Lasermaterialbearbeitung. Florian Scherm



Ähnliche Dokumente
Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

Präzision ist TRUMPF Technologie Feinschneiden

Lasertechnik Praktikum. Nd:YAG Laser

1 mm 20mm ) =2.86 Damit ist NA = sin α = α=arctan ( nm ) Berechnung eines beugungslimitierten Flecks

1 Aufgabe: Absorption von Laserstrahlung

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

JENOPTIK. Geschwindigkeitsmessungen mit Lasertechnologie. Referent: Wolfgang Seidel

Neodym-dotierte Quasi-Drei-Niveau-Scheibenlaser Hohe Ausgangsleistung und Frequenzverdopplung

Laser-Zusammenstellung von Stephan Senn

Laserzündung von Verbrennungsmotoren

Gitterherstellung und Polarisation

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

DESIGN UNENDLICHE MÖGLICHKEITEN

Vortrag 2: Kohärenz VON JANIK UND JONAS

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik

Optische Bauelemente

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind.

5 Ionenlaser Laser für kurze Wellenlängen Edelgasionenlaser Metalldampfionenlaser (Cd,Se,Cu) Aufgaben...

Light Amplification by Stimulated Emission of Radiation

1 Anregung von Oberflächenwellen (30 Punkte)

Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage

Brewsterscher Winkel ******

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220

Glühlampe. Laser. Emitted Laser Beam. Laserbeam in Resonator R = 100% R = 98 %

Optik. Optik. Optik. Optik. Optik

Der Laser. Einleitung. Physikalische Grundlagen

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Mobiles Schneiden und Schweißen mit Hochleistungsfaserlaser. Traktorsysteme mit angepassten Bearbeitungsköpfen

POLARISATION. Von Carla, Pascal & Max

LYNX FL Faserlaser- Schneidsystem

Laserquellen für die Anwendung Laserschneiden. 2. Juli 2009 Roland Stöckli

Durchführung einer Messung Wie wird`s gemacht? Dr. Harald Schwede

c f 10. Grundlagen der Funktechnik 10.1 Elektromagnetische Wellen

Grundlagen der Elektronik

Standard Optics Information

WLT Short Course Das Grundprinzip des Lasers

Technische Information. Laserbearbeitung. YAG-Laser. Ausgabe: 9/94

Herstellung eines Zeigers einer hochwertigen Armbanduhr mittels Wasserstrahl-geführtem Laser

Lichtbrechung an Linsen

Versuch 4.6: Laserdioden-gepumpter Nd:YAG-Laser und Frequenzverdopplung

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD)

Vortrag zum Thema Lichtwellenleiter. von Stanislaw Nickel. Universität Bielefeld Proseminar SS 2010

Integriert-optische Modulatoren Technische Informationen

SYNOVA S.A. B. Richerzhagen. Wasserstrahlgeführtes Laserschneiden

Sicherheitsbelehrung

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut

SEIT 2004 IHR SPEZIALIST IM SCHNEIDEN MIT DEM FASERLASER

Status und Trends von Markierlasern - Dr. Carsten Ziolek

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Lasertechnik I Dr. Kracht / Klaus Raebsch. -Handhabungssysteme-

Laser MEDIZINISCHE LASERANWENDUNGEN. 4. Unterrichtseinheit. Akronym: LASER = Light Amplification by Stimulated Emission of Radiation.

Laserschutz Grundlagen

Praktikum I BL Brennweite von Linsen

PO - Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 2005

Lasersicherheitsbelehrung. Universität Hamburg 2009/10

PO Doppelbrechung und elliptisch polarisiertes Licht

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

GRUNDLAGEN DER ULTRAKURZPULSLASER- BEARBEITUNG. Jürgen Koch

Laseranwendungen im Schmuck- und Accessoiresbereich

Einführung in die optische Nachrichtentechnik. Herstellung von Lichtwellenleitern (TECH)

Übungen zur Experimentalphysik 3

Mobile 3D-Terahertz-Bildgebung beim Fügen von Kunststoff und Keramik

Glossar. Abstandsregelung. Bart CNC. Contour Cut. Contour Cut Speed CUTBUS A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4.12 Elektromotor und Generator

Instrumenten- Optik. Mikroskop

Hochleistungs-Faserlaser Anwendungen: Schneiden, Schweißen, Laserhybrid

Einsatzgebiete. Modulierbarkeit. Unterstütze Laserdioden. Systemübersicht. Thermisches Management. OEM Versionen

Versuchsprotokoll - Michelson Interferometer

Laser in der industriellen Fertigung Dipl.-Phys. Jan Hoffmann

Stromkreis aus Kondensator und Spule. U c =U L

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Der richtige Dreh für Ihre Maschine 1FW6

3. Halbleiter und Elektronik

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch

Administratives BSL PB

Optische Polymer Fasern (POF) - Frage. Optische Polymerfasern - in Kraftfahrzeugen bald serienmäßig?

Faserlaser. IAP, Friedrich-Schiller-Universität Jena

Berechnungsgrundlagen

Übungen zu Physik 1 für Maschinenwesen

Werkstoffe elektrischer Stromkreise

LASER - Kristalle und Keramiken. Karin Schulze Tertilt Christine Rex Antje Grill

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

1. Theorie: Kondensator:

Photonik. Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus. Oldenbourg Verlag München

Akusto-Optische Effekte

Presse-Information. Alles aus einer Hand

Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH

24. Transportprozesse

Wissenstransfer für Ecodesign. durch Hochschulprojekte. Jochen Doberitzsch Leiter Entwicklung CO2-Laser

Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke

Aus: J.Eichler, H.J.Eichler, Laser, 5.Auflage; Springer, Berlin (2003), ISBN

h- Bestimmung mit LEDs

LED Beleuchtung - Fehlerbetrachtung bei der Beleuchtungsstärkemessung

22 Optische Spektroskopie; elektromagnetisches Spektrum

Energiestrahlverfahren

Metalltechnik Logo - Unterzeile

Transkript:

Florian Scherm

Folie 2

Standorte in Deutschland Standorte in Deutschland Anwendungsbereiche der Lasertechnik Anwendungsbereiche der Lasertechnik Umsatzzahlen Lasertechnik Umsatzzahlen Lasertechnik Lasermarkt Stückzahlen Entwicklungstrends Folie 3

Eigenschaften Licht Eigenschaften Licht Spontane/Induzierte Emission Spontane/Induzierte Emission Laserprinzip Strahlerzeugung/Resonatorkonzepte Strahleigenschaften Absorption von Laserstrahlung Absorption von Laserstrahlung Folie 4

Lasersystem Strahlführungskonzepte Handhabungsysteme Diagnostik Strahlenschutz und Sicherheit Strahlenschutz und Sicherheit Folie 5

Oberflächenbearbeitung (Umschmelzen/Legieren Beschichten Oberflächenbearbeitung (Umschmelzen/Legieren Beschichten Fügen (Schweißen und Löten) Fügen (Schweißen und Löten) Abtragen (Bohren/Reinigen/Beschriften) Abtragen (Bohren/Reinigen/Beschriften) Schneiden Umformen (Thermisches Biegen) Umformen (Thermisches Biegen) Rapid Prototyping Rapid Prototyping Folie 6

Wer beschäftig sich in Deutschland mit Lasertechnik - Standorte Forschungs- und Anwenderzentren: BIAS Bremen BLZ Erlangen IFSW Stuttgart ILT Aachen IWB München IWS Dresden Laser Lab. Göttingen LMTB Berlin MW Bayreuth LZH Hannover SLV Halle Hamburg Bremen Hannover Göttingen Berlin Halle Aachen Mainz Jena Bayreuth Dresden Erlangen Stuttgart München Laserhersteller und -entwickler: Baasel Lasertechnik Starnberg Dilas Mainz Haas Laser Schramberg Lambda Physik Göttingen Lumonics Puchheim Rofin Sinar Hamburg Soliton Gilching Trumpf Laser Ditzingen Jenoptik, Jena Folie 7

