der Lebensdauern (gg-kerne) 254 No (Z=102) und 252 Fm (Z=100) mit N=152 scheinen stabiler zu sein als ihre Nachbarn Trend setzt sich nicht fort für schwerere Elemente Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
19 Schalenstruktur superschwerer Kerne Sphärischer Schalenabschluß bei N=184 und Z=114??? Deformierter (Unter)schalenabschluß bei Z=108???? Deformierter (Unter)schalenabschluß bei N=162? Deformierter (Unter)schalenabschluß bei N=152 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
20 Nuklidkarte Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
21 cold Zusammenfassung: Wirkungsquerschnitte Die theoretische Vorhersage von Wirkungsquerschnitten in der Größe von pb (entspricht im Exp. 1 Kern / pro Woche bis Monat) ist sehr schwierig! Spaltung mehrere Größenordnungen stärker! Sehr genaues Verständnis des Fusionsprozessen notwendig! Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
22 Wirkungsquerschnitt - Zählrate 1 second 1 minute 1 hour 1 day 10 days Mittlere Meßzeit um 1 Event zu beobachten derzeitige Empfindlichkeit: Grenze 1 pbarn integrierte Strahldosis: 1.5 x Projektile Bedeutet bei / s Strahlintensität etwa 17 Tage Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
23 ... durchaus fragwürdige rdige Vorhersagen R. Smolanczuk Schön, wenn es wahr wäre!!! ABER: Modell ist sehr vereinfachend!!! Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
24 Das Berkeley Experiment zu Z=118 Berkeley Gasfilled Separator Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
25 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
26 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
27 EPJ A 14, 147 (2002) Ergo: Fälschungen werden im Allgemeinen gefunden und lohnen daher nicht!!!! Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
28 Einordnung ins Periodensystem Chemie der SHE - Situation vor hundert Jahren Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
29 Chemie mit einzelnen Atomen Reaktionen zielen auf die Einstellung von chemischen Gleichgewichten hin Man kann bei so wenigen Atomen nicht mehr von chemischen Gleichgewichten sprechen Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
30 Gaschromatographie Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
31 Prinzip des Experimentes Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
32 Chemie am Element Z=108 Hs bildet Tetraoxid und verhält sich wie sein Homolog Os, gehört also zur 8. Gruppe Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
33 Detektorsystem von PIN Dioden Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
34 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
35 Chemie von Copernicium (Z=112) Man würde erwarten, dass sich Cn wie Hg verhält Hg lagert sich gerne auf Au-Oberflächen ab, daher wurde der Experimentaufbau modifiziert, indem die Oberflächen der Si-Dioden mit Au beschichtet wurden: Ergebnis: KEIN Ereignis (Z=112-Zerfall) wurde gemessen!?! Nun wurde zusätzlich am Ende der Röhre eine Ionisationskammer angeflanscht Ergebnis: mehrere Ereignisse von Z=112-Kernen!!! Folgerung: Z=112 wird produziert, lagert sich aber nirgends an, verhält sich also eher wie ein Edelgas!!!! Modifikationen der Elektronenhülle (und damit der Chemie) durch die hohe Kernladungszahl Bereits für die Chemie schwerer Elemente sind relativistische Effekte von Bedeutung. Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
36 Extreme Atomphysik in superschweren Atomen In Atomen von Elementen Z > 173 würde die Bindungsenergie der am tiefsten gebundenen 1s 1/2 -Elektronen einen Wert von -2x511 kev erreichen Atom kann Positronen emittieren 1 Das nicht-relativistische α Bohr-Modell hat offenbar 137 v Bohr = Zαc spätestens für Z>137 ein Problem! Die Lösungen der Dirac-Gleichung genauso! E Dirac = m c Z α... höhere Z s möglich für realistischere ausgedehnte Kerne W. Pieper, W. Greiner Z. Phys. A 218 (1969) 327 J. Reinhardt et al, Z. Phys. A 303 (1981) 173 Zwei U-Kerne nahe beieinander sehen für Elektronen wie Z=184 aus... Bisher wurde der Effekt aber noch nicht in U-U-Kollisionen beobachtet! Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung
Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel
Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,
Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel
Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,
Moderne Alchemie Die Jagd nach den schwersten Elementen 1
Moderne Alchemie Die Jagd nach den schwersten Elementen 1 D. Ackermann, University of Mainz/GSI Ursprung und Geschichte Verständnis der Struktur der superschweren Kerne Synthese und Nachweis Ausloten der
Produktion superschwerer Elemente
Produktion superschwerer Elemente Schlüsselexperimente der Teilchenphysik Mathias Wegner 25.06.2010 Mathias Wegner Produktion superschwerer Elemente 1/ 39 Schaubild: Das Periodensystem Mathias Wegner Produktion
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)
Physik für Mediziner Radioaktivität
Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie [email protected] Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4
Klausur -Informationen
Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25
Dieter Suter Physik B3
Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den
9. Kernphysik 9.1. Zusammensetzung der Atomkerne
Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl
Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007
Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem
N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik
II.4.4 b Kernspin und Parität angeregter Zustände Im Grundzustand besetzen die Nukleonen die niedrigsten Energieniveaus im Potentialtopf. Oberhalb liegen weitere Niveaus, auf welche die Nukleonen durch
15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne
Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern
4. Kerneigenschaften, Kernkräfte und Kernstrukturmodelle
4. Kerneigenschaften, Kernkräfte und Kernstrukturmodelle 4.1. Größe, Massen- und Ladungsverteilung 4.2. Kernmassen- und bindungsenergien 4.3. Kernspin und elektromagn. Kernmoment 4.4. Kernkräfte im Nukleon-Nukleon-System
Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.
Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,
Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln
Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System
Kernmodell der Quantenphysik
M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell
Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen
Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen
Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie
Allgemeine Chemie 1 Skript Allgemeine und Anorganische Chemie Inhaltsverzeichnis: 1. Atome...3 A Elektronen...3 B Protonen...4 C Neutronen...5 D Aufbau von Atomen...5 E Isotope...6 F Radioaktivität...6
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 92 Grundlagen der Allgemeinen und Anorganischen Chemie 3. Das Periodensystem der Elemente 93
Kosmologie und Astroteilchenphysik
Kosmologie und Astroteilchenphysik Prof. Dr. Burkhard Kämpfer, Dr. Daniel Bemmerer Einführung in die Kosmologie Weltmodelle und kosmologische Inflation Thermische Geschichte des Universums Urknall-Nukleosynthese
Experimentalphysik 4 - SS11 Physik der Atome und Kerne
Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser
Einführungsseminar S2 zum Physikalischen Praktikum
Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von
Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:
Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen
Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.
Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Allgemeine Chemie. Der Atombau
Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,
43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung
43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-
Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität
Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte
Wechselwirkung zwischen Strahlung und Materie
Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener
Dieter Suter Physik B3
Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher
11. Kernzerfälle und Kernspaltung
11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5
Die Akte X der Teilchenphysik. Neutrinos. Kai Zuber
Die Akte X der Teilchenphysik Neutrinos Inhalt Historie Solare Neutrinos Der doppelte Betazerfall Ausblick und Zusammenfassung Entdeckung der Radioaktivität 1895 W. Röntgen entdeckt X-Strahlen 1896 H.
Physik für Mediziner und Zahnmediziner
Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen
41. Kerne. 33. Lektion Kerne
41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen
11. Kernphysik. [55] Ianus Münze
11. Kernphysik Der griechische Gott Ianus ist einer der ältesten römischen Gottheiten. Er gehört zur rein römischen Mythologie, das heißt es gibt in der griechischen Götterwelt keine vergleichbare Gestalt.
Leistungskurs Physik Sporenberg Jahrg. 13/1 Datum:
Klausur Leistungskurs Physik Sporenberg Jahrg. 13/1 Datum: 12.12.211 1.Aufgabe: a). In der hohen Atmosphäre wird durch eine Kernreaktion der kosmischen Höhenstrahlung fortwährend das Wasserstoffisotop
Experimentelle Untersuchungen zur Struktur des Nukleons
Experimentelle Untersuchungen zur Struktur des Nukleons 1. Einleitung 2. Der elektrische Formfaktor des Protons 3. Ergebnisse, die auf eine Abweichung einer sphärischen Ladungsverteilung beim Proton bzw.
Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften
Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall
3) Natürliche und künstliche Radioaktivität (1)
3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf
Chemie Zusammenfassung III
Chemie Zusammenfassung III Inhaltsverzeichnis Atombau & Kernphysik... 2 Aufbau der Atome... 2 Atomkern... 2 Atomhülle... 2 Atomgrösse und Kernladung... 3 Reaktivität und Gruppen des Periodensystems...
13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.
13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer
Radioaktiver Zerfall des Atomkernes: α-zerfall
Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.
