Übung 2 - Media Access Control (MAC)

Größe: px
Ab Seite anzeigen:

Download "Übung 2 - Media Access Control (MAC)"

Transkript

1 Übung 2 - Musterlösung 1 Übung 2 - Media Access Control (MAC) 0 Vorbereitung Arbeiten Sie im Ethernet-Buch von Jörg Rech das Unterkapitel 2.9 Media Access Control (MAC) durch (S ). 1 Kollisionsdomäne bei Fast Ethernet In dieser Aufgabe wird ausgerechnet, wie gross typischerweise die örtliche Ausdehnung einer Kollisionsdomäne bei Fast Ethernet mit einer Bitrate von 100 Mbit/s = 1e8 bit/s ist. Der Zeitraum, gemessen in Bitzeiten (BT), nachdem das Medium als eindeutig belegt gilt und bei dem eine mögliche Kollision bei der sendenden Station eintrifft, wird im Ethernet Standard als slot time bezeichnet. Die slot time korrespondiert dabei mit der minimalen MAC Framegrösse von 64 Byte, also 512 Bit. Innerhalb dieser 512 Bitzeiten muss gewährleistet sein, dass das Signal den gesamten Weg zu der entferntesten Station hin- und wieder zurücklaufen kann. Deshalb nennt man die slot time auch den maximalen Round Trip Delay (RTD). Wie gross ist bei Fast Ethernet eine Bitzeit (BT), d.h. die Dauer eines einzelnen Datenbits. Geben Sie den Wert in [ns] an. bit time = 1 BT = 1 / 100 Mbit/s = 10 ns Wie gross wird damit die slot time oder der Round Trip Delay in [ns]? slot time = 512 BT = ns = 5120 ns Die Ausbreitungsgeschwindigkeit v eines Datensignals in einem Cat. 5 UTP (Unshielded Twisted Pair) Kabel beträgt circa 60 % der Lichtgeschwindigkeit c = 300'000 km/s. Wie gross ist v in [m/ns] und welche Distanz legt das Signal während einer Fast Ethernet Bitzeit zurück? Ausbreitungsgeschwindigkeit: v = 0.6 3e8 m/s = 1.8e8 m/s = 0.18 m/ns Strecke in 1 BT: s = v BT = 0.18 m/ns 10 ns = 1.8 m

2 Übung 2 - Musterlösung 2 Fall A: Direkte Verbindung zwischen zwei Stationen L =? Zwei Stationen werden direkt über ein gekreuztes Cat. 5 UTP Kabel miteinander verbunden. Wie gross darf mit der oben berechneten Ausbreitungsgeschwindigkeit v die maximale Ausdehnung L der Kollisionsdomäne sein? Kollisionsdomäne: L = v slot_time / 2 = 0.18 m/ns 5120 ns / 2 = m oder mit BT: L = 1.8 m/bt 512 BT / 2 = m Die Maximaldistanz L wird erstaunlich gross. Der Grund ist darin zu finden, dass wir die Verzögerung des Signals in den elektronischen Komponenten nicht berücksichtigt haben. Für die typische Verarbeitungszeit beim Senden und Empfangen in einer Fast Ethernet Netzwerkkarte muss mit ca. 500 ns gerechnet werden (Sende- und Empfangsverzögerung zusammengezählt). Wie viele äquivalente Bitzeiten sind das und wie lange darf das Kabel zwischen den Stationen nun mehr sein, wenn die Verzögerung in beiden Netzwerkkarten bei einer Kollision berücksichtigt wird. Verzögerung (Senden + Empfang) in Netzwerkkarte: 500 ns / 10 ns = 50 BT Verzögerung durch zwei Netzwerkkartern: 2 50 BT = 100 BT Kollisionsdomäne: L = 1.8 m/bt (512 BT 100 BT) / 2 = 1.8 m/bt 412 BT / 2 = m Die nun erhaltene Maximaldistanz L ist kleiner geworden, liegt aber immer noch wesentlich über der durch die Kabeldämpfung bestimmten maximalen Cat. 5 Kabellänge von 100 m. Deshalb müssen Repeater (oder Hubs) zur Signalverstärkung dazwischen geschaltet werden. Der folgende Fall B zeigt diese neue Situation, wie sie im Ethernet Standard IEEE als Extremsituation aufgeführt ist.

