Beschleuniger und Detektoren Vorlesung 4, Vorlesung TU Dresden Sommersemester 2009

Größe: px
Ab Seite anzeigen:

Download "Beschleuniger und Detektoren Vorlesung 4, Vorlesung TU Dresden Sommersemester 2009"

Transkript

1 eschleuniger und Detektoren Vorlesung 4, Vorlesung TU Dresden Sommersemester 009 Dienstag, 4. DS Raum: SE/103/U Jun.-Prof. Dr. Arno Straessner Technische Universität Dresden Inst. für Kern- und Teilchenphysik Übungen Prof. Dr. Thomas Cowan Technische Universität Dresden Inst. für Kern- und Teilchenphysik Dr. Andreas Wagner Forschungszentrum Dresden-Rossendorf Inst. für Strahlenphysik Dienstag, 5. DS (gerade Woche) Raum: SE/103/U Forschungszentrum Dresden-Rossendorf Inst. für Strahlenphysik

2 Termine Vorlesung Di. 4. DS Inhalt Übungen Di. 5. DS Wagner Einführung, Gleichspannungsbschlg Wagner Gleichspannungsbschlg Wagner Wagner Resonanzbschlg Wagner Kreisbeschleuniger Cowan Wagner Ionenoptik Straessner Wechselwirkung Strahlung - Materie Cowan Straessner Detektoren Straessner Cowan Straessner Straessner Cowan Straessner Straessner Cowan alle Exkursion zum FZD Straessner Cowan eschleuniger und Detektoren, Andreas Wagner,

3 Mehr Termine Zeit Wo Was / Wer Thema :00-16:00 FZD Tag des offenen Labors Strahlen gegen Krebs :40 17:50 TU Dresden Kolloquium Prof. Tom Cowan Intensiver Teilchenstrahl aus relativistischer Laser-Materie- Wechselwirkung :40 17:50 TU Dresden Kolloquium Jun.-Prof. Arno Straessner Die Suche nach dem Ursprung der Masse mit dem LHC :00 01:00 TU Dresden Lange Nacht der Wissenschaften Vom Kosmos zur Klinik eschleuniger und Detektoren, Andreas Wagner,

4 Kontakt Prof. Dr. Thomas Cowan Telefon: / 60 70, Fax: / T.Cowan@fzd.de Web: Jun.-Prof. Dr. Arno Straessner Telefon: , Fax: Straessner@physik.tu-dresden.de Web: Dr. Andreas Wagner Telefon: , Fax: A.Wagner@fzd.de Web: Vorlesung und Übungen auf dem Web unter oder unter nach DSS009 suchen. eschleuniger und Detektoren, Andreas Wagner,

5 eschleuniger und Detektoren Inhalt eschleuniger: Gleichspannungsbeschleuniger Cockroft-Walton, Marx-Generator, van-de- Graaff Wechselfeldbeschleunigung Linearbeschleuniger, Kreisbeschleuniger, Speicherringe Zyklotron, etatron, Synchrotron, Mikrotron, Rhodotron Strahlenoptik und -transport Synchrotronstrahlung, Freie-Elektronen-Laser Laserteilchenbeschleunigung Wechselwirkung von Teilchen mit Materie Energieverlust, Vielfachstreuung, remsstrahlung, Photoabsorption, Compton-Streuung, Paarbildung, hadronische Wechselwirkungen, Wechselwirkung von Neutronen Detektoren: Gasgefüllte Ionisationsdetektoren (Ionisationskammer, Proportionalzählrohr, Vieldrahtkammern, Driftkammern, Widerstandplattendetektoren) Halbleiterdetektoren (Silizium, Germanium, CdZnTe) Szintillationsdetektoren (Photovervielfacher, Photodioden, Mikrokanalplatten) Teilchenidentifikation (Flugzeit, Energieverlust, Cherenkov- und Übergangsstrahlungsdetektoren) Kalorimeter (elektromagnetische und hadronische Schauer) Datenerfassungselektronik (NIM, CAMAC, VME, cpci, ATCA) eschleuniger und Detektoren, Andreas Wagner,

6 Literatur K. Wille, The Physics of Particle Accelerators, Oxford 00 E. Wilson, An Introduction to Particle Accelerators, Oxford Univ. Press 01 F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik Springer 08 J. Großer: Einführung in die Teilchenoptik, Teubner 83 J.D. Lawson: The physics of charged-particle beams, Clarendon press 77 R. K. ock, A. Vasilescu, The Particle Detector riefook, Springer 98 K. Kleinknecht, Detektoren für Teilchenstrahlung, Teubner 05 C. Grupen, Teilchendetektoren, I-Wissenschaftsverlag 93 W. R. Leo, Techniques for Nuclear and Particle Physics, Springer '94 G. F. Knoll, Radiation Detection and Measurement, Wiley and Sons 00 D. Green, The physics of particle detectors, Cambridge Univ. Press 00 F.Sauli, Instrumentation in High Energy Physics, World Scientific 9 Cern Accelerator School, eschleuniger und Detektoren, Andreas Wagner,