Anwendungsbereiche der Lasertechnik Folie 8

Umsatz 2002/2003 weltweit nach Anwendungen (ohne Diodenlaser) Umsatz in Mio. US $ 1400 1200 2003 2002 1000 800 600 400 200 0 Materialbearbeitung Medizin. Therapie Forschung Bildverarbeitung Meßgeräte Unterhaltung Telekommunikation Folie 9

Umsatz 2002/2003 weltweit typenbezogen (ohne Diodenlaser) Umsatz in Mio. US $ 700 600 500 2003 2002 400 300 200 100 0 Nd:YAG (lampengepumpt) CO2 (gasgeströmt) Excimer Nd:YAG (diodengepumt) CO2 (diffusionsgekühlt) Ionen HeNe Farbstoff Folie 10

Umsatz Diodenlaser 2002/2003 weltweit nach Anwendungen 1600 1400 1200 1000 800 600 400 Umsatz in Millionen US $ 200 2003 2002 opt. Datenspeicherung Telekommunikation Pumpquellen für FK-Laser Medizintechnik Unterhaltung Barcode scanning Sensorik Materialbearbeitung 0 Folie 11

Produktionszahlen und Kosten für Laserstrahlquellen 2,5 2 1,5 1 Produktion (rel. Stückzahlen) Laserquellen Werkzeugmaschinen 0,5 1988 1989 1990 1991 1992 1993 1994 1995 1996 Preise für Strahlquellen (typische Nettopreise ohne Peripherie u. Handhabungssysteme) Hochleistungs-CO 2 -Laser, 4 kw: Euro 200.000,- Hochleistungs-Nd-YAG-Laser, 4 kw: Euro 300.000,- Hochleistungs-Diodenlaser, 4 kw: Euro 300.000,- Hochleistungs-Excimerlaser, 120 W Euro 200.000,- Hochleistungs-Metalldampflaser, 200 W Euro 150.000,- Folie 12

Lasersystemmarkt nach Anwendungen für Westeuropa Mikrobearbeitung 8 % Sonstige 13 % Beschriften 16 % Fein- und Punktschweißen 8 % Schweißen 12 % Bohren 4 % Schneiden 39 % Folie 13

Lasersystemmarkt nach Industriezweigen für Westeuropa andere Metallverarbeitende Branchen 12 % Verpackungsindustrie 11 % Sonstige 14 % Elektrik- und Elektronikindustrie 30 % Maschinenbau 8% Lohnfertigung 14 % Automobilindustrie 11 % Quelle: Laser Praxis Okt. 97 Folie 14

Trends in der Lasersystemtechnik System: Laserquelle - Strahlführung - Strahlformung - Werkstückhandhabung Roboter-Arm mit 4 kw-diodenlaser 18 kw - CO 2 -Laser 1 Leistungsmodule, 2 Aerodynamisches Fenster, 3 Strahlkabinett 4 Strahlweiche, 5 Portalsystem, 6 CNC-Steuereinheit, 7 Schutzkabine 200 W Diodenstapel kleiner, flexibler und besserer Wirkungsgrad Folie 15

Trends in der Lasersystemtechnik Folie 16

Eigenschaften und Vorteile des Lasers Folie 17

Unterscheidungsmöglichkeiten und Auswahlkriterien von Lasern Strahlerzeugung Strahleigenschaften Einsatzgebiet Folie 18

Eigenschaften von Licht Licht ist eine sich mit der Geschwindigkeit c (Vakuum: c = 3. 10 8 m/s) ausbreitende elektromagnetische Welle Licht besteht aus einer sich zeitlich und örtlich ausbreitenden periodischen Änderung der elektrischen und magnetischen Feldstärke Folie 19

Eigenschaften von Licht Licht im Spektrum der elektromagnetischen Wellen Gammastrahlung Röntgenstrahlung sichtbares Licht Mikrowellen Television Radio Kennzeichnung von Licht: Wellenlänge, Frequenz (λ. f = c) Leistung P [W] 10-12 10-9 10-6 10-3 1 10 3 m Leistungsdichte E [W/m²] Wellenlänge Strahlungsdauer [s] UV Infrarot Wiederholrate [1/s] 10-1 1 10 1 10 2 10 3 µm Impulsenergie [J] Excimer CVL Nd:YAG CO 2 -Laser Bereich des sichtbaren Lichts zwischen 380 und 780 nm Copper Vapour Laser Folie 20

Spontane Emission normaler Lichtquellen 2 2 Δ E 1 Anregung durch Elektronenstoß 1 spontane Emission Normale Lichtquelle (z.b. Gasentladungslampe): nach Elektronenstoßanregung erfolgt der Übergang in den Grundzustand statistisch (spontan) zu einer nicht vorhersagbaren Zeit in eine nicht festgelegte Richtung. Folie 21

Induzierte Emission 2 2 2 Δ E 1 1 1 Anregung durch Elektronenstoß Erzwungener Übergang in den Grundzustand durch Lichtwelle Verstärkung G Licht aktives Medium verstärktes Licht Verstärkungsfaktor: G = Ausgangsintensität / Eingangsintensität Anregungsenergie Normaler Verstärker der HF-Technik: Erzwungene (induzierte) Emission führt zur Verstärkung der einfallenden Lichtwelle unter Beibehaltung der Phase und Wellenlänge Folie 22

Laserprinzip - Besetzungsinversion 1. Besetzungsinversion Anzahl der Atome im oberen Laser-Niveau des Laser-Übergangs größer als im unteren Laser-Niveau; 2. Verstärkung > Verluste Anschwingbedingung für die lawinenartige stimulierte Emission von Photonen und der sich daraus ergebenden selbsterregten Oszillation im Resonator. Energieniveau-Schema und Darstellung der Besetzungsinversion eines 4-Niveau-Lasers: Population im thermischen Gleichgewicht (Boltzmann- Verteilung): Populations- Inversion: optische Verstärkung: Folie 23

Laserprinzip Verstärkung durch Rückkopplung Meissnersche Rückkopplungsschaltung (1913): Verstärkung durch mehrmaliges Hindurchschicken des Signals durch einen Verstärker (Sender: Röhre, Transistor...) Laser: selbsterregter, rückgekoppelter Verstärker Lichtoszillator: Anschwingbedingung G². R 1. R 2 > 1, R 1 1 und R 2 < 1 Reflektivität R 1 Reflektivität R 2 Verstärkung im Einfachdurchlauf G Optische Intensität I Stehende Lichtwelle zwischen den Resonatorspiegeln, wenn Spiegelabstand L = n. λ / 2, n = 1, 2, 3... Keine unbegrenzte Intensitätszunahme mit Anzahl der Resonatordurchläufe, da der Verstärkungsfaktor als Funktion der Intensität I sättigt G = G(I)! Folie 24

Eigenschaften von Licht Eigenschaften des Laserlichts: Monochromasie: Geringe spektrale Breite; Kohärenz: Feste räumliche und zeitliche Phasenbeziehung im Strahlungsfeld Strahlung ist interferenzfähig. Geringe Divergenz: Räumlich gerichtete Strahlung; Sehr hohe Leistungs- und Energiedichten: Fokussierbare Strahlung; Zeitlich modulierbar. Fokussierbarkeit: Folie 25