3 Übung 2 - Musterlösung 3 Fall B: Verbindung über zwei Class II Repeater zwischen zwei Stationen L1 = 100 m L3 = 5 m L2 = 100 m Die beiden Stationen sind je über ein UTP Kabel der Länge L1 = L2 = 100 m an einen Hub angeschlossen. Die beiden Hubs sind über ein kurzes Verbindungskabel L3 = 5 m miteinander gekoppelt. Die maximale Durchlaufszeit von einem Eingangsport zu einem Ausgangsport ist für Class II Repeater mit 460 ns spezifiziert. Wie gross ist der Verzögerungsbeitrag pro Hub gemessen in Bitzeiten, wenn Sie berücksichtigen, dass bei einer Kollision der Hub zweimal durchlaufen wird? Berechnen Sie anschliessend den Round Trip Delay T zwischen den beiden Stationen in [ns] und Bitzeiten, unter Berücksichtigung der Verzögerungen in den Netzwerkkarten und Hubs. Gesamter Round Trip Delay in [ns]: T = ns ns m / 0.18 m/ns = 5118 ns Verzögerung in Netzwerkkarte: 50 BT Round Trip Delay durch Class II Repeater: ns / 10 ns = 92 BT Kabellaufzeit in BT: 205 m / 1.8m = BT Gesamter Round Trip Delay in BT: T = 2 50 BT BT BT = BT Kann bei dieser Gesamtdistanz von 205 m eine Kollision noch sicher detektiert werden? Da T = BT leicht unter dem maximalen RTD von 512 BT liegt, kann eine Kollision gerade noch erkannt werden!

4 Übung 2 - Musterlösung 4 2 Exponentieller Backoff Algorithmus Die Generierung einer Wartezeit nach dem Zufallsprinzip soll vermeiden, dass nach einer aufgetretenen Kollision die Stationen wieder gleichzeitig versuchen, ihre Frames auszusenden. Für die Ermittlung der individuellen Wartezeit ist im Ethernet-Standard folgender exponentielle Backoff-Algorithmus definiert: Jede beteiligte Station würfelt eine zufällige Integer-Zahl r, die mit der slot time multipliziert wird, um die Wartezeit T zu ermitteln. Bei wiederholter Kollision wird bei jedem Versuch n die Slot-Nummer r wie folgt ermittelt: 0r 2 k wobei k min( n,10) mit n = 1, 2, 3,, 15 Kann beim 16. Versuch die Kollision immer noch nicht aufgelöst werden, wird der zu sendene MAC Frame verworfen und eine Fehlermeldung an die höheren Schichten abgesetzt. Unter dem Link: steht ein Simulator zur Verfügung, mit dem der exponentielle Backoff-Algorithmus im Detail untersucht werden kann. Studieren Sie die Kollisionsbehandlung für eine unterschiedliche Anzahl (1...26) von Hosts, die gleichzeitig einen MAC Frame senden wollen. Analysieren Sie, wie die sich die Anzahl der echten Kollisionen durch die Vergrösserung der Framelänge (1..24) verringert. Wird dadurch der Durchsatz verbessert? Nicht unbedingt. Echte Kollisionen können zwar meist vermieden werden, aber durch die lange Belegung des Kanals werden immer grössere Backoff-Delays erzeugt, die viele unbelegte Slots schaffen. Bei gegebener Anzahl von Host- und fester Framegrösse, können durch Änderung des Seed-Werts die unterschiedlichsten zeitlichen Abläufe generiert werden. Es werden sowohl Best Case, wie auch Worst Case Szenarien erzeugt.

5 Übung 2 - Musterlösung 5 Um statistische Aussagen über den Einfluss der Anzahl der simultanen Hosts und der Framelänge machen zu können, müssen durch Veränderung des Seed, viele Szenarien durchgespielt und gemittelt werden. Deshalb wechseln wir vom Einzelmodus (Runs = 1) in den Statistikmodus (Runs > 1) und untersuchen für 4 Hosts den Einfluss der Framegrösse (Size), indem wir über 1000 Runs mitteln. Tragen Sie in der untenstehenden Tabelle die Best Case (min), Worst Case (max) und mittlere (avg) Efficiency in Prozent ein: Size: Best 66% 88% 94% 96% 95% 95% Average 28% 38% 44% 49% 52% 52% Worst 4% 9% 10% 16% 18% 14% Wie gross ist ungefähr die mittlere Auslastung des Kanals bei grösseren Frames? ca % Als Nächstes soll die Abhängigkeit der Kanalauslastung von der Anzahl der simultan sendenden Hosts bei einer festen Framegrösse von 4 Slots untersucht werden: Hosts: Best 100% 88% 94% 74% 63% 57% Average 100% 61% 44% 35% 26% 23% Worst 100% 8% 10% 9% 5% 5% Bei wie vielen gleichzeitig sendenden Hosts wird noch eine Kanalauslastung von ca. 40% erzielt? Bei ca. 6-7 Hosts.