7 Linearbeschleuniger (LINAC) Die Wellenausbreitung in Hohlleitern geschieht immer mit einer Phasengeschwindigkeit, die größer als die Lichtgeschwindigkeit ist. Daher lässt sich in einem normalen Hohlleiter keine eschleunigung über eine größere Strecke erreichen. Das Problem kann aber umgangen werden, wenn man die Wellenausbreitung durch das Einfügen von Irisblenden stört. Diese Struktur wird auch disk-loaded structure genannt. K. Wille Damit erreicht man eine veränderte Dispersionsrelation. Legt man den Arbeitspunkt genau an die Stelle mit v phase, dann ist eine eschleunigung wieder möglich. eschleuniger und Detektoren, Andreas Wagner,

8 Einkoppelung in die disc-loaded structure eschleunigungsmode ist wieder die TM 01 -Mode, die Zuleitung wieder ein TE 10 -Hohlleiter. K. Wille Die Einführung dieser Irisblenden bewirkt aber gleichzeitig eine Einschränkung der Moden in z-richtung. eschleuniger und Detektoren, Andreas Wagner,

9 eschleunigung in einem LINAC Prinzipiell sind nur die niedrigsten Moden für die eschleunigung von edeutung. mode 3 mode mode Diese Mode wird für supraleitende eschleuniger benutzt. Sie hat eine lange Einschwingzeit und ist damit für einen gepulsten etrieb wenig geeignet. Länge für SL-DESY/ELE cavity bei 1.3 GHz: cm. Kompromiss für kurze Einschwingzeit (Gruppengeschwindigkeit hoch)) und hohen eschleunigungsgradienten. Wird für normal leitende, gepulste LINACs verwendet. Länge für.9979 GHz (S-and) = 10/3 cm. Anpassung für hohe Feldstärke schlecht möglich. eschleuniger und Detektoren, Andreas Wagner,

10 Phasenfokussierung eim Einfang von Teilchen und bei der eschleunigung ist es sehr wichtig, dass aufgrund unterschiedlicher Anfangsgeschwindigkeiten die Teilchenpakte nicht auseinanderlaufen, beziehungsweise sich die Phasen der Teilchen zur Welle nicht verändern. Das erreicht man mittels der sog. Phasenfokussierung oder longitudinalen Fokussierung. Teilchen, die zu einem späteren Zeitpunkt eintreffen, werden mit einem höheren Gradienten beschleunigt als frühere Teilchen. Haben die Teilchen noch nicht Lichtgeschwindigkeit erreicht, dann erhöht sich die Geschwindigkeit der langsameren Teilchen mehr als die der schnelleren Teilchen. Es kommt zur zeitlichen Fokussierung. E soll t t eschleuniger und Detektoren, Andreas Wagner,

11 Phasenfokussierung Die zeitliche Fokussierung ist essentiell für den etrieb eines LINAC. Sie wurde bei der Erfindung des Synchrotrons durch V.I. Veksler entdeckt. LINAC Phasenfokussierung sin E HF qu 0 Der Energiegewinn in einer Stufe hängt von der Phasenabweichung (phase-lag) gegenüber der Hochfrequenzschwingung ab. eschleuniger und Detektoren, Andreas Wagner,

12 eschleuniger und Detektoren, Andreas Wagner, Kreisbeschleuniger ewegung eines Teilchens in einem homogenen Magnetfeld m q v m q v v m q v z t v t z mz my mx v v v v v v qv F z z x z y y z x z z x z y x x z 0,0 0 0 ; 0 0 Die Teilchen bewegen sich in Feldrichtung geradlinig gleichförmig und senkrecht dazu auf Kreisbahnen mit einer konstanten Frequenz, der Zyklotronfrequenz. Dieser Umstand ermöglicht bei nicht allzu großer Teilchenenergie einen sehr einfachen eschleuniger. y x z

13 Das Zyklotron Ein homogenes Magnetfeld zwingt die geladenen Teilchen auf eine Kreisbahn. Zwischen zwei Duanden (Dees) wird passend zum zu beschleunigenden Teilchen - eine hochfrequente Wechselspannung angelegt, die gerade dann maximal ist, wenn das Teilchen sich zwischen den Duanden befindet. ewegt sich das Teilchen im (elektrisch) feldfreien Raum, schwingt das Wechselfeld in Gegenrichtung. Das Teilchen gewinnt bei jedem Umlauf an Energie, aber die Zyklotronfrequenz bleibt konstant, so lange das Teilchen noch keine relativistischen Energien gewonnen hat. Erstes Zyklotron 1930 nach E. O. Lawrence. (9 cm Durchmesser, 80 kev Protonen). eschleuniger und Detektoren, Andreas Wagner,