Grundlegender Aufbau einer Laserstrahlquelle Resonator vollreflektierender Spiegel Verlust-Energie laseraktives Medium teilreflektierender Spiegel Laserstrahl Eigenschaften: Wellenlänge Leistung Strahlqualität Wirkungsgrad Betriebsweise Bauform Herstellungskosten Anregungs-Energie Lebensdauer Bedingungen für die verwendeten Lasermaterialien 1) Geeignete Energiewerte für die zu erzeugende Laserstrahlung 2) Besetzungsinversion für das obere Laserniveau mit metastabilem Charakter 3) Anregung und stabilisierung der Lichtverstärkung durch Einwirkung einer geeigneten, kohärenten Strahlung Folie 26

Laseraktive Medien und Lasertypen Laseraktive Medien und Pumpquellen für Materialbearbeitungs-Laser Festkörperlaser Kristalle oder Gläser, die mit optisch aktiven Ionen dotiert sind, Halbleiter optisch, mit Blitzlampen oder Dioden elektrisch Nd:YAG (1064 nm) Nd:YLF (1047 nm) Ti:Saphir (700-1050 nm) GaAlAs (780-940 nm) Gaslaser Gas oder Dampf elektrisch, mit angeregter Gasentladung CO 2 -Laser Excimere: ArF (193 nm) KrF (248 nm) XeCl (308 nm) XeF (351 nm) Metalldampf: Kupfer (578 + 511 nm) Gold (628 nm) Ionen: Ar + -Laser (514 nm) Folie 27

Laser für die Materialbearbeitung Betriebsarten, Ausgangsleistungen, Wirkungsgrade und Anwendungen Lasermikromaterialbearbeitung Excimerlaser gepulst (30ns) bis 120W 1-10% Oberflächenbearbeitung, Schockhärten, Abtragen Kupferdampf- Laser (CVL) gepulst (10-70ns) 1-200W 1-3% Bohren, Schneiden, Oberflächenstrukturieren Diodengepumpter Nd:YAG/YLF gepulst (ps-ns) bis 100 W 1-3% Bohren, Schneiden, Oberflächenstrukturieren Ti:Saphir gepulst (fs-ns) bis 10 W Bohren, Oberflächenstrukturieren Lasermakromaterialbearbeitung CO 2 -Laser kontinuierlich (cw) 0,5-50 kw 5-10% Schneiden, Schweißen, Oberflächenbehandl. Nd:YAG-Laser cw 0,1-4 kw 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. gepulst 0,01-0,5 kw 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. Q-switch 0,01-0,5kW 1-3% Bohren, Schneiden, Schweißen, Oberfl.beh. Diodenlaser cw bis 4 kw 30-40% Schweißen, Oberflächenbehandlung Folie 28

Gängige Bauarten optischer Resonatoren stabile Resonatoren: Auskopplung erfolgt durch teildurchlässige Spiegel instabile Resonatoren: Beide Spielgel sind totalreflektierend, Auskopplung erfolgt im allgemeinen seitlich am einem Spiegel vorbei Folie 29

Vergleich stabiler und instabiler Resonator Folie 30

Strahleigenschaften TEM Klassifikation TEM = Transversal Elektromagnetischer Mode quer zur Richtung der stehenden Welle Modenform Intensität Gauß Typ TEM 00 TEM 01* TEM 10 TEM 20* TEM 20 Multimode K Strahlqualitätskennzahl K=1 K=0,5 K=0,33 K=0,25 K=0,2 K=0,14 (Grundmode) K λ f = 4 π D 1 d f λ: Wellenlänge der Laserstrahlung D: Rohstrahldurchmesser d f : Brennfleckdurchmesser f: Brennweite des Fokussierelements Folie 31

Strahleigenschaften TEM Klassifikation TEM = Transversal Elektromagnetischer Mode quer zur Richtung der stehenden Welle Der TEM kennzeichnet die Intensitätsverteilung im Querschnitt des Laserstrahls (mathematisch: Eigenschwingungsform des elektrischen Feldstärkevektors) Folie 32

Strahleigenschaften Größen zur Beschreibung des Laserstrahls mittlere Leistung Skalierung der Bearbeitungsfleckgröße bei vorgegebener Leistungsdichte bei flächiger Bearbeitung bei gepulsten Lasern: Pulsleistung, Pulsdauer, Pulsfolgefrequenz Möglichkeit der Regelung der Energieeinbringung wichtig zum Auffinden des Prozeßfensters einer spezifischen Bearbeitung Strahlqualität (Strahlparameterprodukt, Divergenz, Stabilität) wichtig z.b. beim Abtragen und Schweißen, da Strahlparameterprodukt die Fokussierbarkeit beschreibt Wellenlänge beeinflußt die Wechselwirkung des Strahls mit dem Werkstoff über den Einkopplungsgrad (Absorption, Reflexion) Polarisationszustand wichtig z.b. beim Schneiden und bei Verwendung elektro-optischer Komponenten (z.b. Pockelszelle zum Pulsabschneiden) Folie 33

Strahleigenschaften - Strahlparameterprodukt Strahlradius ω(z) Strahltaille ω 0 d Θ 0 Fernfeld Divergenz Optische Achse z z 0 Fakt: jeder anfangs parallele (Nahfeld) Laserstrahl geht nach größeren Distanzen in einen Kegel über (Fernfeld). Feste Beziehung zwischem Nahfelddurchmesser D und vollem Öffnungswinkel Θ: Strahlparameterprodukt SP SP = Θ. d / 4 [mm. mrad] Merkmale: je kleiner SP, desto besser Fokussierbarkeit Untergrenze ist der beugungsbegrenzte Fall (TEM 00 ): SP min = λπ Bsp. Nd:YAG (1,06 µm) SP min = 0,337 mm mrad CO2-Laser (10,6 µm) SP min = 3,37 mm mrad Folie 34

Strahleigenschaften Fokussierung von Laserstrahlung TEM 00 TEM 00 TEM 00 TEM 01 K = 1/M 2 Strahlqualität Öffnungsverhältnis Abbildungsfehler Wellenlänge Folie 35

Strahleigenschaften Fokussierung von Laserstrahlung Metallspiegel Θ D Strahlqualitätsfaktor K D Θ Linse K 1 λ 1 = = M2 p w 0 Θ Strahlparameterprodukt SP f ω 0 Θ = π K π = M 2 λ p Fokusradius r foc Z Rayleigh Brennebene focal plane r foc = r f λ π K Schärfentiefe z Rayleigh d foc = 2r foc d foc = 2r foc z Rayleigh = r f 2 λ π K 2 Folie 36

Strahleigenschaften Einfluss des Strahlparameterprodukts auf die Fokussierbarkeit Fokussiert man einen parallelen Laserstrahl mit dem Durchmesser D mit einer Linse der Brennweite f, dann berechnet sich der Fokusdurchmesser d hinter der Linse mit folgender Formel: Aussage: der Fokusdurchmesser läßt sich minimieren durch einen möglichst großen Strahldurchmesser D auf der Linse eine möglichst kurzbrennweitige Linse möglichst kleines Strahlparameterprodukt d = 4. f. SP / D minimale Fokusdurchmesser: d min = 4 f λ / D π da f/d meist > 1 d min = λ Folie 37

Strahleigenschaften Strahlparameterprodukt von Hochleistungslasern je größer die mittlere Ausgangsleistung, desto größer das Strahlparameterprodukt Folie 38

Strahleigenschaften Polarisationszustände linear polarisiert zirkular polarisiert Polarisationsebene senkrecht zur Bearbeitungsrichtung Im Resonator oszillieren die verschiedenen Moden in unterschiedlichen Polarisationszuständen, die sich zeitlich ändern Ausnahme: CO 2 -Laser neigt zur Emission von linear polarisiertem Licht. Da dies für die meisten Anwendungen unerwünscht ist (richtungs-abhängiges Schneiden), wird am Ausgang des Strahls ein optisches Element (λ/4- Platte) eingefügt, das den Strahl zirkular polarisiert Polarisationsebene parallel zur Bearbeitungsrichtung Lasergeschnittene Kante Folie 39