Widerlegung des Modells von Thomson durch Rutherford
Atomkerne Eine wichtige Frage stellt sich nach dem Aufbau eines Atoms aus diesen subatomaren Bausteinen. Gibt es eine Systematik des Aufbaus der Atome der verschiedenen chemischen Element im Hinblick auf
umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,
Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable
Experimentalphysik E1
Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct
10. Der Spin des Elektrons
10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms
1.4. Aufgaben zum Atombau
1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen
Reichweite von ß-Strahlen
Reichweite von ßStrahlen Atommodell: Nach dem Bohrschen Atommodell besteht ein Atom aus dem positiven Atomkern und der negativen Elektronenhülle. Der Durchmesser eines Atoms beträgt etwa 1 1 m, der Durchmesser
Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler
Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen
Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52
Kosmische Neutrinos Sommersemester 2015 Universität Siegen Claus Grupen Kosmische Neutrinos p. 1/52 Neutrino Astronomie Solare Neutrinos (MeV-Bereich) Atmospherische Neutrinos (GeV-Bereich) Neutrino Oszillationen
3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und
3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und Reinelemente 3.5. Häufigkeit der Elemente 3.6. Atomare Masseneinheit
Radioaktive Zerfallsarten
C1 Radioaktive Zerfallsarten Damit ein Nuklid radioaktiv zerfallen kann, muss die entsprechende Reaktion "exotherm" sein. Die Summe der Ruhemassen aller entstehenden Teilchen muss kleiner sein als die
Messung kosmischer Myonen
Messung kosmischer Myonen - Fortbildung für Lehrkräfte Belina von Krosigk Prof. Dr. Kai Zuber, Arnd Sörensen 27. 04. 2013 1 Kosmische Strahlung 2 Kosmische Teilchenschauer Primäre kosmische Strahlung:
Thema heute: Aufbau der Materie: Das Bohr sche Atommodell
Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte
Atombau, Periodensystem der Elemente
Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne
Einführung in die Quantentheorie der Atome und Photonen
Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich
Symmetrien und Erhaltungssätze
Symmetrien und Erhaltungssätze Noether Theorem (1918): Symmetrien Erhaltungsgröße Transformation Erhaltungsgröße Kontinuierliche Transformationen: Raum Translation Zeit Translation Rotation Eichtransformation
Chemie für Ingenieure Lernziele und Musteraufgaben
1 Aufgabe 1: Chemie für Ingenieure Lernziele und Musteraufgaben Kenntnisse der Elementarteilchen als Bausteine von Atomen und Molekülen Aufbau der Atome Schalenstruktur der Elektronenhülle 32 Wie viele
Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E
Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 [email protected] www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Organisation Informationen: www.wuttkegroup.de
Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität
R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von
Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare
Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?
8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell
1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle:
1 Natürliche Radioaktivität
1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:
Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik
Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel1: Einleitung und Grundbegriffe
Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie
Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant
1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern
1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall
Experimentalphysik Modul PH-EP4 / PH-DP-EP4
10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle
Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann
Wintersemester 2011/2012 Radioaktivität und Radiochemie Kernphysik 27.10.2011 Udo Gerstmann Bundesamt für Strahlenschutz [email protected] & [email protected] 089-31603-2430 Der Atomkern besteht aus Protonen
Das Periodensystem der Elemente
Q34 LK Physik 17. November 2015 Aufbau Die ermittelten Zusammenhänge der Elektronenzustände in der Atomhülle sollen dazu dienen, den der Elemente zu verstehen. Dem liegen folgende Prinzipien zugrunde:
Edelgas-polarisierte. NMR- Spektroskopie. Jonas Möllmann Jan Mehlich. SoSe 2005
Edelgas-polarisierte NMR- Spektroskopie Jonas Möllmann Jan Mehlich SoSe 2005 NMR Prinzip Aufspaltung der Kernspins in verschiedene Niveaus durch angelegtes Magnetfeld Messung des Besetzungs- unterschiedes
Max-Planck-Institut für Kernphysik
Max-Planck-Institut für Kernphysik Gewichtsprobleme physikalischer Art Atome auf die Waage gestellt Klaus Blaum 24.01.2009 Gewichtsprobleme??? 10 cm Masse und Gewicht Die Masse m ist eine Grundgröße jeder
Versuch 25: Messung ionisierender Strahlung
Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen
Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010
Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen
2.1.3 Wechselwirkung von Photonen in Materie
2.1.3 Wechselwirkung von Photonen in Materie Photo-Effekt (dominant b. kleinen Energien) Compton-Effekt Paarerzeugung (dominant b. großen Energien) Literatur: W.R. Leo, Techniques for Nuclear and Particle
Neutrino Oszillation. Von Richard Peschke
Neutrino Oszillation Von Richard Peschke Gliederung: 1. Was sind Neutrinos? 2. Eigenzustände 3. Mischung 4. Grundlagen der Neutrino Oszillation 5. Experimente: 5.1 Sonnen-Neutrinos 5.2 Reaktor-Neutrinos
Struktur des Atomkerns
Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische
Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E
Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 [email protected] www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2014/2015 Inhaltliche Schwerpunkte Stöchiometrie
Quantitative Oberflächenanalytik mit hochenergetischen Ionenstrahlen
Quantitative Oberflächenanalytik mit hochenergetischen Ionenstrahlen Rutherford Backscattering (RBS) Elastic Recoil Detection Analysis (ERDA) Particle Induced X-ray Emission (PIXE) Max Döbeli, Labor für
Nuklearmedizin Übung
Nuklearmedizin Übung Klaus-Hendrik Wolf Institute for Medical Informatics University of Technology Braunschweig, Übungsinhalt 1. Übung Aufbau eines Atoms Atommodelle (Antike bis Quanten) Begriffe Das Periodensystem
a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.