14 Zyklotrone für höhere Energien Werden die Teilchen relativistisch, dann verringert sich die Zyklotronfrequenz. Es gibt nun zwei Möglichkeiten, diese Änderung zu kompensieren: Änderung der Frequenz im sogenannten Synchrozyklotron: Mit zunehmender Energie wird die eschleunigungsfrequenz erniedrigt. Dann kann aber die eschleunigung nur gepulst erfolgen. Änderung des Magnetfeldes im sogenannten Isochronzyklotron: In Abhängigkeit vom ahnradius nimmt das Magnetfeld radial zu. eschleunigung ist zwar im cw-mode möglich, aber die Formung des Magnetfeldes ist aufwändig und die Erzeugung stabiler Orbits schwierig. 0 ( t) ( t) ( r) ( r) const. Zahlenbeispiel Ei 7 MeV Ei i 1 1 mc E 590 MeV f E f i 1 mc 1 7 MeV 938 MeV 590 MeV 938 MeV mc e const.; 1 e i i const.; e i e e i 1.51 eschleuniger und Detektoren, Andreas Wagner,

15 Zyklotrone für höhere Energien Gustaf Werner-Isochronzyklotron an der Uppsala Universität. Daten: Polschuhdurchmesser:.8 m Extraktionsradius: 1. m Masse: 600 t Feldstärke: 1.75 T Spulenleistung: 300 kw Energie (H + ): 180 MeV Zyklotron am kanadischen TRIUMF-Labor in Vancouver (Polschuhform zur Fokussierung wichtig, später mehr) Daten: Pohlschuhdurchmesser: 18 m Masse: 4000 t Feldstärke: 0.6 T Spulenleistung: MW Energie (H + ): 500 MeV eschleuniger und Detektoren, Andreas Wagner,

16 Mikrotron Aufgrund der schnellen Massenzunahme sind Zyklotrone für die eschleunigung von Elektronen nicht geeignet. Man verwendet für Elektronen alternativ dazu das sogenannte Mikrotron. Dieser eschleuniger benutzt ein statisches Magnetfeld zur Ablenkung und zur eschleunigung einen Linearbeschleuniger. Ist der Ablenkmagnet geteilt zur Unterbringung der eschleunigungsstufe, dann spricht man von einem racetrack-microtron. e - Magnet Mainzer Mikrotrone MAMI (A-C) Energie: MAMI A MAMI MAMI C 180 MeV 855 MeV 1500 MeV Mikrotron mit der höchsten Energie wird demnächst die Produktionsschwelle für +N -> K + + erreichen. e - eschleuniger und Detektoren, Andreas Wagner,

17 Rhodotron Eine kompakte Variante eines Mikrotron stellt das Rhodotron dar, in dem mehrere Umlenkmagnete den Strahl immer wieder durch die gleiche eschleunigungskavität leiten. Die eschleunigungskavität ist hierbei zylindrisch-symmetrisch mit einer Mode, die eine elektrische Radialkomponente hat. Die Strahlenergiedefinition ist nicht sehr gut, aber die Intensität und Effizienz für industrielle Anwendungen dafür ausreichend. Magnet IA (Ion eam Applications, elgien) e - e - eschleuniger und Detektoren, Andreas Wagner,

18 etatron In den bisher diskutierten eschleunigertypen wurde das beschleunigenden elektrische Feld statisch oder durch eine Hochfrequenzschwingung erzeugt. Im etatron hingegen dient ein zeitlich rasch veränderliches Magnetfeld über Induktion zur Erzeugung eines elektrischen Feldes: Der Strahl ist hier faktisch die sekundäre Wicklung eines Transformators. Es wurde 1940 entwickelt von D. Kerst (Illinois) und dient zur eschleunigung von Elektronen. Hauptspule Korrekturspule Eisenjoch des Magneten etrieb typischerweise mit 50(60) Hz Wechselstrom. Führungsfeld nimmt nach außen ab eschleunigungsfeld (Induktion) Strahlrohr T. Weis, K. Wille, Dortmund Elektronenstrahl eschleuniger und Detektoren, Andreas Wagner,

19 Funktionsprinzip des etatrons E ds E R t 1 ds R A R E er p F e E R Faradaysches Induktionsgesetz eschleunigungsfeld p er t t 0 g t t 0 0 a a g Lorentzkraft, differenzieren und gleichsetzen liefert die: etatron Stabilitäts-edingung nach Wideröe zwischen eschleunigungs- und Führungsfeld. Gilt generell für Oszillationen in einem Kreisbeschleuniger. eschleuniger und Detektoren, Andreas Wagner,

