Physik. Schulinternes Curriculum im Fach Physik

Ähnliche Dokumente
MCG Physik Einführungsphase

Schulinternes Curriculum im Fach Physik SII Einführungsphase

Kräfte und Bewegungen. Die Schülerinnen und Schüler. beschreiben unterschiedliche Phänomene in Verkehrssituationen

Lehrplan Physik Sekundarstufe I Mataré-Gymnasium

Schulinternes. Curriculum. Fach: Physik SEK I

4 an Beispielen Energiefluss und Energieentwertung quantitativ darstellen.

Schulinternes Curriculum: Fachbereich Physik

Steinbart-Gymnasium Duisburg. Schulinternes Curriculum Physik Sekundarstufe I

Schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik

Fach Physik Jahrgangsstufe 7

Ratsgymnasium Münster, Schulinterner Lehrplan Physik, Stand Juli

JAHRGANGSSTUFE 6. Kompetenzen zum Basiskonzept. Fachliche Kontexte. Inhaltsfelder. Energie Struktur der Materie System Wechselwirkung

Physik. Einführungsphase (EF) Friedrich-Harkort-Schule Herdecke. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Physik. Schulinternes Curriculum im Fach Physik

Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums

Schulinternes Curriculum Physik

Physik. Schulinternes Curriculum zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. (Stand: )

Übersichtsraster Unterrichtsvorhaben 2

Prozessbezogene Kompetenzen. Erkenntnisgewinnung. Bewertung. Erkenntnisgewinnung. Kommunikation Bewertung Erkenntnisgewinnung Erkenntnisgewinnung

Schulinterner Lehrplan Physik EF

Schulinternes Curriculum Fachgruppe Physik Jahrgangsstufe EF

2.1.2 Konkretisierte Unterrichtsvorhaben

Lehrplan im Fach Physik Jahrgangsstufe 8.1

Inhaltsfeld fachlicher Kontext / experim. und meth. Hinweise Konzept- und prozessbezogene Kompetenzen Std. Energie und Leistung in der Elektrik

Schulinternes Curriculum im Fach Physik Klasse 6, 1. Halbjahr

Schulinterner Lehrplan für das Unterrichtsfach Physik in der Sekundarstufe I (G8)

Gegenüberstellung. KLP Gy/Ge. LP Gy/Ge

Das warme Haus Schulinterner Lehrplan Physik J 5/6

2 Konkretisierte Unterrichtsvorhaben Einführungsphase

Schulcurriculum für das 6. Schuljahr am Cornelius-Burgh-Gymnasium Erkelenz. auf der Grundlage vom KLP GY 8 NRW

Physik am Geschwister-Scholl-Gymnasium Einführungssphase

Krupp-Gymnasium: Schulinternes Curriculum Physik SI

Schulinterner Lehrplan Physik Franz-Stock-Gymnasium Arnsberg

Heinrich-Mann-Gymnasium. Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase. Physik

Konkretisierte Unterrichtsvorhaben

Schulinterner Lehrplan Gymnasium Thusneldastraße. Einführungsphase. Physik

Schulinterner Lehrplan (SILP) Physik

Schule: Lehrer: fakultativ. Prozessbezogene Kompetenzen. Erkenntnisgewinnung, Kommunikation. Erkenntnisgewinnung, Kommunikation, Bewertung

Gymnasium Aspel - Schulinternes Curriculum - Physik. Einführungsphase. Inhaltsfeld: Mechanik. Inhalt (Ustd. à 45 min)

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Physik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Physik. Städtisches Gymnasium Wülfrath. Einführungsphase. Wülfrath, Februar 2017

Kräfte und Bewegungen. Energie und Impuls. Gravitation Kräfte und Bewegungen. Energie und Impuls. Schwingungen und Wellen Kräfte und Bewegungen

Übersicht über die Kompetenzen: Wann und wie häufig kommen sie vor?

schulinterner Lehrplan Physik Sekundarstufe I unter Berücksichtigung des Kernlehrplans für G8

Übersichtsraster Unterrichtsvorhaben

Zeitdauer (in Wochen) Ausgewählte prozessbezogene Kompetenzen, methodische Vorgaben, Bemerkungen. Fachliche Kontexte Lerninhalte

Gutenberg-Gymnasium, Schulinternes Curriculum im Fach Physik, Klasse 7

NORBERT - GYMNASIUM Knechtsteden Staatlich anerkanntes privates katholisches Gymnasium für Jungen und Mädchen

Kernlehrplan Physik für die Sekundarstufe I am Gymnasium Norf

Prozessbezogene Kompetenzen

Schulinterner Lehrplan Physik EF

Fachliche Kontexte. Konzeptbezogene Kompetenzen Schülerinnen und Schüler können... S6-5: (E) einfache elektrische Schaltungen planen und aufbauen