Wichtige Systemkomponenten 1. Strahlquelle 2. Strahlführung Resonator 3. Strahlformung Kühlung elektrische Leistungsversorgung Steuerung 4. Werkstückhandhabung Folie 40

Strahlquellen Gaslaser Allgemeines Eigenschaften Eigenschaften sind sind bestimmt bestimmt durch: durch: Art Art des des aktiven aktiven Mediums: Mediums: Gas, Gas, Gasgemische Gasgemische Thermodynamische Thermodynamische Parameter Parameter im im Lasergas: Lasergas: Druck, Druck, Temperatur Temperatur -> -> Dichte Dichte Anregungsverfahren: Gasentladung Gasentladung (DC, (DC, AC) AC) oder oder Thermisch Thermisch (gasdynamischer (gasdynamischer Laser) Laser) konstruktiven konstruktiven Aufbau: Aufbau: Resonatoranordnung: linear linear oder oder gefaltet gefaltet Gasströmung Gasströmung und und Kühlung: Kühlung: axial-, axial-, radial radial geströmt, geströmt, diffusionsgekühlt, diffusionsgekühlt, rod-, rod-, slab-anordnung slab-anordnung Spezifische Spezifische Eigenschaften Eigenschaften im im Vergleich Vergleich zu zu Flüssigkeits-, Flüssigkeits-, Festkörper- Festkörper-und und Halbleiterlasern: Halbleiterlasern: niedrige niedrige Dichte Dichte des des aktiven aktiven Mediums Mediums (Gas-)Druck (Gas-)Druck(10-10 (10-10 4 4 Pa) Pa) -> -> langer langer Verstärkungsweg, Verstärkungsweg, große große Abmessungen Abmessungen homogenes homogenes aktives aktives Medium Medium -> -> bessere bessere Strahlqualität Strahlqualität schneller schneller Gasaustausch, Gasaustausch, effektive effektive Kühlung Kühlung -> -> hohe hohe cw-leistung cw-leistung Folie 41

Strahlquellen Gaslaser Prinzip CO 2 -Laser 1 : 4 : 10 Quelle: Trumpf Wellenlänge Wellenlänge des des emittierten emittierten Lichts: Lichts: 10,6 10,6 µm µm Wirkungsgrad: Wirkungsgrad: ~10% ~10% (gesamt) (gesamt) bis bis 30% 30% (Entladung) (Entladung) laseraktives laseraktives Medium: Medium: CO CO 2 -Gas 2 -Gas(~6%) Lasergasgemisch: Lasergasgemisch: CO CO 2 /N 2 /N 2 /He 2 /He(1:4:10) Anregung: Anregung: DC DC oder oder HF HF Bauformen: Bauformen: längs-/quergeströmt, längs-/quergeströmt, Slab Slab Resonator: Resonator: stabiler stabiler und und instabiler instabiler einfach einfach bzw. bzw. mehrfach mehrfach Faltung Faltung im im Viereck Viereck oder oder Dreieck Dreieck Merke: ~1kW Laserleistung pro Meter Resonatorlänge! Folie 42

Strahlquellen Gaslaser Elektrische Anregung HF-Anregung Elektroden Elektroden befinden befinden sich sich außerhalb außerhalb vom vom Resonator Resonator sehr sehr gut gut regelbar regelbar und und mit mit hohen hohen Wiederholraten Wiederholraten pulsbar pulsbar geringerer geringerer Gesamtwirkungsgrad als als DC- DC- Anregung Anregung Einsatz Einsatz insbesondere insbesondere bei bei Laserleistung Laserleistung > 2kW 2kW geringerer geringerer Gasverbrauch Gasverbrauch kein kein Elektrodenverschleiß hohe hohe Leistungskonstanz Leistungskonstanz DC-Anregung kostengünstige kostengünstige Herstellung Herstellung höchster höchster Gesamtwirkungsgrad bei bei hohen hohen Leistungen Leistungen hoher hoher Elektrodenabbrand Elektrodenabbrand und und damit damit hoher hoher Serviceaufwand Serviceaufwand z.b. z.b. durch durch Verschmutzung Verschmutzung der der Spiegel Spiegel und und Glasrohre Glasrohre Folie 43

Strahlquellen Gaslaser Aufbau eines quergeströmten CO 2 -Lasers relativ relativ langsame langsame Gasströmung Gasströmung kostengünstige kostengünstige und und kompakte kompakte Hochleistungslaser Hochleistungslaser Strahlqualität Strahlqualität (multimode) (multimode) K>0,14 K>0,14 Schweißapplikationen Schweißapplikationen geringer geringer Gasverbrauch Gasverbrauch im im Vergleich Vergleich zu zu längsgeströmter längsgeströmter Bauart Bauart Quelle:RofinSinar Folie 44

Strahlquellen Gaslaser Aufbau eines quadratisch gefalteten längsgeströmten CO 2 -Lasers CO CO 2 -Laser 2 -Laser heute heute vorwiegend vorwiegend längsgeströmt längsgeströmt Leistung: Leistung: 100W 100W 40kW 40kW schnell schnell geströmt geströmt (Rootsgebläse, (Rootsgebläse, Turbine, Turbine, Radialverdichter) Radialverdichter) stabiler stabiler Resonatoraufbau Resonatoraufbau geringe geringe Beugungsverluste Beugungsverluste K~0,8 K~0,8 Schneidapplikationen Schneidapplikationen HF-Anregung HF-Anregung bei bei Strahlleistungen Strahlleistungen > > 10kW 10kW Quelle: Trumpf Folie 45

Strahlquellen Gaslaser Diffusionsgekühlter CO 2 -Slab-Laser Prinzip Kennzeichen HF-Anregung HF-Anregung instabiler instabiler Resonator Resonator Quelle: Rofin Slab=eng. Platte Vorteile sehr sehr kompakte kompakte und und nahezu nahezu verschleißfreie verschleißfreie Bauweise Bauweise hohe hohe Strahlqualität Strahlqualität K>0,8 K>0,8 kein kein zusätzlich zusätzlich Gaskühlung Gaskühlung erforderlich erforderlich geringe geringe optische optische Verluste Verluste sehr sehr hohe hohe thermische thermische Stabilität Stabilität geringer geringer Gasverbrauch, Gasverbrauch, keine keine externen externen Gasflaschen Gasflaschen nötig nötig keine keine Gasströmung Gasströmung und und damit damit Verunreinigungen Verunreinigungen der der Resonatoroptik Resonatoroptik geringer geringer Wartungsaufwand Wartungsaufwand Folie 46

Strahlquellen Gaslaser Energieflussdiagramm am Beispiel eines 7 kw CO 2 -Lasers Folie 47

Strahlquellen Gaslaser Folie 48

Strahlquellen Gaslaser Excimerlaser - Grundlagen Excimer von excited (angeregt) dimer (Molekül aus zwei Untereinheiten (Monomere)) Homodimer: identische Monomere, Heterodimer: verschiedene Monomere Thermschema eines Edelgashalogenidlasers Folie 49

Strahlquellen Gaslaser Excimerlaser Technisches Prinzip Möglichkeiten der Vorionisation 3 4 2 5 1. Pumpe zur Gasumwälzung 2. Wärmetauscher 3. Funkenentladung zur Vorionisierung 4. Elektrode für Hauptentladung 5. Energiespeicherkondensator 6. Induktivität zum Potenzialausgleich während des Ladevorgangs 7. Tyratron Schalter 8. Ladenetzteil 8 7 6 1 Folie 50