20 Schwache Fokussierung Für eine stabile ahn müssen sich Zentrifugalkraft und Lorentzkraft gerade so ausgleichen, dass für kleine Auslenkungen eine Rückstellkraft in Richtung der Sollbahn erfolgt. F L qv r mv FZ r r n r 0 n 1 qv 0 c r n Orbit instabil, innen Lorentzkraft stärker als Zentrifugalkraft. Orbit stabil. Diese Anordnung nennt man schwach fokussierend, da während eines Umlaufs nur max. eine Oszillation um die Sollbahn stattfindet. Meist wird in Zyklotrons und etatrons n=0.15 gewählt. eschleuniger und Detektoren, Andreas Wagner,

21 Synchrotron mit schwacher Fokussierung Die schwache Fokussierung führte zu langwelligen etatronoszillationen, die sehr große Aperturen nötig machte. Das Synchrophasotron in Dubna (Veksler 1950er Jahre) hatte eine Protonenenergie von 10 GeV und Magnete mit Aperturen von 00 cm x 40 cm bei einer Gesamtmasse von 36 kt. Das 8 GeV Protonensynchrotron PS (1959) am CERN hat Aperturen von 15 cm x 10 cm und Magnete von 3 kt Masse bei Nutzung der starken Fokussierung.. eschleuniger und Detektoren, Andreas Wagner,

22 Alternating-Gradient Synchrotron ei einem AG-Synchrotron wechseln sich die Gradienten der ablenkenden Dipolmagnete ab. Das AGS am rookhaven National Laboratory wird noch immer als Injektor für den Relativistic Heavy Ion Collider genutzt. eschleuniger und Detektoren, Andreas Wagner,

23 Starke Fokussierung Eine starke Fokussierung lässt sich mit alternierenden fokussierenden und defokussierenden Elementen erreichen. Der Effekt ist hier analog zur geometrischen Optik, bei der ein System von Sammel- und Zerstreuungslinse einen fokussierenden Effekt verursacht. Ein Synchrotron ist ohne starke Fokussierung kaum zu betreiben. Eine naheliegende Lösung wäre, den Strahlpfad abwechselnd mit Quadrupolmagneten auszustatten. Alternativ kann man auch abwechselnd große Gradienten verwenden. eschleuniger und Detektoren, Andreas Wagner,

24 Synchrotronmagnete ei einem AG-Synchrotron wechseln sich stark fokussierende Komponenten im Verlauf des Strahlpfades ab. Die Komponenten können hierbei in Form von combined function magnets, das bedeutet, dass Ablenkmagnet und Fokussierung in einer Einheit oder in Form von separated function magnets ausgeführt sind. Combined function magnets sind beispielsweise Dipolmagneten mit fokussierenden Feldkanten, damit einfacher als separated function magnets, aber nicht so vielseitig einsetzbar. Sektorfeldmagnet: Ein-/Austrittskante senkrecht zum Strahl. Vertikale Driftstrecke. Rechteckmagnet: Ein-/Austrittskante geneigt zum Strahl. Wirkt vertikal fokussierend, horizontal defokussierend.. Kombination aus Ablenkmagneten und Quadrupolmagneten zur Fokussierung. eschleuniger und Detektoren, Andreas Wagner,

25 Das Synchrotron Synchrotrone sind die Maschinen, die heute für die höchsten Energien bei der eschleunigung eingesetzt werden. Während des eschleunigungszyklus werden die Magnetfelder kontinuierlich hochgefahren. Die Impulsabweichung von Teilchen gegenüber den Synchronen Teilchen führt zu longitudinalen Schwingungen, den Synchrotronschwingungen. Zahlenbeispiel: 150 m Umfang, 1 GeV/c pro Sekunde Impulszunahme ergibt Energiegewinn pro Umlauf von: 150 m * 1 GeV / c / s = 500 ev. eschleuniger und Detektoren, Andreas Wagner,

Ringbeschleuniger und Speicherringe

Ringbeschleuniger und Speicherringe Ringbeschleuniger und Speicherringe Prof. Dr. Oliver Kester Sabrina Geyer Dr. Peter Forck Motivation Ringbeschleuniger 2 Vorlesung mit Übungen: Das Team Prof. Dr. Oliver Kester Dr. Peter Forck Sabrina

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung III. Experimentelle Methoden 1. Teilchenbeschleuniger Höhere Schwerpunktsenergien Bessere Auflösung von Substrukturen Erzeugung neuer (schwerer) Teilchen Kosmische Höhenstrahlung Für lange Zeit war die

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger

Mehr

Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger

Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger 1) Motivation Ein Grund, warum sich Physiker mit Teilchenbeschleunigern beschäftigen ist sicherlich

Mehr

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14.