Schulinterner Lehrplan Physik Sekundarstufe I Stand: September 2016

Lehrwerk: Spektrum Physik Schroedel-Verlag

SCHULINTERNER LEHRPLAN PHYSIK SEKUNDARSTUFE I JAHRGANGSSTUFE 6 INHALTSFELDER / KONTEXTE BASISKONZEPT / KONZEPTBEZOGENE KOMPETENZEN

Inhaltsfelder und fachliche Kontexte für das Fach Physik in der Sekundarstufe I

1. Übersichtsraster Unterrichtsvorhaben (verbindlich)

MCG Physik Qualifikationsphase

Inhalte Klasse 5 Kontexte Kompetenzen Anregungen

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 80 Stunden

Physik. Carl-von-Ossietzky-Gymnasium Bonn Schulinternes Curriculum. Jahrgangstufe 6. Jahrgangsstufe 8. Materialhinweise: Unterrichtsvorhaben:

Schulinternes Curriculum (G8) Sek. I

Christian-Rohlfs-Gymnasium Hagen. Schulinterner Lehrplan SI. Physik. Stand: Nov. 2008

Schulinterner Lehrplan Physik

GYMNASIUM ESSEN NORD-OST Gymnasium für Jungen und Mädchen Sekundarstufe I und II Ganztagsgymnasium

Schulinterner Lehrplan zum Kernlehrplan für die Sekundarstufe I. Fach. Physik

Schulinterner Lehrplan für die Einführungsphase im Fach PHYSIK

Schulcurriculum für das 8. Schuljahr am Cornelius-Burgh-Gymnasium Erkelenz. auf der Grundlage vom KLP GY 8 NRW

Albertus-Magnus-Gymnasium Bergisch Gladbach. Schulinterner Lehrplan der Stufe EF zum Kernlehrplan für die gymnasiale Oberstufe.

Kernlehrplan (KLP) für die Klasse 8 in Physik des Konrad Adenauer Gymnasiums

Schulinternes Curriculum für das Fach Physik Klasse 8

Schulinternes Curriculum

Schulcurriculum Physik - Klasse 6 (G8) - chronologischer Ablauf -

Schulinterner Kernlehrplan für die Oberstufe

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Physik

Schulinternet Curriculum im Fach Physik

VORSCHLAG FÜR EINEN SCHULINTERNEN LEHRPLAN PHYSIK

Physik 8. Jahrgang Übersicht

Städtisches Gymnasium Bergkamen Schulinternes Curriculum für das Fach Physik

Schulcurriculum für das Fach Physik

Schulinternes Curriculum Physik Klasse 6

Schulinterner Lehrplan Physik (G8) Jahrgangsstufe 5/6

Physik Einführungsphase

Elektrizität im Alltag Klasse 5

Schulcurriculum Fach Physik Kl Physik 1 S

Vorläufiges schulinternes Curriculum des Fachbereichs Physik Einführungsphase (EF)

Schulinterner Lehrplan. im Fach Physik. in der Einführungsphase

EF Q1 Q2 Seite 1

Wo. Kontext Inhalte Kompetenzen: Die SuS Vorschlag für Versuche Weitere Absprachen 5 Physik in Sport und Verkehr. unterscheiden gleichförmige und

Prozessbezogene Kompetenzen Erkenntnisgewinnung Kommunikation Bewertung Die SuS. kommunizieren u reflektieren ihre Arbeit, auch als Team

e1 e4 Sonne Temperatur Jahreszeiten Was sich mit der Temperatur alles ändert Leben bei verschiedenen Temperaturen m1, m2

e1 e4 Sonne Temperatur Jahreszeiten Was sich mit der Temperatur alles ändert Leben bei verschiedenen Temperaturen m1, m2

Städtisches Gymnasium Bergkamen Schulinternes Curriculum für das Fach Physik

Schulinterner Lehrplan Physik Sek. I

Schulcurriculum Physik Sek. I

Schulinterner Lehrplan für das Fach Physik in der S I

Schulinterner Lehrplan. Gymnasium Broich Fachschaft Physik. Inhaltliche Übersicht der Oberstufe. Stand

Technisch praktikable Generatoren - Schwingende Leiterschaukel - Erzeugung sinusförmiger Wechselspannung

Transkript:

Physik 1. Präambel 2. Grundlagen der Leistungsbewertung 3. Hausaufgaben-Konzept 4. Lehrbücher 5. Curriculum Jahrgangsstufe 5 6. Curriculum Jahrgangsstufe 8 7. Curriculum Jahrgangsstufe 9 8. Curriculum Einführungsphase (EF) 9. Curriculum Qualifikationsphase (Q1) 10. Curriculum Qualifikationsphase (Q2) 1