Der Backoff-Algorithmus

Der Backoff-Algorithmus Der Backoff-Algorithmus Ausarbeitung im Rahmen der Vorlesung Lokale und Weitverkehrsnetze II (Prof. Koops) SS 2001 3570316 Lars Möhlmann 3570317 Jens Olejak 3570326 Till Tarara Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven

Mehr

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze

Mehr

Systeme II 7. Woche Funkprobleme und Ethernet

Systeme II 7. Woche Funkprobleme und Ethernet Systeme II 7. Woche Funkprobleme und Ethernet Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Spezielle Probleme in drahtlosen Netzwerken 2 Probleme

Mehr

Systeme II. 6. Vorlesungswoche

Systeme II. 6. Vorlesungswoche 6. Vorlesungswoche 02.06. 06.06.2008 Institut für Informatik 1 1 Kapitel 4 Mediumzugriff in der Sicherungsschicht 2 2 CSMA und Übertragungszeit CSMA-Problem: Übertragungszeit d (propagation delay) Zwei

Mehr

Die Norm IEEE 802. Logical Link Control (LLC)

Die Norm IEEE 802. Logical Link Control (LLC) Die Norm IEEE 802 Logical Link Control (LLC) Funktion Untervariante von HDLC gemeinsame Schnittstelle zur höheren Schicht für alle darunterliegenden LAN/MAN - Protokolle Dienste unbestätigt und verbindungslos

Mehr

Random-Access-Verfahren

Random-Access-Verfahren Random-Access-Verfahren Random-Access, 1 Referenzen - D. Bertsekas, R. Gallager: Data Networks, Prentice-Hall, 1992. - Du, Swamy, "Wireless Communications Systems", S. 108, Cambridge, 2010. TDMA-, FDMA-

Mehr

CSMA mit Kollisionsdetektion: CSMA/CD

CSMA mit Kollisionsdetektion: CSMA/CD CSMA mit Kollisionsdetektion: CSMA/CD Start Beispiel: 1 2 3 1 Persistent P Persistent Nonpersistent Starte Paketübertragung Kollision derweil? Ende nein ja Stoppe Paketübertragung SS 2012 Grundlagen der

Mehr

Sicherungsschicht (Ethernet)

Sicherungsschicht (Ethernet) Sicherungsschicht (Ethernet) 5.1 Einleitung und Dienste 5.2 Fehlererkennung und -korrektur 5.3 Adressierung auf der Sicherungsschicht 5.4 Ethernet 5.5 Switches auf der Sicherungsschicht Sicherungsschicht:

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 2009 Übung 7 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme)

Mehr

Verbesserung Slotted ALOHA

Verbesserung Slotted ALOHA Verbesserung Slotted ALOHA Starte Übertragung wann immer ein Datenpaket vorliegt Beginne die Übertragung jedoch nur zu Beginn von festen Zeit Slots Zeit Slot Paketankunft Paketübertragung Zeit Grundlagen

Mehr

Grundlagen der Telematik AMW Übungsaufgaben

Grundlagen der Telematik AMW Übungsaufgaben Grundlagen der Telematik AMW Übungsaufgaben Grundlagen der Telematik (AMW SS 00): Übungsaufgaben Aufgabe Es sei gegeben, dass eine Datei mit F Bit über einen Pfad, der über Q Links durch das Netzwerk führt,

Mehr

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Rechnernetze II WS 2013/2014 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 5. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze

Mehr

P Persistent CSMA. Beispiel: Start. höre in den Kanal. Kanal frei? ja Senden? Warte einen Zeit Slot. nein. Warte einen Zeit Slot und dann.

P Persistent CSMA. Beispiel: Start. höre in den Kanal. Kanal frei? ja Senden? Warte einen Zeit Slot. nein. Warte einen Zeit Slot und dann. P Persistent CSMA Start Höre in den Kanal Beispiel: 1 2 3 Kanal frei? ja Senden? (mit WK p) ja Sende Paket Kollision? nein Ende nein nein ja Warte einen Zeit Slot Warte einen Zeit Slot und dann höre in

Mehr

Informations- und Kommunikationssysteme

Informations- und Kommunikationssysteme Informations- und Kommunikationssysteme Übungsaufgaben 2. Teil 1 Aufgabe 1 Es sei gegeben, dass eine Datei mit F Bit über einen Pfad, der über Q Links durch das Netzwerk führt, gesendet wird. Das Netzwerk

Mehr

Digitale Kommunikation und Internetdienste 1

Digitale Kommunikation und Internetdienste 1 Digitale Kommunikation und Internetdienste 1 Wintersemester 2004/2005 Teil 4 Belegnummer Vorlesung: 39 30 02 Übungen: 39 30 05 Jan E. Hennig AG (RVS) Technische Fakultät Universität Bielefeld jhennig@rvs.uni-bielefeld.de

Mehr

Modul 4: Fast- und Gigabit- Ethernet

Modul 4: Fast- und Gigabit- Ethernet Modul 4: Fast- und Gigabit- Ethernet 23.04.2012 17:49:05 17:47:50 M. Leischner // K. Uhde Netze SS 2012 Folie 1 Ethernet: Namensregelung Beispiele: 10Base-T, 100Base-Fx, 10GBase-T Der Name enthält 3 Bereiche