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14. Kerne und Teilchen Moderne Physik III Vorlesung # 14 Guido Drexlin, Institut für Experimentelle Kernphysik 6. Detektoren und Beschleuniger 6.2 Teilchenbeschleuniger - Zyklotron - Synchrotron - Internationale

Mehr

Kreisbeschleuniger IX (Synchrotron)

Kreisbeschleuniger IX (Synchrotron) Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten

Mehr

Teilchenbeschleuniger & Massenspektrometer. E3 Vorlesung

Teilchenbeschleuniger & Massenspektrometer. E3 Vorlesung Teilchenbeschleuniger & Massenspektrometer E3 Vorlesung 20.01.2015 21.01.2015 Kernphysik: Bindungsenergien Kernreaktionen Radioaktivität kev MeV/Nukleon Motivation Teilchenphysik: Erzeugung schwerer Teilchen

Mehr

Detektoren und Beschleuniger

Detektoren und Beschleuniger Detektoren und Beschleuniger Literatur K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner Hinterberger, Physik der Teilchenbeschleuniger, Springer S.Humphries Jr., Principles

Mehr

Ausarbeitung zum Vortrag Teilchenbeschleuniger

Ausarbeitung zum Vortrag Teilchenbeschleuniger Vortragende: Friederike Bachor Betreuer: Marco Dehn Seminarleiter: Dr. P. Achenbach gehalten am 24. Oktober 2011 Johannes Gutenberg-Universität Mainz Ausarbeitung zum Vortrag Teilchenbeschleuniger A. Einleitung

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Kapitel 08. Mikrotron

Kapitel 08. Mikrotron Kapitel 08 Mikrotron 1.1 Das klassische Mikrotron Hochfrequenz-Kreisbeschleuniger für Elektronen Elektronen in einem homogenen, zeitlich konstanten Magnetfeld auf Kreisbahnen Aber: Radien wachsen mit zunehmender

Mehr

Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift. Dozent: Prof. K. Jakobs Verfasser: R. Gugel

Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift. Dozent: Prof. K. Jakobs Verfasser: R. Gugel Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift Dozent: Prof. K. Jakobs Verfasser: R. Gugel 12. Februar 2013 Teilchen werden durch ihre Wechselwirkung mit Materie, d.h. dem Detektormaterial,

Mehr

4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger

4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger 4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger Motivation Teilchenbeschleuniger ermöglichen Streuexperimente oder Reaktionen mit Teilchen, deren... Energie wesentlich höher

Mehr

Aktuelle Probleme der experimentellen Teilchenphysik

Aktuelle Probleme der experimentellen Teilchenphysik Beschleunigerphysik Aktuelle Probleme der experimentellen Teilchenphysik 04.11.2008 Lehrstuhl für Physik und ihre Didaktik Historischer Überblick (1) Linearbeschleuniger (Urform Wideröe-Struktur ca. 1930)

Mehr

Teilchenbeschleuniger Technologien & Konzepte

Teilchenbeschleuniger Technologien & Konzepte Teilchenbeschleuniger Technologien & Konzepte Daniel Schell 04.11.2011 1 Parameter eines Teilchenbeschleunigers Zu den Parametern, die ein Teilchenbeschleuniger besitzt, ist unteranderem die Strahlintensität

Mehr

Strahlungsquellen für Technik und Medizin

Strahlungsquellen für Technik und Medizin Hanno Krieger Strahlungsquellen für Technik und Medizin Teubner Inhalt Abschnitt I: Teilchenbeschleuniger 1 Überblick über die Strahlungsquellen 9 1.1 Anwendungen von Strahlungsquellen 9 1.2 Arten von

Mehr

Große Beschleunigerexperimente (LHC, FAIR etc.)

Große Beschleunigerexperimente (LHC, FAIR etc.) Lehrerfortbildung 2009/2010 Große Beschleunigerexperimente (LHC, FAIR etc.) Thomas Cowan Direktor am Institut für Strahlenphysik Forschungszentrum Dresden-Rossendorf Inhalt Einleitung Standardmodell und

Mehr

5 Teilchenbeschleuniger

5 Teilchenbeschleuniger 5 Teilchenbeschleuniger bestehen aus Teilchenquelle Beschleunigungsstruktur Elementen zur Ablenkung und Fokusierung des Strahls Beschleunigung beruht immer auf der Kraft von elektrischen Feldern auf Ladungen.