1. Präambel Das Fach Physik stellt eine wesentliche Grundlage für das Verstehen von Naturphänomenen und die Erläuterung durch die gottgegebenen Naturgesetzte dar, ebenso für die Erklärung und Beurteilung technischer Systeme und Entwicklungen auch unter Berücksichtigung der christlich-ethischen Verantwortung. Das Unterrichtsfach Physik wird in den Jahrgangsstufen 5, 8 und 9 und als Grundkurs in der Sekundarstufe II unterrichtet. Unterricht In der Unterrichtsgestaltung spielen das Entdecken, Wahrnehmen und Beschreiben von Phänomenen, das Durchführen und Auswerten von Experimenten sowie das Kennen- und Verstehenlernen von Anwendungen die zentrale Rolle. Durch die unterschiedlichen Facetten des Unterrichts vom Beschreiben der Phänomene über das Experimentieren bis hin zum mathematischen Auswerten und durch die verschiedenen Inhalte bietet sich den Schülerinnen und Schülern unabhängig von ihrer Leistungsstärke stets wieder neu die Möglichkeit, sich für den Unterricht zu interessieren und ihm zu folgen. Entsprechend ist die Lehrkraft in der Lage, die Schülerinnen individuell zu fördern. Besonders leistungsstarke Schülerinnen und Schüler werden zur Teilnahme an der Physik- Olympiade ermutigt. Außerunterrichtliche Veranstaltungen Der Besuch der Physikshow der Uni Bonn (SI) ist vorgesehen und wird nach Möglichkeit durchgeführt. Eine Astro-AG, die auch astronomische Beobachtungsabende durchführt, wird in Abhängigkeit von Angebot und Nachfrage angeboten. Zum Curriculum Die Darstellung der Unterrichtsvorhaben im schulinternen Curriculum beinhaltet die im Kernlehrplan angeführten Kompetenzen. Lerngelegenheiten sind so angelegt, dass die Kompetenzerwartungen des Kernlehrplans von den Schülerinnen und Schülern erworben werden können. Im Folgenden wird die für alle Lehrerinnen und Lehrer verbindliche Verteilung der Unterrichtsvorhaben dargestellt. 2

Die tabellarische Darstellung dient dazu, einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen und inhaltlichen Schwerpunkten zu verschaffen. Der ausgewiesene Zeitbedarf in der EF (Unterrichtsstunde je 45 Min.) versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Abweichungen von den empfohlenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden. 3

2. Grundlagen der Leistungsbewertung Sekundarstufe I Die folgenden Ausführungen zur Leistungsbewertung orientieren sich am Kernlehrplan Physik für das Gymnasium (G8) des Ministeriums für Schule und Weiterbildung des Landes Nordrhein-Westfalen. Folgende Beiträge können berücksichtigt werden. Die Auswahl der möglichen Beiträge ist von der Aufgabenstellung und dem Anspruchsniveau der jeweiligen Unterrichtseinheit abhängig. Dabei ist die Qualität, Häufigkeit und Kontinuität der Beiträge zu berücksichtigen. 1. Mündliche Mitarbeit 1.1. Vortrag von Haus- und Übungsaufgaben 1.2. Wiedergabe von physikalischem Grundwissen und Zusammenfassung von Sachverhalten 1.3. Äußern von Vermutungen, Finden neuer Fragestellungen und Formulieren von Lösungen 1.4. Beschreibung von Versuchsaufbauten und Interpretation von Versuchsergebnissen 1.5. Kritische, sachgerechte Auseinandersetzung mit Beiträgen von Mitschülern 1.6. Transferleistungen 2. Schriftliche Mitarbeit 2.1. Protokolle (z.b. bei Experimenten: Aufgabenstellung, Versuchsaufbau und Material, Versuchsdurchführung ggf. beschriftete Skizze/Schaltplan o.ä., Beobachtungen, Ergebnisse, Auswertung (ggf. mit Fehlerdiskussion)). 2.2. Schriftliche Zusammenfassungen von komplexeren Lerninhalten 2.3. Heftführung (Vollständigkeit, Übersichtlichkeit) 2.4. schriftliche Überprüfungen (pro Halbjahr soll in der Regel eine durchgeführt werden) 2.5. Referate (Kriterien sind u.a.: Gliederung, angemessene Auswahl der Inhalte, sachliche und inhaltliche Richtigkeit, Medien zur Präsentation (Tafel, OHP, PP, Poster, Modelle), Verhalten beim Vortrag (freie Rede), sinnvolle Verwendung der Fachsprache (es sollen nur solche Begriffe verwendet werden, die der/die Vortragende auch erklären kann), Quellenangaben) 2.6. Lernplakate (passende Überschrift, Auswahl der Abbildungen und Texte, sachliche und inhaltliche Richtigkeit, Strukturierung und Anordnung der ausgewählten Inhalte, Übersichtlichkeit und gute Lesbarkeit, Quellenangaben) 3. Experimentelle Mitarbeit 3.1. Planung (Je nach Art des Experimentes eigenständige Planung oder genaues Beachten der Arbeitsaufträge.) 3.2. Durchführung (Selbständige Durchführung des Experimentes bzw. Organisation der Arbeit innerhalb der Gruppe, sorgfältiger und sachgerechter Umgang mit dem Material, protokollieren der Messwerte und Ergebnisse, konzentriertes und zielgerichtetes Arbeiten) 3.3. Anfertigung eines Versuchsprotokolls (s.o.) 4