Typische Parameter Excimerlaser Strahlquellen Gaslaser zeitlicher Pulsverlauf Strahlprofil Folie 51

Strahlquellen Festkörperlaser Allgemeines Art Art des des Mediums Mediums Dotierte Dotierte Isolatoren: Isolatoren: Ionen Ionen seltener seltener Erden Erden oder oder Übergangmetalle Übergangmetalle in in nichtleitenden nichtleitendenwirtskristallen Anregung Anregung optisches optisches Pumpen Pumpen mit mit breitbandigen breitbandigenedelgas- Edelgas-oder oder Halogenlampen Halogenlampen (200-1000 (200-1000 nm), nm), schmalbandigen schmalbandigenhalbleiterlaser(806 nm) nm) Konstruktiver Konstruktiver Aufbau Aufbau Wassergekühlter Wassergekühlter Laserstab Laserstab (flow-tube) (flow-tube) Pumplichtreflektor Faserkopplung Faserkopplung Spezifische Spezifische Eigenschaften Eigenschaften im im Vergleich Vergleich zu zu Gas-, Gas-, Flüssigkeits- Flüssigkeits-und und Halbleiterlasern: Hohe Hohe Leistungen, Leistungen, kurze kurze Pulse, Pulse, effiziente effiziente Frequenzverdopplung, Thermische Thermische Linse Linse flexible flexible Strahlführung Strahlführung durch durch Faseroptiken Faseroptiken Folie 52

Strahlquellen Festkörperlaser Laserstab: künstlich gezüchteter Kristall aus Yttrium-Aluminium- Granat, in dem ein kleiner Anteil (ca.1 at.%)der Yttrium-Ionen durch Neodym-Ionen ersetzt sind Kühlung: Notwendig, da Wärmeentwicklung zu Deformation des Stabes führt (Beeineinträchtigung der optischen Eigenschaften, Zerstörung), Kühlwasser im Glasrohr oder in gesamter Kavität Anregung: durch optisches Pumpen mit Krypton-Bogenlampen oder Dioden, Steuerung der der Anregungsleistung bewirkt Veränderung der Laserleistung, Möglichkeit beliebiger Pulsformen Grundsätzliches (Nd:YAG-Laser) Wellenlänge des des emittierten Lichts: Lichts: 1,064 1,064 µm µm Wirkungsgrad: ~5% ~5% (lampengepumpt) >10% >10% (diodengepumpt) laseraktives Medium: Nd Nd 3+ 3+ Anregung: optisch optisch (Blitzlampe (Krypton, Bogenlampe (Krypton) oder oder Laserdioden) Bauformen: Stab Stab oder oder Scheibe Folie 53

Strahlquellen Festkörperlaser Folie 54

Strahlquellen Festkörperlaser Betriebsarten Nd:YAG-Laser µs - 10 ms Pulsdauer: Schweißen, Härten, Schneiden kontinuierlich kontinuierlich (cw) (cw) gepulst gepulst Q-switch Q-switch ns-pulse: Beschriften Unterbrechung Unterbrechung des des Lichtweges Lichtweges im im Resonator, Resonator, d.h. d.h. bei bei konstanter konstanter Pumpleistung Pumpleistung stellt stellt sich sich maximale maximale Inversion Inversion ein, ein, dann dann schlagartiger schlagartiger Abbau Abbau der der Inversion Inversion durch durch schnelle schnelle Freigabe Freigabe des des Lichtweges Lichtweges (kleiner (kleiner 1 1 µs) µs) kurzer, kurzer, intensiver intensiver Lichtpuls Lichtpuls (einige (einige Megawatt) Megawatt) Folie 55

Strahlquellen Festkörperlaser Nd:YAG-Laser - Anregungsprinzip mit Blitzlampe Anregungsspektrum von Nd:YAG XENON KRYPTON spektrale spektrale Emission Emission der der Lampe Lampe muß muß so so weit weit wie wie möglich möglich an an Absorptionsbanden Absorptionsbanden des des Lasermaterials Lasermaterials (Nd) (Nd) angepaßt angepaßt sein: sein: - - höchste höchste Effizienz Effizienz - - geringste geringste thermische thermische Belastung Belastung - - Laserwellenlängen-Strahlung Laserwellenlängen-Strahlung der der Lampe Lampe wird wird im im Lasermedium Lasermedium verstärkt verstärkt und und verringert verringert dadurch dadurch die die nutzbare nutzbare Inversion Inversion unterdrücken unterdrücken Folie 56

Strahlquellen Festkörperlaser Nd:YAG-Laser - Anregungsprinzip mit Blitzlampe linearer linearer Zusammenhang Zusammenhang zwischen zwischen Pumpleistung Pumpleistung und und Laserleistung Laserleistung gute gute Regelbarkeit Regelbarkeit Folie 57

Wirkungsgrad eines breitbandig (Lampe) gepumpten Nd:YAG-Lasers Strahlquellen Festkörperlaser Folie 58

Strahlquellen Festkörperlaser Technisches Prinzip Nd:YAG-Laser (Stab) Kavität Rückspiegel Kavität: - Laserstab, Anregungslampen und Spiegel sind in einem hoch oder diffus reflektierenden Gehäuse untergebracht. - doppelt elliptischer Querschnitt, Laserstab im Zentrum, Anregungslampen in den Brennlinien der Ellipsen Laserstrahl Anregungslampen Laserstab Flow tube Lichtleiter Kühlwasserleitung Merke: Leistung/Kavität ~ max. 800 W! Folie 59

Strahlquellen Festkörperlaser Technisches Prinzip diodengepumpter Nd:YAG-Laser (Stab) neuere neuere Entwicklung: Entwicklung: Anregung Anregung über über Halbleiterdioden-Arrays Vorteil: Vorteil: ideale ideale Anpassung Anpassung an an Pumpbanden Pumpbanden des des Nd Nd 3+ 3+ geringere geringere thermische thermische Belastung Belastung Dioden Dioden haben haben hohe hohe Lebensdauer Lebensdauer (10.000 (10.000 h) h) hohe hohe Strahlqualität Strahlqualität (< (< 25 25 mm mm x x mrad) mrad) kleine kleine Abmessungen Abmessungen kompakte kompakte Bauform Bauform Gesamtwirkungsgrad > 10% 10% elektrooptischer elektrooptischer Wirkungsgrad Wirkungsgrad 40 40 50% 50% Folie 60

Strahlquellen Festkörperlaser Scheibe (Slab) Technisches Prinzip Nd:YAG-Laser - Scheibe Vorteile: Vorteile: Plattenform Plattenform erlaubt erlaubt die die Vergrößerung Vergrößerung des des Verhältnisses Verhältnisses von von gekühlter gekühlter Fläche Fläche zu zu gepumpten gepumpten Medium Medium höher höher Ausgangsleistung Ausgangsleistung pro pro Kristall Kristall geringe geringe Erwärmung Erwärmung des des Kristalls Kristalls hohe hohe Strahlqualität Strahlqualität Nachteil: Nachteil: 50 50 % teuerer teuerer wie wie vergleichbarer vergleichbarer Stablaser Stablaser bei bei fasergekoppelten fasergekoppelten Laser Laser ist ist der der Vorteil Vorteil der der guten guten Strahlqualität Strahlqualität von von untergeordneter untergeordneter Bedeutung Bedeutung Folie 61