Mehr

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest Teilchenphysik Masterclasses Das Leben, das Universum und der ganze Rest 1 Teil 1: Einführung Warum Teilchenphysik? 2 Fundamentale Fragen Wer? Wie? Wieviel? Was? Wo? Wann? Warum? 3 Warum Teilchenphysik?

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

1.1 Einsatzbereiche ionisierender Strahlungsquellen Arten ionisierender Strahlungsquellen 13

1.1 Einsatzbereiche ionisierender Strahlungsquellen Arten ionisierender Strahlungsquellen 13 Inhalt Abschnitt I: Teilchenbeschleuniger 1 Überblick über die Strahlungsquellen 9 1.1 Einsatzbereiche ionisierender Strahlungsquellen 9 1.2 Arten ionisierender Strahlungsquellen 13 2 Grundlagen zur Teilchenbeschleunigung

Mehr

Wozu immer größere Beschleuniger?

Wozu immer größere Beschleuniger? Daniel A.Stricker-Shaver Wozu immer größere Beschleuniger? Welche Arten gibt es und warum? Was haben sie uns gebracht? Wie sieht die Zukunft aus? 1 Warum Beschleuniger : Äquivalenz von Masse und Energie

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Der Injektor der Speicherringanlage ANKA

Der Injektor der Speicherringanlage ANKA (272) Der Injektor der Speicherringanlage ANKA D. Einfeld, M. Pont, FGS 2.5 GeV Speicher-Ring Einleitung Im Speicherring von ANKA soll zur Erzeugung der gewünschten Synchrotronstrahlung ein 400- ma-elektronenstrahl

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

2.1.3 Wechselwirkung von Photonen in Materie

2.1.3 Wechselwirkung von Photonen in Materie 2.1.3 Wechselwirkung von Photonen in Materie Photo-Effekt (dominant b. kleinen Energien) Compton-Effekt Paarerzeugung (dominant b. großen Energien) Literatur: W.R. Leo, Techniques for Nuclear and Particle

Mehr

Werkzeuge der Kernphysik

Werkzeuge der Kernphysik Kapitel 1 Werkzeuge der Kernphysik 1.1 eilchenbeschleuniger Die meisten Experimente der Kern- und eilchenphysik laufen nach dem gleichen Schema ab: Ein Strahl von eilchen (Photonen, Elektronen, Protonen,

Mehr

Detektorsysteme: Der ATLAS-Detektor am LHC

Detektorsysteme: Der ATLAS-Detektor am LHC 1 Johannes Gutenberg-Universität Mainz Institut für Physik / Institut für Kernphysik Seminar zum Fortgeschrittenen-Praktikum WS 2008/09 Leitung: Prof. Dr. S. Tapprogge, Dr. M. Distler Betreuer: Prof. L.

Mehr

Abitur 2009 Physik 2. Klausur Hannover, arei LK 1. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 2. Klausur Hannover, arei LK 1. Semester Bearbeitungszeit: 90 min bitur 9 hysik lausur Hannoer, 37 arei L Seester earbeitungszeit: 9 in Thea: Geladene Teilchen i elektrischen und agnetische Feld ufgabe rotonen werden i Vakuu aus der Ruhelage durch die Spannung = 8V auf

Mehr

y =y z =z (1) t = x = Gamma-Faktor

y =y z =z (1) t = x = Gamma-Faktor Gamma-Faktor Warum kann man eine Rakete nicht auf Lichtgeschwindigkeit beschleunigen? Diese Frage führt unmittelbar zur Speziellen Relativitätstheorie und zu den Lorentz- Transformationen. Die Lorentz-Transformationen

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Experimentelle Teilchenphysik Skript nach der Vorlesung von G. Quast, M. Feindt, W. Wagner und A. Denig. Zusammengefasst von Simon Honc

Experimentelle Teilchenphysik Skript nach der Vorlesung von G. Quast, M. Feindt, W. Wagner und A. Denig. Zusammengefasst von Simon Honc Experimentelle Teilchenphysik Skript nach der Vorlesung von G. Quast, M. Feindt, W. Wagner und A. Denig Zusammengefasst von Simon Honc. November 6 I. Inhaltsverzeichnis I. Inhaltsverzeichnis... 3 II.

Mehr

Universität Dresden Laborpraktikum Kern- und Teilchenphysik. Blasenkammer (BK)

Universität Dresden Laborpraktikum Kern- und Teilchenphysik. Blasenkammer (BK) Universität Dresden Laborpraktikum Kern- und Teilchenphysik Blasenkammer (BK) IKTP TU Dresden, Felix Friedrich, Version 1.0, Stand: November 2008 1 Der Versuch 1.1 Versuchsziel Das Ziel des Versuches ist

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Teilchenbeschleuniger Unersetzbare Werkzeuge für die Forschung C.P. Welsch Anwendungsgebiete Hochenergiephysik Hauptfokus dieser Woche Medizinische Anwendungen Lichtquellen Seminar Dienstagabend Materialwissenschaften...