Sekundarstufe II Beurteilungsbereich Klausuren Anzahl und Dauer der Klausuren Einführungsphase (EF) Qualifikationsphase 1 (Q1) Qualifikationsphase 2 (Q2) Anzahl der Klausuren 1 im 1. Halbjahr 2 im 2. Halbjahr Dauer der Klausuren 2 pro Halbjahr GK: 2 Ustd LK: 3 Ustd 2 Unterrichtsstunden (Ustd) 2 pro Halbjahr GK: 3 Ustd (2. Hj.: 3 Zeitstd) LK: 4 Ustd (2. Hj.: 4,25 Zeitstd) In der Qualifikationsphase 1 können die Schülerinnen und Schüler nach Absprache mit dem Fachlehrer die 1. Klausur im 2. Halbjahr durch eine Facharbeit ersetzen. Die Klausuren sollen hinsichtlich ihrer Struktur und des Erwartungshorizontes die Schülerinnen und Schüler auf die zentrale Abiturprüfung vorbereiten. Die Beurteilung der Klausuren soll sich an den Grundsätzen für die Bewertung, die für die Abiturklausuren gelten, orientieren. Im Einzelnen gilt Note Punkte Quotient aus der erreichten und der mögl. Punktzahl sehr gut plus 15 100 % - 95 % sehr gut 14 94 % - 90 % sehr gut minus 13 89 % - 85 % gut plus 12 84 % - 80 % gut 11 79 % - 75 % gut minus 10 74 % - 70 % befriedigend plus 9 69 % - 65 % befriedigend 8 64 % - 60 % befriedigend minus 7 59 % - 55 % ausreichend plus 6 54 % - 50 % ausreichend 5 49 % - 45 % ausreichend minus 4 44 % - 40 % mangelhaft plus 3 39 % - 33 % mangelhaft 2 32 % - 26 % mangelhaft minus 1 25 % - 20 % ungenügend 0 bis 19 % 5

Beurteilungsbereich Sonstige Mitarbeit Bei den folgenden Ausführungen handelt es sich im Wesentlichen um Auszüge aus den Richtlinien und Lehrplänen für die Sekundarstufe II Gymnasium/Gesamtschule in Nordrhein-Westfalen. Dem Beurteilungsbereich Sonstige Mitarbeit kommt der gleiche Stellenwert zu, wie dem Beurteilungsbereich Klausuren. Im Beurteilungsbereich Sonstige Mitarbeit sind alle Leistungen zu werten, die eine Schülerin bzw. ein Schüler im Zusammenhang mit dem Unterricht mit Ausnahme der Klausuren und der Facharbeit erbringt. Kriterien zur Beurteilung der Leistungen im Beurteilungsbereich Sonstige Mitarbeit : Beiträge zum Unterricht sachgerechtes Diskutieren und Argumentieren Klarheit der Gedankenführung und der sprachlichen Darstellung angemessene Fachsprache sachliche Richtigkeit Grad der Selbstständigkeit Komplexitätsgrad Leistungen in Hausaufgaben inhaltliche Richtigkeit Vollständigkeit Sorgfalt und Präzision der Ausführung Klarheit und Übersichtlichkeit der Darstellung Beiträge zu physikalischen Experimenten Aufbau und Durchführung von Versuchen Umsetzen einer Versuchsanleitung in ein funktionierendes Experiment sachgerechter Umgang mit physikalischen und technischen Geräten sorgfältiges und kritisches Experimentieren exaktes Protokollieren der Messwerte Anfertigung eines klar strukturierten und genauen Versuchsprotokolls sowie die Darstellung der Ergebnisse in mündlicher Form. Referate und sonstige Präsentationsleistungen Beschaffen, Zusammenstellen, Ordnen und Auswerten von themenbezogenem Informationsmaterial Schwerpunktsetzung und Strukturierung fachgerechte Darstellung und sachgerechter Einsatz von Medien Techniken des Referierens: Vortragen mithilfe einer stichwortartigen Gliederung, adressatenbezogenes Sprechen und Diskutieren, korrektes Zitieren Berücksichtigung des Zeitfaktors 6