ufgabe a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. Weizsäcker: W m c m c N ges n p 5 c)
Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung
Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft
Aufbau und Struktur der Materie. Wellen- und Teilchencharakter
Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen
Standardmodell der Teilchenphysik
Standardmodell der Teilchenphysik Eine Übersicht Bjoern Walk [email protected] 30. Oktober 2006 / Seminar des fortgeschrittenen Praktikums Gliederung Grundlagen Teilchen Früh entdeckte Teilchen
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 7 Kernphysik 7.5 - Absorption von Gammastrahlung Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 [email protected]
Atomaufbau. Elektronen e (-) Atomhülle
Atomaufbau Institut für Elementarteilchen Nukleonen Protonen p (+) Neutronen n (o) Elektronen e (-) Atomkern Atomhülle Atom WIBA-NET 2005 Prof. Setzer 1 Elementarteilchen Institut für Name Symbol Masse
Der Urknall und die Kosmische Hintergrundstrahlung
und die Kosmische Hintergrundstrahlung Seminar Astroteilchenphysik in der Theorie und Praxis Physik Department Technische Universität München 12.02.08 und die Kosmische Hintergrundstrahlung 1 Das Standardmodell
WECHSELWIRKUNG STRAHLUNG-STOFF
Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A [email protected] 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG
Dunkle Materie-Experimente
Dunkle Materie-Experimente Der Kampf im Untergrund gegen den Untergrund Hardy Simgen Max-Planck-Institut für Kernphysik Die Suche nach der Nadel im Warum ist sie so schwierig? Nadel und Heu sehen ähnlich
Experimente mit Antimaterie
Experimente mit Antimaterie Elementarteilchen heute Antimaterie in der Natur Antimaterie (Positronen) in der Medizin (PET) Beschleunigung von Elementarteilchen Reaktionen zwischen Elementarteilchen und
Neutronen aus Kernreaktionen, welche in Teilchenbeschleunigern ausgelöst wurden Beispiel: < 0,5 ev 0,5 ev bis 10 kev 10 kev bis 20 MeV > 20 MeV
KERN-/TEILCHENPHYSIK Neutronen Neutronenquellen Freie Neutronen werden durch Kernreaktionen erzeugt. Dabei gibt es eine Vielzahl von Möglichkeiten, die sich nach der Neutronenausbeute, der Neutronenenergie
A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen
A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten
(in)stabile Kerne & Radioaktivität
Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten
VII. Starke Wechselwirkung (QCD)
VII. Starke Wechselwirkung (QCD). Elemente der QCD (i) Quarks in 3 Farbzuständen: R, G, (ii) Farbige Gluonen (mit Farbladung) als Austauschteilchen R Es gibt 8 Gluonen mit Farbladung: R R R, RG, G, GR,
Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!
1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen
Brachytherapie. Brachytherapie: was bedeutet das? Geschichte. Das Atom; Beispiel: Helium. Der Atomkern. Geschichte: woher kommt das Radium?
1 Brachytherapie: was bedeutet das? 2 Brachytherapie Dr. rer. nat. C.Melchert Brachy: griechisch sowohl zeitlich als auch räumlich KURZ hierbei wird eine kleine radioaktive Quelle direkt in oder an das