Mehr

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger.

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Grafik 2 Vorstellung des Instituts für Kern- und Teilchenphysik Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Dipl. Phys. Kathrin Leonhardt 1 Grafik 2 Auf den Spuren

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik

Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik...von der Fadenstrahlröhre zum Large Hadron Collider 1 J. Merkert Institut für Experimentelle Kernphysik Inhalt Materialien zur Teilchenphysik

Mehr

Von Gregor Fuhs. 1. Februar 2011

Von Gregor Fuhs. 1. Februar 2011 Der Delphi Detektor Von Gregor Fuhs 1. Februar 2011 Inhaltsverzeichnis Der LEP-Beschleuniger Technische Daten des DELPHI Experiments Detektortypen Überblick Der LEP-Beschleuniger CERN, Genf 27km Länge

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Detektoren für Teilchenstrahlung

Detektoren für Teilchenstrahlung Detektoren für Teilchenstrahlung Von Prof. Dr. rer. nat. Konrad Kleinknecht Universität Mainz 3., durchgesehene und erweiterte Auflage Mit 154 Figuren und 20 Tabellen B.G.Teubner Stuttgart 1992 Prof. Dr.

Mehr

Vorschlag eines Experiments zur Unterscheidung von νe und νμ Realisierung von Neutrinostrahlen an Beschleunigern Nobelpreis L. Lederman, M.

Vorschlag eines Experiments zur Unterscheidung von νe und νμ Realisierung von Neutrinostrahlen an Beschleunigern Nobelpreis L. Lederman, M. 1. Einleitung Fortschritt in Kern- und Teilchenphysik großteils getrieben durch experimentelle Beobachtung Hängt kritisch von der Entwicklung neuer Methoden in der Teilchenbeschleunigung und auf Gebiet

Mehr

Detektoren zur Teilchenidentifikation. Melanie Heil, EKP GK workshop Dezember 2012

Detektoren zur Teilchenidentifikation. Melanie Heil, EKP GK workshop Dezember 2012 Detektoren zur Teilchenidentifikation Melanie Heil, EKP GK workshop Dezember 2012 Overview Wechselwirkung von Teilchen mit Materie Detektortypen Detektorsysteme Overview Wechselwirkung von Teilchen mit

Mehr

Teilchen sichtbar machen

Teilchen sichtbar machen Teilchen sichtbar machen PD Dr. M. Weber Albert Einstein Center for Fundamental Physics Laboratorium für Hochenergiephysik Physikalisches Institut Universität Bern 1 PD Dr. M. Weber Physik Masterclasses

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben?

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Michael Grefe DESY Presse- und Öffentlichkeitsarbeit (PR) Was ist das DESY? > Deutsches Elektronen-Synchrotron

Mehr

Beschleunigerphysik für Anfänger

Beschleunigerphysik für Anfänger Beschleunigerphysik für Anfänger Das Elektron Bei BESSY beschleunigen wir Elektronen. Elektronen sind normalerweise ein Teil des Atoms, dem kleinsten Bestandteil in den die Materie zerlegt werden kann,

Mehr

Teilchendetektoren und Experiment an ELSA

Teilchendetektoren und Experiment an ELSA Teilchendetektoren und Experiment an ELSA Thema 2: Detektoren und Nachweis von Teilchen von Max Becker Gliederung 1. Wechselwirkung von Teilchen mit Materie a) für Photonen b) für geladene Teilchen c)

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton- und Photonstruktur 8. Elektroschwache

Mehr

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgabe 1) Der Lehrer hat hnen die Funktionsweise eines Drehspulinstrumentes erklärt. Welche Kraft erfahren die 100 Drahtstücke der Länge s = 3,0 cm die sich

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Bewegung im elektrischen und magnetischen Feld

Bewegung im elektrischen und magnetischen Feld Bewegung im elektrischen und magnetischen Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis Bewegung geladener Teilchen elektrischen Feldern Bewegung geladener Teilchen in Magnetfeldern

Mehr

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Die vier Kräfte Gravitation Starke Kraft Schwache Kraft Elektromagnetismus

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Christoph Berger Elementarteilchenphysik Von den Grundlagen zu den modernen Experimenten Zweite, aktualisierte und überarbeitete Auflage Mit 217 Abbildungen, 51 Tabellen und 88 Übungen mit Lösungshinweisen

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

2 Grundlagen zur Teilchenbeschleunigung und Strahloptik

2 Grundlagen zur Teilchenbeschleunigung und Strahloptik 2 Grundlagen zur Teilchenbeschleunigung und trahloptik Da in Medizin und Technik meistens relativistische, also schnelle Teilchen erzeugt und verwendet werden, beginnt dieses Kapitel mit einer Wiederholung