Protokolle Zusammenfassung und Strukturierung Herausstellen von Schwerpunkten und Schlüsselbegriffen Korrektheit und Vollständigkeit der Wiedergabe Klarheit und Übersichtlichkeit der Darstellung. Für die Beurteilung von Versuchsprotokollen gelten die gleichen Kriterien wie für die Sek I Schriftliche Übung Eine Form der Sonstigen Mitarbeit ist die schriftliche Übung, die benotet wird. Die Aufgabenstellung sollte sich unmittelbar aus dem Unterricht ergeben. Der Rückgriff soll sechs Unterrichtsstunden nicht überschreiten. Sie muss so begrenzt sein, dass für ihre Bearbeitung in der Regel 30 Minuten, höchstens 45 Minuten erforderlich sind. Eine schriftliche Übung darf nur an solchen Tagen angesetzt werden, an denen von den betreffenden Schülerinnen und Schülern keine Klausuren geschrieben werden. Für schriftliche Übungen eignen sich folgende Aufgabentypen: Darstellung eines physikalischen Sachzusammenhangs, einer bestimmten Problemstellung oder eines zentralen Unterrichtsergebnisses Darstellung der bearbeiteten Hausaufgabe Auswertung bzw. Deutung eines Experiments Lösung eines Problems anhand fachspezifischer Materialien. Die in der schriftlichen Übung erzielte Note hat den Stellenwert eines zusammenhängenden Unterrichtsbeitrags von vergleichbarem Schwierigkeitsgrad. 3. Hausaufgaben-Konzept s. Hausaufgabenkonzept des Erzb. St.-Angela-Gymnasiums vom 23. Juni 2010 4. Lehrbücher Jahrgangsstufe 5: Jahrgangsstufen 8/9: Einführungsphase EF: Qualifikationsphasen Q1/Q2: Spektrum Physik 5/6 (Schroedel-Verlag) Spektrum Physik 7-9 (Schroedel-Verlag) Physik Oberstufe - Einführungsphase (Cornelsen-Verlag) Physik Oberstufe - Qualifikationsphase (Cornelsen-Verlag) 7

5. Curriculum Jahrgangsstufe 5 Unterrichtsvorhaben: Elektrizität und Energie Fachlicher Kontext: Elektrizität im Alltag Stromkreise Inhalte Fachlicher Kontext Kompetenzen UND-, ODER- und Wechselschaltung Leiter und Isolatoren Elektrische Geräte im Alltag Schülerinnen und Schüler erklären an Beispielen, dass das Funktionieren von Elektrogeräten einen geschlossenen Stromkreis voraussetzt Dauermagnete planen und bauen einfache elektrische Schaltungen auf Magnetfelder Magnetfeld eines Dauermagneten beschreiben geeignete Maßnahmen für den sicheren Umgang mit elektrischem Strom Wärmewirkung des elektrischen Stroms Sicherung Was der Strom alles kann zeigen an Beispielen aus ihrem Alltag verschiedene Wirkungen des elektrischen Stroms auf und unterscheiden diese Elektromagnete Anwendung von Elektromagneten erläutern beim Magnetismus, dass Körper ohne direkten Kontakt eine anziehende oder abstoßende Wirkung aufeinander ausüben können Nennspannungen von elektrischen Quellen und Verbrauchern Sicherer Umgang mit Elektrizität Schutzmaßnahmen beim Umgang mit Elektrogeräten 8

Inhalte Fachlicher Kontext Kompetenzen Einführung der Energie Die Fahrradbeleuchtung Schülerinnen und Schüler Energieumwandlung Elektrische Geräte als Energieumwandler ordnen an Beispielen energetische Veränderungen an Körpern und die mit ihnen verbundenen Energieübertragungsmechanismen einander zu zeigen an Vorgängen aus ihrem Erfahrungsbereich Speicherung, Transport und Umwandlung von Energie auf Unterrichtsvorhaben: Temperatur und Energie Fachlicher Kontext: Sonne Temperatur Jahreszeiten Thermometer, Temperaturmessung Inhalte Fachlicher Kontext Kompetenzen Volumen- und Längenänderung bei Erwärmung und Abkühlung Aggregatzustände (Teilchenmodell), Energieumwandlung Energieübergang zwischen Körpern verschiedener Temperatur: Wärmeleitung, -mitführung und Wärmestrahlung Energietransportketten Energieumwandlung Darstellung von Messwerten Die Celsius-Skala, Thermische Ausdehnung in Umwelt und Technik Fest, flüssig und gasförmig Die Einheit der Energie Warmwasserheizung Energieübertragung in Umwelt und Technik Energie kommt auf vielen Wegen von der Sonne zu uns Energie geht nicht verloren Schülerinnen und Schüler erkennen den Sonnenstand als eine Bestimmungsgröße für die Temperaturen auf der Erdoberfläche beschreiben an Beispielen, dass sich bei Stoffen die Aggregatzustände durch Aufnahme bzw. Abgabe von thermischer Energie (Wärme) verändert beschreiben Aggregatzustände, Aggregatzustandsübergänge auf der Ebene einer einfachen Teilchenvorstellung zeigen an Beispielen, dass Energie, die als Wärme in die Umgebung abgegeben wird, in der Regel nicht weiter genutzt werden kann ordnen an Beispielen energetische Veränderungen an Körpern und die mit ihnen verbundenen Energieübertragungsmechanismen einander zu zeigen an Vorgängen aus ihrem Erfahrungsbereich Speicherung, Transport und Umwandlung von Energie auf legen in Transportketten die Idee der Energieerhaltung zugrunde Sonnenstand Was sich im Verlauf eines Jahres und Tages ändert 9