Strahlquellen Festkörperlaser - Faserlaser Eigenschaften und technisches Prinzip Faserlaser Schematischer Aufbau 35W Yb-Faserlaser Eigenschaften Eigenschaften Faserlaser Faserlaser sehr sehr gute gute Strahlqualität Strahlqualität bei bei hoher hoher Ausgangsleistung Ausgangsleistung Betrieb Betrieb im im transversalen transversalen Grundmode Grundmode hoher hoher Wirkungsgrad Wirkungsgrad > 25 25 % (Gesamtwirkungsgrad) geringer geringer Wartungsaufwand Wartungsaufwand MTBF MTBF > 100.000 100.000 h Folie 62

Strahlquellen Festkörperlaser - Faserlaser Pumpquellen und Einkopplung Prinzipieller Aufbau eines Faserlasers. Die koaxiale Doppelkernstruktur mit einem Monomodekern für die erzeugte Laserstrahlung und einem Multimodekern für das Pumplicht erlaubt transversalen Grundmodebetrieb bei Verwendung von Hochleistungs -Multimode-Diodenlasern als Pumpquelle. Doppelkernfaser Folie 63

Strahlquellen Festkörperlaser - Faserlaser Vergleich verschiedener Hochleistungsstrahlquellen YLR YLR HL DY TLF TLF 7000 10000 4006D 044 6000 15000 Max. beam power at workpiece Fibre core diameter Focal length (typical) [kw] 6,9 10 4.0 4.2 5.5 13.6 [µm] 300 200 600 400 - - [mm] 200 200 150 200 350 300 Beam diameter [µm] 510 360 430 434 262 512 BPP [mm*mrad] 18.5 11.6 23.9 15.7 6.7 15.3 Folie 64

Strahlquellen Festkörperlaser - Faserlaser Stand der Technik und Entwicklungsziele Faselaser SS = single mode, MM= multimode Folie 65

Strahlquellen Festkörperlaser - Halbleiterlaser Eigenschaften Eigenschaften von von Halbleiterlasern Halbleiterlasern Art Art des des Mediums: Mediums: Mischungshalbleiter Mischungshalbleiter III-V, III-V, IV-VI IV-VI Halbleiter Halbleiter Ga-As Ga-As Pb-Te Pb-Te Schichtaufbau Schichtaufbau von von Mischungshalbleitern zur zur räumlichen räumlichen Lokalisierung Lokalisierung von von elektrischen elektrischen Übergängen Übergängen und und optischer optischer Lichtausbreitung Lichtausbreitung LMW 1998 4 kw Hochleistungsdiodenlaser (HLDL) Diodenstack Spezifische Spezifische Eigenschaften Eigenschaften im im Vergleich Vergleich zu zu Gas-, Gas-, Flüssigkeits- Flüssigkeits-und und Festkörperlasern Festkörperlasern extrem extrem kleine kleine Abmessungen Abmessungen (Länge (Länge =< =< 0,5 0,5 mm, mm, Fläche Fläche = 0,2 0,2 x x 0,2 0,2 mm2) mm2) einfach, einfach, effektive effektive Anregung Anregung und und damit damit Modulation Modulation großer großer Spektralbereich Spektralbereich (0,5 (0,5- -30 30 μm) μm) flexible flexible Strahlführung Strahlführung durch durch Faseroptiken, Faseroptiken, geringe geringe Kosten Kosten Folie 66

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 67

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 68

Strahlquellen Festkörperlaser - Halbleiterlaser pn - Übergang Folie 69

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 70

Strahlquellen Festkörperlaser - Halbleiterlaser Halbleiter: pn-monostruktur Nachteile Nachteile der der Monostruktur: Monostruktur: Das Das Volumen, Volumen, in in dem dem die die Photonen Photonen erzeugt erzeugt werden, werden, ist ist groß groß Photonen Photonen werden werden auch auch in in Richtung Richtung der der elektrischen elektrischen Kontakte Kontakte emittiert emittiert kleine kleine Photonendichte Photonendichte (geringe (geringe stimulierte stimulierte Emission) Emission) hohe hohe Injektionsströme Injektionsströme (105 (105 Acm-2) Acm-2) nur nur Pulsbetrieb Pulsbetrieb nur nur im im gekühlten gekühlten Zustand Zustand (77 (77 K) K) Folie 71

Strahlquellen Festkörperlaser - Halbleiterlaser 5-Schicht-Doppeheterostrukur Folie 72

Strahlquellen Festkörperlaser - Halbleiterlaser Diodenlaserbarren Folie 73

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 74

Strahlquellen Festkörperlaser - Halbleiterlaser Kühlung von HLDL Folgen Folgen steigender Diodentemperatur: Abfall Abfall des des Laserwirkungsgrades Absinken der der Lebensdauer Drift Drift der der Emissionswellenlänge Effiziente Diodenkühlung nötig! nötig! Besonderheiten der der Kühlung von von HLDL s: hohe hohe Wärmeflußdichten (103-104 W/cm2) kleiner kleiner Temperaturgradient Diode Diode -- Kühlmedium mikrotechnisches Bauteil Bauteil Folie 75

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 76

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 77

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 78

Strahlquellen Festkörperlaser - Halbleiterlaser HLDL auf Cu-Mikrokanalkühler Folie 79

Strahlquellen Festkörperlaser - Halbleiterlaser Fast-axis Kollimation Folie 80

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 81

Strahlformung und Kombination von HLDL Strahlquellen Festkörperlaser - Halbleiterlaser Folie 82

Strahlquellen Festkörperlaser - Halbleiterlaser Folie 83

Strahlquellen Festkörperlaser - Metalldampflaser Kupferdampflaser Schematischer Aufbau Puffergas Thyratron Vakuumpumpe Elektrode Fenster Kupferladung Keramikrohr Glasrohr mit thermischer Isolation Wasserkühlung Resonatorkonfiguration (instabil, off-axis) Pulscharakteristik verstärkendes Medium Laserstrahlung Intensität Divergenz 1 Divergenz 2 Divergenz 3 Div 1 > Div 2 > Div 3 konkaver Spiegel konvexer Spiegel ASE gelb 578nm grün 511nm 0 Zeit [ns] 100 Folie 84

Kupfer-Bromid-Dampflaser Strahlquellen Festkörperlaser - Metalldampflaser Vorteile Vorteile gegenüber gegenüber Kupferdampflaser: Kupferdampflaser: - - geringere geringere Röhrentemperaturen Röhrentemperaturen von von ca. ca. 550 C 550 C - - höhere höhere Pulswiederholraten Pulswiederholraten - - Aufheizzeit Aufheizzeit ca. ca. 15 15 min. min. - - kein kein Kühlwasser Kühlwasser - - keine keine externe externe Gasversorgung Gasversorgung (sealed-off) (sealed-off) - - höherer höherer Wirkungsgrad Wirkungsgrad (bis (bis 3%) 3%) - - 230 230 V - - Anschluß Anschluß 1 1 Oszillator Oszillator + + 1 1 Verstärker Verstärker Strahldurchmesser Strahldurchmesser 20 20 mm mm Wellenlänge Wellenlänge 511 511 + + 578 578 nm nm mittlere mittlere Divergenz Divergenz ca. ca. 100 100 µrad µrad mittlere mittlere Leistung Leistung 20W 20W bei bei 16 16 khz khz Pulsdauer Pulsdauer 30 30 ns ns Pulsenergie Pulsenergie 1,25 1,25 mj mj Maße Maße 1300x300x700 1300x300x700 mm; mm; 100kg 100kg 50 cm Folie 85