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung

Einführung in die Kern- und Teilchenphysik I Vorlesung Einführung in die Kern- und Teilchenphysik I Vorlesung 22 9.1.2015 Beschleuniger - Kreisbeschleuniger - Linearbeschleuniger - (Supraleitende Magnete) 1) Wozu Beschleuniger? Bildquelle: Wikipedia Physik

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Physik der Teilchenbeschleuniger

Physik der Teilchenbeschleuniger 11 Physik der Teilchenbeschleuniger Prof Dr Otmar Biebel Inhalt der Vorlesung: Einführung in die Teilchenbeschleuniger Teilchenbeschleunigeroptik Teilchenablenkung durch Magnete Teilchenbewegung im Kreisbeschleuniger

Mehr

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Dr. Martin Sczepan Forschungszentrum Rossendorf Inhalt Laser für das Infrarot Was macht den Bereich des IR interessant? Der Infrarot-FEL im Vergleich

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Detektoren in der Hochenergiephysik

Detektoren in der Hochenergiephysik Detektoren in der Hochenergiephysik Sommersemester 2005 Univ.Doz.DI.Dr. Manfred Krammer Institut für Hochenergiephysik der ÖAW, Wien Bearbeitung der VO-Unterlagen: DI.Dr. D. Rakoczy Inhalt 1. Einleitung

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

1) Fluss und Zusammensetzung kosmischer Strahlung

1) Fluss und Zusammensetzung kosmischer Strahlung 1) Fluss und Zusammensetzung kosmischer Strahlung Der Fluss ist eine Größe, die beschreibt, wie viele Teilchen in einem Energieintervall auf einer Fläche in einem Raumwinkelintervall und einem Zeitintervall

Mehr

Der Urknall im Labor. Experimente mit schweren Atomkernen bei hohen Energien. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Der Urknall im Labor. Experimente mit schweren Atomkernen bei hohen Energien. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Der Urknall im Labor Experimente mit schweren Atomkernen bei hohen Energien Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Aufbau der Materie Materie Kristall Atom Atomkern Protonen

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

2. Vorlesung Teilchen- und Astroteilchen

2. Vorlesung Teilchen- und Astroteilchen 2. Vorlesung Teilchen- und Astroteilchen Grundlagen des Teilchennachweises: Wechselwirkung hochenergetischer Teilchen mit Materie in makroskopischen Mengen 1. Klassifizierung der Teilchen in Bezug auf

Mehr

Einführung in die Kernphysik von Harry Friedmann

Einführung in die Kernphysik von Harry Friedmann Einführung in die Kernphysik von Harry Friedmann Inhaltsverzeichnis Vorwort... 5 1 Entdeckung der Radioaktivität, natürliche Radioaktivität... 7 1.1 Entdeckung... 7 1.2 Natürliche Radioaktivität... 8

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

GOTTTEILCHEN und WELTMASCHINE

GOTTTEILCHEN und WELTMASCHINE Harald Appelshäuser Institut für Kernphysik GOTTTEILCHEN und WELTMASCHINE dem Urknall auf der Spur mit dem Teilchenbeschleuniger am CERN Large Hadron Collider (LHC) 8,6 km Large Hadron Collider (LHC) 1232

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Klassische Experimentalphysik II

Klassische Experimentalphysik II Klassische Experimentalphysik II SS 2014 Dozent: Prof. Übungsleitung: Dr. Martin Weides Modul 5520 Beschreibung Lernziele: Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger Prof. Dr. G. Quast Institut für experimentelle Kernphysik Universität Karlsruhe (TH) 2 Ursprung

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 04. Mai 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.06.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Themenkomplex Relativität. Superpositionsprinzip Galileische Bezugssysteme Faradaysche Induktion. Beobachter. Beobachter 1

Themenkomplex Relativität. Superpositionsprinzip Galileische Bezugssysteme Faradaysche Induktion. Beobachter. Beobachter 1 Themenkomle Relatiität eobachter Suerositionsrinzi Galileische ezugssysteme Faradaysche Induktion eobachter 1 Thema eobachter Suerositionsrinzi eobachter eobachter 3 Kinematik 3 Kinematische Gleichungen

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Erzeugung und Anwendung von brillanter Röntgenstrahlung

Erzeugung und Anwendung von brillanter Röntgenstrahlung Erzeugung und Anwendung von brillanter Röntgenstrahlung Johannes Fachinger 15.Januar 2007 Röntgenstrahlung Röntgenstrahlung ist elektromagnetische Strahlung in einem Wellenlängenbereich von ca. 10 8 m

Mehr