Unterrichtsvorhaben: Licht und Schall Fachlicher Kontext: Sehen und Hören Inhalte Fachlicher Kontext Kompetenzen Licht und Sehen Sehvorgang Lichtquellen und Lichtempfänger geradlinige Ausbreitung des Lichts Schülerinnen und Schüler erklären Schattenbildung sowie Reflexion mit der geradlinigen Ausbreitung des Lichts Reflexion, Spiegel Licht trifft auf Körper nennen Grundgrößen der Akustik Schatten Schatten einer Lichtquelle identifizieren Schwingungen als Ursache von Schall und Hören als Aufnahme von Schwingungen durch das Ohr Mondphasen Schatten von Erde und Mond erläutern Auswirkungen von Schall auf Menschen im Alltag Schallquellen und Schallempfänger Tonhöhe und Lautstärke Schwingungen sichtbar gemacht, Hörbereich und laut-leise nennen geeignete Schutzmaßnahmen gegen die Gefährdung durch Schall Schallausbreitung Schall braucht Zeit 10

6. Curriculum Jahrgangsstufe 8 Unterrichtsvorhaben: Optische Instrumente, Farbzerlegung des Lichts Fachlicher Kontext: Sehen und Wahrnehmen Inhalte Fachlicher Kontext Kompetenzen Aufbau und Bildentstehung beim Auge Funktion der Augenlinse Lupe als Sehhilfe Fernrohr Wie Bilder entstehen Schülerinnen und Schüler beschreiben die Funktion von Linsen für die Bilderzeugung und den Aufbau einfacher optischer Systeme Brechung Bilder durch Brechung beschreiben Absorption und Brechung von Licht Reflexion Spiegelbilder beurteilen technische Geräte hinsichtlich ihres Nutzens für Mensch und Gesellschaft und ihrer Auswirkungen auf die Umwelt Totalreflexion Lichtleiter Anwendungen der Totalreflexion Licht in Stoffen unterscheiden Infrarot-, Licht- und Ultraviolettstrahlung und beschreiben mit Beispielen ihre Wirkung Zusammensetzung des weißen Lichts Farben 11

Unterrichtsvorhaben: Elektrizität Fachlicher Kontext: Elektrizität messen, verstehen, anwenden Inhalte Fachlicher Kontext Kompetenzen Einführung von Stromstärke und Ladung Eigenschaften von Ladung Elektrische Quelle und elektrische Verbraucher Unterscheidung und Messung von Spannungen und Stromstärken Spannungen und Stromstärken bei Reihen- und Parallelschaltungen Elektrischer Widerstand, Ohm sches Gesetz Reibungselektrizität Stromkreise im Haushalt Gefahren und Schutzmaßnahmen Schülerinnen und Schüler erklären die elektrischen Eigenschaften von Stoffen (Ladung und Leitfähigkeit) mit Hilfe eines einfachen Kern-Hülle-Modells beschreiben die Beziehung von Spannung, Stromstärke und Widerstand in elektrischen Schaltungen und wenden diese an 12

Unterrichtsvorhaben: Kraft, mechanische und innere Energie Fachlicher Kontext: Werkzeuge und Maschinen erleichtern die Arbeit Geschwindigkeit Kraft als vektorielle Größe Gewichtskraft Zusammenwirken von Kräften Masse Hebel und Flaschenzug mechanische Arbeit und Energie, Energieerhaltung Inhalte Fachlicher Kontext Kompetenzen Bewegungen Kräfte und ihre Wirkungen, Kraftmessung Maschinen Schülerinnen und Schüler beschreiben Kraft und Geschwindigkeit als vektorielle Größen führen Bewegungsänderungen oder Verformungen von Körpern auf das Wirken von Kräften zurück beschreiben die Beziehung und den Unterschied zwischen Masse und Gewichtskraft beschreiben die Wirkungsweisen und die Gesetzmäßigkeiten von Kraftwandlern an Beispielen erläutern die Energieerhaltung als ein Grundprinzip des Energiekonzepts und nutzen sie zur quantitativen energetischen Beschreibung von Prozessen unterscheiden Lage-, Spann- und Bewegungsenergie, beschreiben dies formal und nutzen es für Berechnungen 13