Strahlführungskonzepte Strahlführung in freier Propagation Strahlführung in flexibler Faser Art Art der der Strahlführung Strahlführung und und Abstand Abstand Laser-Bearbeitung Laser-Bearbeitung hängen hängen stark stark vom vom verwendeten verwendeten Lasersystem Lasersystem ab: ab: CO CO 2 -Laser: 2 -Laser: Nd:YAG-Laser: Nd:YAG-Laser: Kupferdampflaser: Kupferdampflaser: Excimerlaser: Excimerlaser: Umlenkspiegel Umlenkspiegel aus aus poliertem poliertem Kupfer Kupfer Glasfaser Glasfaser (hohe (hohe mittlere mittlere Leistung), Leistung), Spiegel Spiegel Glasfaser, Glasfaser, aluminiumbeschichtete Spiegel Spiegel Glasfaser, Glasfaser, aluminiumbeschichtete Spiegel Spiegel Folie 86

Grundlagen der Lichtleitung: Lichtbrechung Strahlführungskonzepte Lichtstrahl aus optisch dünnerem in optisch dichteres Medium Snellius sches Snellius sches Brechungsgesetz: Brechungsgesetz: n. 1. sinα 1 sinα = n. 2. sinβ 2 sinβ mit mit Brechzahlen Brechzahlen der der Medien Medien 1 1 und und 2: 2: n n 2 > 2 > n n 1 1 Lichtstrahl aus optisch dichterem in optisch dünneres Medium Folie 87

Grundlagen der Lichtleitung: Totalreflexion Strahlführungskonzepte Snellius sches Snellius sches Brechungsgesetz: Brechungsgesetz: β β = 90 90 Grenzwinkel Grenzwinkel sinα sinα G = G n 2 / 2 / n 1 1 mit mit Brechzahlen Brechzahlen der der Medien Medien 1 1 und und 2: 2: n n 2 > 2 > n n 1 1 Lichtstrahl aus optisch dichterem in optisch dünneres Medium Folie 88

Strahlführungskonzepte Aufbau und Eigenschaften von Lichtleitfasern für die Plastikschutz (hier 2 Schichten) Mantel, niedrige Brechzahl Kern, hohe Brechzahl Manteldurchmesser für Materialbearbeitung: 140-1800 µm, bei -Verhältnissen Mantel:Kern von 1,1-1,4 Laserstrahl Laserstrahl kann kann über über sehr sehr große große Strecken Strecken ohne ohne merkliche merkliche Verluste Verluste geführt geführt werden, werden, nur nur bei bei Ein- Einund und Auskopplung Auskopplung treten treten Verluste Verluste auf auf (Verschmutzung, (Verschmutzung, Rauhheit, Rauhheit, chemischer chemischer Angriff) Angriff) Weichen Weichen und und Strahlteiler Strahlteiler können können das das Laserlicht Laserlicht auf auf verschiedene verschiedene Bearbeitungsstationen Bearbeitungsstationen lenken lenken Ein- Einund und Auskoppeloptik Auskoppeloptik sind sind fest fest verschraubt, verschraubt, Justierarbeiten Justierarbeiten entfallen entfallen Strahlqualität Strahlqualität wird wird verschlechtert verschlechtert (min. (min. Fokusdurchmesser Fokusdurchmesser ca. ca. halber halber Kerndurchmesser) Kerndurchmesser) Folie 89

Strahlführungskonzepte Arten von Lichtleitfasern Stufenindexfaser Material: (Werte für λ=1,06 µm) Kern: reines SiO 2, n=1,45 Mantel: F-dotiertes SiO 2, n=1,433 Gradientenindexfaser Material: (Werte für λ=1,06 µm) Kern: Oxid-dotiertes SiO 2, n>1,45 Mantel: reines SiO 2 Folie 90

Strahlformung Prinzpielle Möglichkeiten: reflektiv: Spiegel transmittiv: Linsen Wasserstrahl Folie 91

Handhabungssysteme Anlagenkonzepte zur 1-dimensionalen Bearbeitung Werkstück Lasergerät Bearbeitungsoptik Folie 92

Handhabungssysteme Beispiele für die 1-dimensionalen Bearbeitung Schweißen von Rohren mit CO 2 -Laser Folie 93

Handhabungssysteme Anlagenkonzepte zur 2-dimensionalen Bearbeitung Werkstück Werkstück Lasergerät Lasergerät Bearbeitungsoptik Bearbeitungsoptik Folie 94

Handhabungssysteme Beispiele für die 2-dimensionalen Bearbeitung Laser Schneidgas Absaugung Absaugkammer Flachbett-Lasermaschine Folie 95

Handhabungssysteme Anlagenkonzepte zur 3-dimensionalen Bearbeitung Werkstück Lasergerät Bearbeitungsoptik Folie 96

Handhabungssysteme Beispiele für die 3-dimensionalen Bearbeitung Schneiden Schneiden von von konturierten konturierten Blechen Blechen (z.b. (z.b. Kfz-Industrie): Kfz-Industrie): Analog Analog zur zur 2d-Bearbeitung 2d-Bearbeitung steht steht der der Bearbeitungskopf Bearbeitungskopf zumeist zumeist senkrecht senkrecht auf auf der der Oberfläche. Oberfläche. Um Um dies dies bei bei der der Bearbeitung Bearbeitung eines eines ruhenden ruhenden Werkstücks Werkstücks gewährleistenzu gewährleistenzu können, können, benötigt benötigt man man eine eine Strahlführung Strahlführung über über 5 5 Achsen Achsen Folie 97

Handhabungssysteme Problem: CNC-konforme Erfassung der Werkstückgeometrie Teach-In: - Erstellung von Programmen für die 3d- Bearbeitung - Wichtig ist die Bestimmung der Flächennormalen, da Laserkopf zumeist senkrecht auf Oberfläche steht. Trumpf Teachmaster Folie 98

Handhabungssysteme Problem: CNC-konforme Erfassung der Werkstückgeometrie Folie 99

Laserstrahldiagnostik Für die Praxis wichtige diagnostische Daten Intensitätsverteilung Lasergesamtleistung Strahllage Folie 100

Messung der Strahlkaustik und Laserleistung Laserstrahldiagnostik Messung mit Hilfe von Hohlnadel Folie 101

Einteilung der Laserverfahren nach Laserleistung Strahlparameterprodukt (θ f ω 0 ) [mm mrad] 1.000 100 10 1 0.1 Drucktechnik Beschriftung Knst. Schw. Hartlöten Schw. Metallfolie Weichlöten Schneiden Sintern Nichtmetalle Bohren Markieren 1 10 100 1.000 10.000 Laserleistung [W] Transf.härten Erwärmen Beschichten Schweißen Bleche Schneiden (Metalle) Folie 102

Einteilung der Laserverfahren nach Einwirkdauer Leistungsdichte in W/cm² 10 10 10 8 10 6 10 4 Schockhärten Bohren absorbierte Energie in J/cm² Schneiden 10 0 10-8 10-6 10-4 10-2 10 0 Einwirkzeit bzw. Pulsdauer in s Tiefschweißen 106 10 4 Umschmelzen Wärmeleitungsschweißen 10 2 Umwandlungshärten Laser ist in den überwiegenden Fällen ein thermisches Werkzeug Fokussierbarkeit bestimmt Bearbeitung (Fleckgröße, Art) Mittlere Ausgangsleistung bestimmt Effizienz der Bearbeitung Zeitliche Energieeinbringung bestimmt thermische und mechanische Einflußbereiche Wellenlänge muß an Bearbeitungsaufgabe angepaßt sein Folie 103

Einfluss der Intensität Folie 104

Laserschweißen Folie 105

Laserschweißen Schweißtiefe als Funktion der Intensität Folie 106

Laserschweißen Vorgänge beim Tiefschweißen Folie 107

Einfluss der Wellenlänge Absorption im Werkstück Metalle: allg. steigend mit sinkender Wellenlänge Gläser: allg. gering im VIS Absorptionsgrad [%] Plasmabildung und -abschirmung Minimum im VIS (grün) Abschirmung bzw. Durchbruchsintensität Metalle Glas Absorption über Direktionisation, Rayleigh-Streuung 4 ~ 1/Wellenlänge Absorption über inverse Bremsstrahlung ~ Wellenlänge² UV VIS IR Wellenlänge UV VIS IR Wellenlänge Folie 108