Mehr

Rechnern netze und Organisatio on

Rechnern netze und Organisatio on Rechnernetze und Organisation Assignment A3 Präsentation 1 Motivation Übersicht Netzwerke und Protokolle Rechnernetze und Organisatio on Aufgabenstellung: Netzwerk-Protokoll-Simulator 2 Motivation Protokoll-Simulator

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 12. Vorlesung 14.06.2006 schindel@informatik.uni-freiburg.de 1 Der Mediumzugriff in der Sicherungsschicht Statisches Multiplexen Dynamische Kanalbelegung

Mehr

4.4.3 Mehrpunkt-Übertragung (Medium-Zugriff)

4.4.3 Mehrpunkt-Übertragung (Medium-Zugriff) Leseprobe Kommunikationssysteme (Band 1) aus Abschnitt Sicherungsschicht 4.4.3 Mehrpunkt-Übertragung (Medium-Zugriff) Bei der Mehrpunktübertragung teilen sich mehr als 2 Stationen ein gemeinsames Übertragungsmedium

Mehr

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Rechnernetze II WS 2013/2014. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Rechnernetze II WS 2013/2014 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 5. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze

Mehr

Grundlagen der Rechnernetze. Lokale Netze

Grundlagen der Rechnernetze. Lokale Netze Grundlagen der Rechnernetze Lokale Netze Protokollarchitektur Repeater und Bridges Hubs und Switches Virtual LANs Fallstudie Ethernet Fallstudie Wireless LAN Übersicht Grundlagen der Rechnernetze Lokale

Mehr

Datenübertragung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33

Datenübertragung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33 Datenübertragung Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33 Datenübertragung Kommunikationssysteme übertragen Daten durch Kodieren in eine Energieform und das Senden der Energie über

Mehr

Berechnung Worst-Case-Effizienz: Pakete mit P=64 Byte Größe

Berechnung Worst-Case-Effizienz: Pakete mit P=64 Byte Größe Berechnung Worst-Case-Effizienz: Pakete mit P=64 Byte Größe F..Framegröße, SL..Start Limiter, IFG..Inter Frame Gap η Frame (Effizienz der Frameübertragung): Framegröße / genutzte Zeitscheiben (Byte Cycles)

Mehr

Lösung von Übungsblatt 7. (Datentransferrate und Latenz)

Lösung von Übungsblatt 7. (Datentransferrate und Latenz) Lösung von Übungsblatt 7 Aufgabe 1 (Datentransferrate und Latenz) Der preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz.

Mehr

Übungsblatt 7. (Datentransferrate und Latenz)

Übungsblatt 7. (Datentransferrate und Latenz) Übungsblatt 7 Aufgabe 1 (Datentransferrate und Latenz) Der preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz. Behördliche

Mehr

Netzwerke, Kapitel 3.1

Netzwerke, Kapitel 3.1 Netzwerke, Kapitel 3.1 Fragen 1. Mit welchem anschaulichen Beispiel wurde das OSI-Schichtenmodell erklärt? Dolmetscher 2. Was versteht man unter Dienstprimitiven? Request, Indication, Response, Confirm

Mehr

Netzwerkperformance 2.0

Netzwerkperformance 2.0 Netzwerkperformance 2.0 Die KPI`s als Schlüsselfaktoren der Netzwerke Andreas Dobesch, Product Manager DataCenter Forum 2014, Trafo Baden ISATEL Electronic AG Hinterbergstrasse 9 CH 6330 Cham Tel. 041

Mehr

Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.

Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit. Abschlussklausur Computernetze 14. Februar 2014 Name: Vorname: Matrikelnummer: Tragen Sie auf allen Blättern (einschlieÿlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein. Schreiben

Mehr

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht Themen MAC Teilschicht Ethernet Medium Access Control (MAC) Untere Teilschicht der Sicherungsschicht Verwendung für Broadcast-Netze Mehrere Benutzer (Stationen) verwenden einen Übertragungskanal z.b. LANs

Mehr

HBF IT-Systeme. BBU-NPA Übung 5 Stand:

HBF IT-Systeme. BBU-NPA Übung 5 Stand: BBU-NPA Übung 5 Stand: 16.11.2011 Zeit Laborübung 90 min Vernetzung von PCs mit s und es Informationen Repeater Da man bei einem Ethernet mit Twisted Pair Kabeln nur maximal 100 m überbrücken sollte, kann

Mehr

Funktionselemente von Netzwerken

Funktionselemente von Netzwerken Folie: 1 Funktionselemente von Netzwerken Medienkonverter Folie: 2 Medienkonverter werden eingesetzt, wenn bei einer Datenübertragungsstrecke zwei unterschiedliche Übertragungsmedien gekoppelt werden.