7. Curriculum Jahrgangsstufe 9 Unterrichtsvorhaben: Druck Fachlicher Kontext: Hydraulische Anlagen Inhalte Fachlicher Kontext Kompetenzen Druck Auftrieb in Flüssigkeiten Hydraulische Anlagen Schülerinnen und Schüler beschreiben Druck als physikalische Größe quantitativ und wenden diese in Beispielen an beschreiben Schweredruck und Auftrieb formal und wenden dies in Beispielen an 14

Unterrichtsvorhaben: Energie, Leistung, Wirkungsgrad Fachlicher Kontext: Effiziente Energienutzung eine Zukunftsaufgabe der Physik Inhalte Fachlicher Kontext Kompetenzen Energie und Leistung in Mechanik und Elektrik Elektromotor und Wirkungsgrad Elektromagnetische Induktion Energieumwandlungsprozesse Erhaltung und Umwandlung von Energie Aufbau und Funktionsweise eines Kraftwerkes Regenerative Energieanlagen Stromrechnung Gleichstrommotor Generator Wärme-Kraft-Maschinen Wärmekraftwerk Wasser-, Wind- und Solarenergie Schülerinnen und Schüler kennen den quantitativen Zusammenhang von umgesetzter Energiemenge, Leistung und Zeitdauer des Prozesses und nutzen dies in Beispielen aus Natur und Technik bestimmen umgesetzte Energie und Leistung in elektrischen Stromkreisen aus Spannung und Stromstärke beschreiben den Aufbau eines Elektromotors und erklären seine Funktion mit Hilfe der magnetischen Wirkung des elektrischen Stromes beschreiben den Aufbau von Generator und erklären seine Funktionsweise mit der elektromagnetischen Induktion erkennen und beschreiben die Verknüpfung von Energieerhaltung und Energieentwertung in Prozessen aus Natur und Technik z. B. in Wärmekraftmaschinen beschreiben den Aufbau von Kraftwerken und erklären die Funktionsweise ihrer Komponenten beschreiben, dass die Energie, die wir nutzen, aus erschöpfbaren oder regenerativen Quellen gewonnen werden kann vergleichen und bewerten verschiedene Möglichkeiten der Energiegewinnung, -aufbereitung und -nutzung unter physikalischtechnischen, wirtschaftlichen und ökologischen Aspekten und diskutieren deren gesellschaftliche Relevanz und Akzeptanz begründen die Notwendigkeit zum Energiesparen und erläutern Möglichkeiten dazu in ihrem persönlichen Umfeld 15

Unterrichtsvorhaben: Radioaktivität und Kernenergie Fachlicher Kontext: Nutzen und Gefahren der Kernenergie Inhalte Fachlicher Kontext Kompetenzen Aufbau der Atome Rutherford sches Atommodell Schülerinnen und Schüler Ionisierende Strahlung (Arten, Reichweiten, Zerfallsreihen) Halbwertzeit Strahlennutzen, Strahlenschäden, Strahlenschutz Kernspaltung Nutzen und Risiken der Kernenergie C14-Methode Strahlenwirkungen Energiewandlung im Reaktor Kraftwerke im Vergleich beschreiben Eigenschaften von Materie mit einem angemessenen Atommodell beschreiben experimentelle Nachweismöglichkeiten für radioaktive Strahlung nennen Eigenschaften und Wirkungen verschiedener Arten radioaktiver Strahlung und Röntgenstrahlung beschreiben die Entstehung von ionisierender Teilchenstrahlung und identifizieren Zerfallsreihen mit Hilfe der Nuklidkarte beschreiben Wechselwirkung zwischen Strahlung, insbesondere ionisierender Strahlung, und Materie sowie die daraus resultierenden Veränderungen der Materie und erklären damit mögliche medizinische Anwendungen und Schutzmaßnahmen bewerten Nutzen und Risiken von radioaktiver Strahlung und Röntgenstrahlung vergleichen und bewerten technische Geräte und Anlagen unter Berücksichtigung von Nutzen, Gefahren und Belastung der Umwelt und erläutern Alternativen 16

8. Curriculum Einführungsphase (EF) Unterrichtsvorhaben: Kräfte, Bewegungen, Energie und Impuls Kontext: Bewegungen im Alltag 17

Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Beschreibung und Analyse von linearen Bewegungen unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition (E1), Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihe zur gleichmäßig beschleunigten Bewegung Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung) Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge (u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1), stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. t-s- und t-v-diagramme, Vektordiagramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3), erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6), Freier Fall und Bewegung auf einer schiefen Ebene Wurfbewegungen Untersuchung gleichmäßig beschleunigter Bewegungen im Labor Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung Erstellung von t-s- und t-v-diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden. Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen Wesentlich: Erarbeitung des Superpositionsprinzips (Komponentenzerlegung und Addition vektorieller Größen) 18

Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Newton sche Gesetze, Kräfte und Bewegung berechnen mithilfe des Newton schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newton schen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1), 19

Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Energie und Leistung Impuls erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), beschreiben eindimensionale Stoßvorgänge mit Wechselwirkungen und Impulsänderungen (UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), Fadenpendel (Schaukel) Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zu elastischen und unelastischen Stößen Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton schen Gesetzen und der Definition der Arbeit Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen Begriff des Impulses und Impuls als Erhaltungsgröße Elastischer und inelastischer Stoß auch an anschaulichen Beispielen begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnisse oder andere objektive Daten heran (K4), 20

Unterrichtsvorhaben: Gravitation Kontext: Auf dem Weg in den Weltraum Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Aristotelisches Weltbild, Kopernikanische Wende stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), Arbeit mit dem Lehrbuch: Geozentrisches und heliozentrisches Planetenmodell Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Bochum Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen Planetenbewegung en und Kepler sche Gesetze ermitteln mithilfe der Kepler schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3). Planetenbewegungen Tycho Brahes Messungen, Keplers Schlussfolgerungen Benutzung geeigneter Apps 21

Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Newton sches Gravitationsgesetz, Gravitationsfeld beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6), Arbeit mit dem Lehrbuch Newton sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler schen Gesetze Newton sche Mondrechnung Anwendung des Newton schen Gravitationsgesetzes und der Kepler schen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift Kraft auf Probekörper 22

Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Kreisbewegungen analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6), Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden. Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Massenbestimmungen im Planetensystem, Fluchtgeschwindigkeiten Bahnen von Satelliten und Planeten Impuls und Impulserhaltung, Rückstoß verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), Wasserrakete Raketentriebwerke für Modellraketen Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum 23

Unterrichtsvorhaben: Mechanische Schwingungen und Wellen Kontext: Schwingungen und Wellen im Alltag Inhalt Kompetenzen Experiment / Medium Kommentar/didaktische Hinweise Die Schülerinnen und Schüler Entstehung und Ausbreitung von Schwingungen erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6), Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude am Beispiel vom Schallwellen Modelle der Wellenausbreitung beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4), Lange Schraubenfeder, Wellenwanne Entstehung von Longitudinal- und Transversalwellen Ausbreitungsmedium, Möglichkeit der Ausbreitung longitudinaler. bzw. transversaler Wellen Erzwungene Schwingungen und Resonanz erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1). Stimmgabeln Resonanz (z.b. Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten 24

9. Curriculum Qualifikationsphase 1 (Q1) Inhalt Experimente / Kompetenzen Erforschung des Elektrons Wiederholung Q, I, U, R kurz: F = E q, E = U/d 1) Millikanversuch Elementarladung Energie W bewegter Elektronen 2) Oszilloskop Lorentzkraft 3) Fadenstrahlrohr Elektronenmasse Elektrodynamik 4) Leiterschaukel-Experiment -Elektromagnetische Induktion 5) Leiterschleifen-Experiment Induktionsspannung 6) Messwerterfassung (Cassy) 7) Generator-Experiment Erzeugung sinusförmiger Wechselspannungen 8) Transformator-Experiment 9) Modellversuch zu Freileitungen Energieerhaltung, Ohm sche Verluste 10) Thomson scher Ringversuch -Lenz sche Regel Erforschung des Photons 11) Wellenwanne - Kreiswellen, ebene Wellen, Huygens sches Prinzip, Reflexion, Brechung, Beugung und Interferenz 12) Doppelspalt-Experiment mit Licht - Lichtwellenlänge/ Lichtfrequenz 13) Experiment mit dem Gitter 14) Fotoeffekt-Experiment - Quantelung der Energie von Licht, Austrittsarbeit Quantenobjekte 15) Elektronenbeugungs-Experiment - Streuung von Elektronen an Festkörpern, de-broglie-wellenlänge Elektronen und Photonen als Quantenobjekte Licht u. Materie 25

10. Curriculum Qualifikationsphase 2 (Q2) Inhalt Experimente / Kompetenzen Atomphysik Kern-Hülle-Modell 16) Linienspektrum Energieniveaus der Atomhülle (Bohr ohne Rechnungen ) 17) Franck-Hertz-Versuch Quantenhafte Emission u. Absorption 18) Flammenfärbung 19) Sonnenspektrum Sternspektren und Fraunhoferlinien 20) Charakteristisches Röntgenspektrum Röntgenstrahlung Radioaktivität 21) Geiger-Müller-Zählrohr - Detektoren 22) Absorptionsexperimente zu α-, β- und γ-strahlung - Strahlungsarten Elementumwandlung (Nuklidkarte) Biologische Wirkung Dosimetrie Kernphysik Kernbausteine Elementarteilchen Austauschteilchen Relativität von Raum und Zeit 23) Michelson-Morley-Experiment Relativität der Zeit 24) Lichtuhr 25) Myonenzerfall 26) Zyklotron Schnelle Ladungsträger in E- und B-Feldern Ruhemasse und dynamische Masse Gegenseitige Bedingung von Raum und Zeit Abiturprüfungen 26