Einfluss der Wellenlänge Folie 109

Optische Eigenschaften von Materie Strahl-Stoff-Wechselwirkung Metalle dämpfen die Wellenbewegung des Lichtes auf einer äußerst kleinen Wegstrecke, daher ist neben der Brechzahl n die Einführung einer weiteren Stoffkonstanten nötig, um das optische Verhalten zu beschreiben. Durch diese zweite optische Konstante (Absorptionskonstante k) wird die Brechzahl für Metalle komplex: n (Brechzahl): (Brechzahl): bestimmt bestimmt Wellenlängenabhängigkeit k k (Absoptionsindex): (Absoptionsindex): bestimmt bestimmt den den Grad Grad der der Dämpfung Dämpfung I = I 0 e α z n = n - ik n und k sind Stoffkonstanten, die eine Funktion der Wellenlänge, Intensität des Lichtes sowie der Temperatur sind. n läßt sich erhalten durch die Ableitung der ersten Maxwellschen Gleichung. Die Energieaufnahme (Absorption) im Werkstoff für zu einer exponentiellen Schwächung der Strahlintensität I entlang des Weges z: π k α = 4 α: Absorptionskoeffizient Zwischen α und k besteht z: Eindringtiefe folgender Zusammenhang: λ Folie 110

Optische Eigenschaften von Materie Strahl-Stoff-Wechselwirkung Beim Eindringen eines Lichtstrahls in ein absorbierendes Medium wird seine Intensität I 0 durch Absorption (Überführung der Lichtenergie in z.b. Wärme) geschwächt: K: Extinktionskonstante, K = 2 ω k / c I = I 0. e -K z, ω: Kreisfrequenz des Lichts = 2π/λ c: Lichtgeschwindigkeit wenn Schichtdicke z = 1/K, ist die Intensität des durchgehenden Lichtes I nur noch 1/e (37%) der einfallenden Intensität I 0. Diese Schichtdicke wird als mittlere Eindringtiefe des Lichtes W bezeichnet. für Natrium-Licht (589,3 nm) bei RT: w 1 λ = = α 4 π k für CO 2 -Laserlicht (10,6 µm) bei RT: Stoff Stoff Wasser Wasser Flintglas Flintglas Graphit Graphit Gold Gold W 32 32 cm cm 29 29 cm cm 60 60 nm nm 15 15 nm nm k k 1,4 1,4. 10. 10-7 -7 1,5 1,5. 10. 10-7 -7 0,8 0,8 3,2 3,2 Stoff Stoff Kupfer Kupfer Aluminium Aluminium Eisen Eisen W 13 13 nm nm 9 9 nm nm 22 22 nm nm k k 64 64 95 95 30 30 Definition: stark absorbierender Stoff: W < λ Folie 111

Strahl-Stoff-Wechselwirkung Absorptionsvermögen der Metalle: Einfluß der Oberflächentemperatur Absorption der Metalle steigt mit zunehmender Temperatur (mögliche Erklärung: Phononendichte steigt mit der Temperatur und dadurch erhöht sich die Wahrscheinlichkeit für Elektron-Photon-Wechselwirkungen) Experimenteller Nachweis schwierig, da zumeist von Sekundäreffekten überlagert Folie 112

Möglichkeiten der Absorptionserhöhung Strahl-Stoff-Wechselwirkung Folie 113

Strahl-Stoff-Wechselwirkung Technische Metalloberfläche Schwierigkeiten bei der experimentellen Bestimmung von optischen Eigenschaften entstehen durch nicht vergleichbare Oberflächenzustände Folie 114

Strahl-Stoff-Wechselwirkung Reflexionsgrad in Abhängigkeit von der Laserintensität Sprunghafter Abfall der Reflexion ab einem bestimmten Intensitätsschwellwert, der mit der Bildung einer Leuchterscheinung (laserinduziertes Plasma) einhergeht Folie 115

Einteilung der Oberflächenbehandlungsverfahren Folie 116

Einteilung der Oberflächenbehandlungsverfahren Folie 117

Oberflächenbehandlungsverfahren - Laserumwandlungshärten Prinzip Selbstabschreckung durch Wärmeableitung in das Werkstückvolumen Folie 118

Einflussgrößen Oberflächenbehandlungsverfahren - Laserumwandlungshärten Folie 119

Oberflächenbehandlungsverfahren - Laserumwandlungshärten Gefügeausbildung Werkstoff: C45W normalgeglüht Laserstrahl Grundwerkstoff Ferrit und Perlit Übergangsbereich (unvollständige Austenitisierung) Härtungsbereich Martensit Folie 120

Anwendungsbeispiel Oberflächenbehandlungsverfahren - Laserumwandlungshärten Segmentierte Schneidwerkzeuge für die Blechbearbeitung Folie 121

Oberflächenbehandlungsverfahren - Laserumwandlungshärten Beispiele für typische Bauteile Kleine Stückzahl - hohe Wertschöpfung Großserienfertigung Folie 122

Oberflächenverfahren - Schmelzverfahren Folie 123

Oberflächenbehandlungsverfahren - Schmelzverfahren Laserbeschichten - Verfahrensvarianten Folie 124

Laserbeschichten - Anwendungsbeispiele Folie 125

Laserschneiden Prinzip Fokussierung der Laserstrahlung auf den Werkstoff Absorption der Laserstrahlung und lokale Erwärmung des Werkstoffs Aufschmelzen und/oder Verdampfen des Werkstoffs Austrieb des Fugenmaterials durch einen inerten oder reaktiven Schneidgasstrahl Vorteile gegenüber konventionellen Schneidverfahren hohe Prozeßgeschwindigkeiten geringe Wärmebelastung; verzugs- und spannungsfreies Trennen hohe Rechtwinkligkeit und Ebenheit mit geringer Riefigkeit der Schnittfläche bei Verwendung eines inerten Schneidgasstrahls (N2) keine Oxidation der Schnittkanten Nachbearbeitung nur bei hohen Qualitätsanforderungen notwendig Folie 126

Laserschneiden Folie 127

Laserschneiden Schneidprozess in schematischer Darstellung Schnittfläche an einem Profilteil Folie 128

Laserschneiden Schneidkopf einer Laserschneidmaschine Schneidkopf bei der Bearbeitung eines dreidimensionalen Teiles Folie 129

Beispiele Laserschneiden Schneiden eines Komplettteiles Grobblech mit 20 mm Dicke Vierkantrohr Filigranes lasergeschnittenes Druckerrad Folie 130

Beispiele Laserschweißen - Fügegeometrien Folie 131

Beispiele Laserschweißen Anlage zum Formen und Schweißen (CO2-Laser) von Rohren CO2-Laserschweißkopf beim Schweißen eines rotationssymmetrischen Getriebeteils Folie 132

Laserabtragen (Caving) Punktuelles Verdampfen des Materials Folie 133

Prozesskette beim Rapid Prototyping Rapid Prototyping Beispiele Prototypenfertigung Folie 134

Laser Bohren Schnelles Verfahren, kein Werkzeugverschleiß, bohren im flachen Winkel möglich Folie 135

Laser Bohren 3 Verfahrenvarianten Folie 136

Schneid-, bzw. Bohrdüse Laser Bohren Bohrdüse für Trepanning Folie 137

Laser Assisted Machining (LAM) Abdrehen von Keramiken Oberflächengüte ähnlich zum Schleifen Folie 138