Mehr

Verwenden von Hubs. Geräte der Schicht 1 Günstig Eingang an einem Port, Ausgang an den anderen Ports Eine Kollisionsdomäne Eine Broadcast-Domäne

Verwenden von Hubs. Geräte der Schicht 1 Günstig Eingang an einem Port, Ausgang an den anderen Ports Eine Kollisionsdomäne Eine Broadcast-Domäne Von Hubs zu VLANs Verwenden von Hubs Geräte der Schicht 1 Günstig Eingang an einem Port, Ausgang an den anderen Ports Eine Kollisionsdomäne Eine Broadcast-Domäne Hub 1 172.30.1.24 172.30.1.22 Ein Hub Ein

Mehr

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen?

5.) Nach erfolgreicher Übertragung entfernt der Sender seinen Daten-Rahmen vom Ring. Wodurch kann ein verwaister Rahmen entstehen? Übung 5 1.) In einem CSMA/CD-LAN mit einer Übertragungsrate von 10 Mbps soll der erste Bit- Schlitz nach jeder erfolgreichen Rahmenübertragung für den Empfänger reserviert sein, der dann den Kanal besetzt

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 11. Vorlesung 01.06.2006 schindel@informatik.uni-freiburg.de 1 Der Mediumzugriff in der Sicherungsschicht Statisches Multiplexen Dynamische Kanalbelegung

Mehr

Systeme II 7. Die Datensicherungsschicht (Teil 5)

Systeme II 7. Die Datensicherungsschicht (Teil 5) Systeme II 7. Die Datensicherungsschicht (Teil 5) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete

Mehr

Neuaufsetzen bei Übertragungsfehlern. Hier nur noch MAC-Layer: Kapitel 3: Lokale Netze und Weitverkehrsnetze Seite 210

Neuaufsetzen bei Übertragungsfehlern. Hier nur noch MAC-Layer: Kapitel 3: Lokale Netze und Weitverkehrsnetze Seite 210 Sicherungsebene Netztypen Lokale Netze (LAN): 10m - wenige km, einfache Verbindungsstruktur Ethernet / Fast Ethernet / Gigabit Ethernet Token Ring, Token Bus LAN Wireless LAN (WLAN, bis wenige 100m) FDDI

Mehr

Vorlesung "Verteilte Systeme" Sommersemester Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Sommersemester Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Sommersemester 1999 Folie 1.2 (c)

Mehr

Korrigieren von Bitfehlern

Korrigieren von Bitfehlern Korrigieren von Bitfehlern Datenblock Codewort 00 -> 00000 01 -> 00111 10 -> 11001 11 -> 11110 Empfangen Nächstes gültiges CW Daten Korrigieren von Bit Fehlern: Es sei Code = {b 1,...,b k } und es werde

Mehr

Laborübung - Bau eines Ethernet-Crossover-Kabels

Laborübung - Bau eines Ethernet-Crossover-Kabels Topologie Adressierungstabelle Lernziele Gerät Schnittstelle IP-Adresse Subnetzmaske Default Gateway PC-A Netzwerkkarte 192.168.10.1 255.255.255.0 k. A. PC-B Netzwerkkarte 192.168.10.2 255.255.255.0 k.

Mehr

Neuaufsetzen bei Übertragungsfehlern. Lehrstuhl für Informatik 4. Hier nur noch MAC-Layer: Kapitel 3: Netze. Lehrstuhl für Informatik 4

Neuaufsetzen bei Übertragungsfehlern. Lehrstuhl für Informatik 4. Hier nur noch MAC-Layer: Kapitel 3: Netze. Lehrstuhl für Informatik 4 Sicherungsebene Netztypen Lokale Netze (LAN): 10m - wenige km, einfache Verbindungsstruktur Ethernet / Fast Ethernet / Gigabit Ethernet Token Ring LAN Wireless LAN (WLAN, bis wenige 100m) FDDI (bis 100km,

Mehr

Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 08

Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 08 Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 08 Prof. Dr. Michael Massoth [Stand: 15.11.2011] 8-1 8-2 Allgemeine Information (1): Praktikum Starttermine Zug D für Versuch

Mehr

WiFi Chipset Fingerprinting

WiFi Chipset Fingerprinting WiFi Chipset Fingerprinting Secure Business Austria und Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie Technische Universität Graz Günther Lackner Mario Lamberger Udo Payer

Mehr

Übungsblatt 2. (Schichten der Referenzmodelle)

Übungsblatt 2. (Schichten der Referenzmodelle) Übungsblatt 2 Aufgabe 1 (Schichten der Referenzmodelle) 1. Tragen Sie die Namen der Schichten der Referenzmodell in die Abbildung ein. 2. Weisen Sie Fachbegriffe Rahmen, Pakete, Segmente und Signale den

Mehr

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990.

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990. Ein polynomieller Algorithmus für das N-Damen Problem 1 Einführung Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre

Mehr

Vorgehen: Election des Spanning Tree Root

Vorgehen: Election des Spanning Tree Root Vorgehen: Election des Spanning Tree Root C A B B3 B5 E B2 D B7 F K G I B6 B1 Root behält alle Ports bei. B4 H J SS 2012 Grundlagen der Rechnernetze Lokale Netze 19 Vorgehen: Bridges berechnen kürzeste

Mehr

Rechnernetze Sommer Rechnernetze. Ethernet. Robert M. Metcalfe, (c) Peter Sturm, Uni Trier 1

Rechnernetze Sommer Rechnernetze. Ethernet. Robert M. Metcalfe, (c) Peter Sturm, Uni Trier 1 Rechnernetze Ethernet Robert M. Metcalfe, 1976 (c) Peter Sturm, Uni Trier 1 Historisches Mai 1973 Bob Metcalfe Xerox PARC, Kalifornien Baut auf Aloha Network, Universität Hawaii auf Radio-Netzwerk zur

Mehr

Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke

Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke Computeranwendung in der Chemie Informatik für Chemiker(innen) 4. Netzwerke Jens Döbler 2003 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL4 Folie 1 Grundlagen Netzwerke dienen dem Datenaustausch

Mehr

Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht

Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht Systeme II 6. Woche Mediumzugriff in der Sicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Der Mediumzugriff in der Sicherungsschicht

Mehr

Ha-VIS econ 2000 Einführung und Merkmale

Ha-VIS econ 2000 Einführung und Merkmale Ha-VIS Einführung und Merkmale Ha-VIS es, unmanaged, für die flache Hutschienenmontage im Schaltschrank Allgemeine Beschreibung Merkmale Die Produktfamilie Ha-VIS econ 2000 ist für den industriellen Bereich

Mehr

Betriebssysteme und Netze

Betriebssysteme und Netze TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG INSTITUT FÜR BETRIEBSSYSTEME UND RECHNERVERBUND Prof. Dr. S. Fischer Klausur: Betriebssysteme und Netze Schwerpunkt Netze Hinweise zur Bearbeitung: 26. Juli 2004 Als

Mehr

Übung Multimediasysteme. Delay types. Dirk Henrici, Bernd Reuther

Übung Multimediasysteme. Delay types. Dirk Henrici, Bernd Reuther Delay types 1 Delay II: Aufgabenstellung Angenommen jemand fährt mit seinem PKW von Kaiserslautern nach Berlin und benötigt für diese Strecke (655km) ca. 7 Stunden. Bei dem PKW handelt es sich um einen

Mehr

Im Vorlesungsskript (5) auf Seite 7 haben wir folgendes Bild:

Im Vorlesungsskript (5) auf Seite 7 haben wir folgendes Bild: Übungsblatt 4 Aufgabe 1 Sie möchten ein IEEE 802.11-Netzwerk (WLAN) mit einem IEEE 802.3-Netzwerk (Ethernet) verbinden. 1a) Auf welcher Schicht würden Sie ein Zwischensystem zur Übersetzung ansiedeln?

Mehr

HARTING econ Technische Kennwerte RJ45. econ 9000 A 1. Ethernet Interface

HARTING econ Technische Kennwerte RJ45. econ 9000 A 1. Ethernet Interface Technische Kennwerte RJ45 Ethernet Interface Anzahl Ports Kabeltypen nach IEEE 802.3 x 10/100Base-T(X) x 10/100/1000Base-T(X) (je nach Typ) Shielded Twisted Pair (STP) oder Unshielded Twisted Pair (UTP),

Mehr

Praktikum Rechnernetze Aufgabe 3: Messung mit dem Protokollanalyzer

Praktikum Rechnernetze Aufgabe 3: Messung mit dem Protokollanalyzer Praktikum Rechnernetze Aufgabe 3: Messung mit dem Protokollanalyzer 16. Mai 2001 Niels-Peter de Witt Matrikelnr. 2083921 Karsten Wolke Matrikelnr. 2083967 Helge Janicke Matrikelnr. 2083973 1 Rechnernetze

Mehr

Ethernet Applikation Guide

Ethernet Applikation Guide Ethernet Applikation Guide Derzeit sind drei Arten von Ethernet gängig, jede mit Ihren eigenen Regeln. Standard Ethernet mit einer Geschwindigkeit von 10 Mbit/s, Fast Ethernet mit Datenraten bis zu 100

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 1 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze

Mehr

Multiplexing und Multiple Access

Multiplexing und Multiple Access Multiplexing und Multiple Access Auf der Physikalischen Schicht Multiplexing um eine Leitung für mehrere Übertragungen zugleich zu verwenden Beispiele: Kabel TV, Telefon Auf der Verbindungsschicht Multiplexing

Mehr

Fast Ethernet PCI Netzwerkkarte PC0039

Fast Ethernet PCI Netzwerkkarte PC0039 Fast Ethernet PCI Netzwerkkarte PC0039 Bedienungsanleitung Inhaltsverzeichnis 1.0 Sicherheitshinweise 2.0 Einführung 3.0 Installation 4.0 CE Erklärung 1.0 Sicherheitshinweise Setzen Sie das Gerät nicht

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS Universität Siegen Tel.: 0271/ , Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS Universität Siegen Tel.: 0271/ , Büro: H-B 8404 Rechnernetze I SS 2012 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 20. April 2012 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze

Mehr

Übung 3 - Ethernet Frames

Übung 3 - Ethernet Frames Übung 3 - Musterlösung 1 Übung 3 - Ethernet Frames Booten Sie auf dem Security-Lab PC das Windows XP Betriebsystem und tätigen Sie ein Login mit: Username: Password: 1 MAC Adressen seclab strongswan Bestimmen

Mehr

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68

Flusskontrolle. Grundlagen der Rechnernetze Übertragungssicherung 68 Flusskontrolle Grundlagen der Rechnernetze Übertragungssicherung 68 Data Link Layer Frame synchronization how to make frames Flow control adjusting the rate of data Error control correction of errors Addressing

Mehr

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne) Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

Vorlesung "Verteilte Systeme" Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Wintersemester 2000/2001 Folie 1.2

Mehr

Hauptdiplomklausur Informatik. September 1998: Rechnernetze

Hauptdiplomklausur Informatik. September 1998: Rechnernetze Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Hauptdiplomklausur Informatik September 1998: Rechnernetze Name:... Vorname:...

Mehr

Trellis Diagramme und Viterbi-Decoder

Trellis Diagramme und Viterbi-Decoder Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe

Mehr

BNC-, RJ45-, und Glasfaser- Netzwerkkarten

BNC-, RJ45-, und Glasfaser- Netzwerkkarten Andreas Siebold Seite 1 01.09.2003 BNC-, RJ45-, und Glasfaser- Netzwerkkarten Eine Netzwerkkarte (Netzwerkadapter) stellt die Verbindung des Computers mit dem Netzwerk her. Die Hauptaufgaben von Netzwerkkarten

Mehr

Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial]

Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial] Vorlesung: Netzwerke WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 09 [Zusatzmaterial] Prof. Dr. Michael Massoth [Stand: 22.11.2011] 9-1 9-2 Kapitel 2: Direktverbindungsnetzwerke [Zusatzmaterial]

Mehr

Modul 4: Fast und Gigabit Ethernet

Modul 4: Fast und Gigabit Ethernet Modul 4: Fast und Gigabit Ethernet M. Leischner // K. Uhde Netze SS 2010 Folie 1 Ethernet: Namensregelung Beispiele: 10Base-T, 100Base-Fx, 10GBase-T Der Name enthält 3 Bereiche Der erste Bereich gibt die

Mehr

Übung 2: Multiplexverfahren (2)

Übung 2: Multiplexverfahren (2) ZHAW, NTM2, FS2011, Rumc, 1 Übung 2: Multiplexverfahren (2) Aufgabe 1: CDMA im Mobilfunk. In einer isolierten CDMA-Zelle verwendet jeder Benutzer N=100 mal mehr Bandbreite, als zur Übertragung mit der

Mehr

Übungsklausur WS 13/14

Übungsklausur WS 13/14 Übungsklausur WS 13/14 Name, Vorname: Geburtsdatum: Matrikelnummer: Datum: Für die Bearbeitung der Klausur dürfen keine Bleistifte oder Stifte mit roter Farbe verwendet werden. Zusatzblätter, welche nicht

Mehr

TCP Teil 2. TCP Teil 2: Tilmann Kuhn Betreuer: Dr. Thomas Fuhrmann 1/18

TCP Teil 2. TCP Teil 2: Tilmann Kuhn Betreuer: Dr. Thomas Fuhrmann 1/18 TCP Teil 2 sliding window protocol Begriffe: MSS, RTT und RTO bulk-data flow Stau-Vermeidung Langsamer Start Zusammenspiel: S.V. und L.S. TCP features und options TCP Teil 2: Tilmann Kuhn Betreuer: Dr.

Mehr

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf)

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf) Musterlösung Übung 2 Aufgabe 1: Große Zahlen Das Ergebnis ist nicht immer richtig. Die Maschine erzeugt bei Zahlen, die zu groß sind um sie darstellen zu können einen Über- bzw. einen Unterlauf. Beispiele

Mehr

Abschlussklausur. Moderne Netzstrukturen. Bewertung: 20. Mai Name: Vorname: Matrikelnummer:

Abschlussklausur. Moderne Netzstrukturen. Bewertung: 20. Mai Name: Vorname: Matrikelnummer: Abschlussklausur Moderne Netzstrukturen 20. Mai 2015 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund und prüfungsfähig

Mehr

Merkzettel für die Klausur

Merkzettel für die Klausur Merkzettel für die Klausur Marco Ammon, Julia Hindel 8. September 08 Paketverzögerung. Bitrate in b s. Paketgröße in Bit 3. Ausbreitungsverzögerung D = l v, wobei l die änge der Verbindung und v die Signalausbreitungsgeschwindigkeit

Mehr

4 Lokale Netze (LANs)

4 Lokale Netze (LANs) 4 Lokale Netze (LANs) 4.1 Topologien für lokale Netze 4.2 Medienzugangskontrolle 4.3 ALOHA 4.4 CSMA/CD (Ethernet) 4.5 Sternkoppler ( hubs ) und LAN-Switching 4.6 Token Ring 4.7 Wireless LAN (IEEE 802.11)

Mehr

4 Lokale Netze (LANs)

4 Lokale Netze (LANs) 4 Lokale Netze (LANs) 4.1 Topologien für lokale Netze 4.2 Medienzugangskontrolle 4.3 ALOHA 4.4 CSMA/CD (Ethernet) 4.5 Sternkoppler ( hubs ) und LAN-Switching 4.6 Token Ring 4.7 Wireless LAN (IEEE 802.11)

Mehr

Spread Spectrum. Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82

Spread Spectrum. Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82 Spread Spectrum Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82 FHSS Beispiel Spreading Code = 58371462 Nach 8 Intervallen wird der Code wiederholt Bildquelle:

Mehr

2 Sicherungsschicht (Data Link Layer)

2 Sicherungsschicht (Data Link Layer) Übertragungsdauer Ausbreitungsgeschwindigkeit T ges = T s + T a In üblichen Medien (Kabel, Glasfaser) ist v 2 3 c 200 000km s Bandbreiten-Verzögerungs-Produkt auf dem Medium befindet. ist das Datenvolumen,

Mehr

Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz

Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz Ethernet Performance mit Fast Track Switch Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz In der Automatisierungstechnik können die Laufzeiten der Ethernet-Telegramme

Mehr

Rechnernetze Übung 7. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012

Rechnernetze Übung 7. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012 Rechnernetze Übung 7 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012 1 2 Hello 13 23 3 Welche Probleme / Herausforderungen existieren in diesem Szenario? PC1 sendet sehr viele

Mehr

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976 Rechnernetze Ethernet Robert M. Metcalfe, 1976 1 Historisches Mai 1973 Bob Metcalfe Xerox PARC, Kalifornien Baut auf Aloha Network, Universität Hawaii auf Radio- Netzwerk zur Verbindung der einzelnen Inseln

Mehr

Themen. Wireless LAN. Repeater, Hub, Bridge, Switch, Router, Gateway

Themen. Wireless LAN. Repeater, Hub, Bridge, Switch, Router, Gateway Themen Repeater, Hub, Bridge, Switch, Router, Gateway WLAN Kommunikation Direkte Verbindung zweier Rechner Ad Hoc Networking WLAN Kommunikation Kommunikation über Zugriffspunkt Access Point WLAN Kommunikation

Mehr

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 21.

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 21. Rechnernetze I SS 2016 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 21. April 2016 Betriebssysteme / verteilte Systeme Rechnernetze I (1/13) i Rechnernetze

Mehr

6. Foliensatz Computernetze

6. Foliensatz Computernetze Prof. Dr. Christian Baun 6. Foliensatz Computernetze Frankfurt University of Applied Sciences WS1617 1/37 6. Foliensatz Computernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences (1971

Mehr

Informations- und Kommunikationssysteme

Informations- und Kommunikationssysteme Informations- und Kommunikationssysteme Kapitel 2.5 Datensicherungsschicht Acknowledgement: Folien angelehnt an J.F. Kurose and K.W. Ross 1 Kapitel 2.5: Datensicherungsschicht Unsere Ziele: Verständnis

Mehr

VERFASSER VERTEILER PROJEKT STICHWORT Reiner Weible Allgemein Profibus mit Bluetooth Profibus Bluetooth

VERFASSER VERTEILER PROJEKT STICHWORT Reiner Weible Allgemein Profibus mit Bluetooth Profibus Bluetooth Übertragung von Profibus DP über Inhaltsverzeichnis Übertragung von Profibus DP über...1 Inhaltsverzeichnis...1 Aufgabenbeschreibung...1 Testaufbau allgemein...1 1. Ohne - ein Profibusteilnehmer - Test

Mehr

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange?

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange? Delay Rechnung Betrachte: Kanal mit Kapazität C bps Exponential verteilte Paket Ankunftsrate von Pakete/Sekunde Exponential verteilte Paketlängen mit mittlerer Paketlänge von 1/ Bits/Frame Was ist die

Mehr

Chapter 7 Ethernet-Technologien. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von

Chapter 7 Ethernet-Technologien. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Chapter 7 Ethernet-Technologien CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/

Mehr

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 25.

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 25. Rechnernetze I SS 2012 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 25. April 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr