1.1. Probenvorbereitung: Abwägen und Inlösungbringen einer vorgegebenen Messing - Legierung

Ähnliche Dokumente
Quantitative Analyse einer Legierung

Zerlegung der Verbindung Wasser. Weiterbildung für fachfremd unterrichtende Lehrkräfte

Martin Raiber Elektrolyse: Strom - Spannungskurven

Technische Universität Chemnitz Chemisches Grundpraktikum

Bestimmung des Stickstoffgehalts von Erde

Chemie Zusammenfassung KA 2

Oxidation und Reduktion Redoxreaktionen Blatt 1/5

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Anorganisches Praktikum 1. Semester. FB Chemieingenieurwesen. Labor für Anorg. Chemie Angew. Materialwiss. Versuchsvorschriften

Wer ist MacGyver? Bildquelle: Themightyquill auf

RIAG Zn 230. Cyanidisches Glanzzinkverfahren

Protokoll 2. Labor für Physikalische Chemie. Modul IV. Säure-Base-Reaktion. Versuch Neutralisation, Gehaltsbestimmungen und Titrationskurven

3. Säure-Base-Beziehungen

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 2

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 6

Elektrochemie. C 11 EuG Inhalt

4. Quantitative Bestimmung von Eisen(II) durch Redoxtitration mit Kaliumpermanganat

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH)

Elektrische Energie, Arbeit und Leistung

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * kg m(h) = 1 u

Einführung. KLASSE: 9TE NAME: Vorname: Datum: LTAM Naturwissenschaften 9e Chemische Gleichungen 1 -

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Aufgaben Wechselstromwiderstände

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben.

Begriffe zur Elektrik und Elektrochemie

Pflege und Wartung von Elektroden

E 3 Brennstoffzelle. 1 Aufgabenstellung

Professionelle Seminare im Bereich MS-Office

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Modellbildungssysteme: Pädagogische und didaktische Ziele

Chemische Reaktionen

Redox- Titrationen PAC I - QUANTITATIVE ANALYSE ANALYTIK I IAAC, TU-BS, Manganometrie. Bestimmung von Eisen(III) in salzsaurer Lösung

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Arbeitsheft Quantitative Aspekte Jakob 1

GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie

c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Elektrische Spannung und Stromstärke

Christian-Ernst-Gymnasium

Reaktionsgleichungen verstehen anhand der Verbrennung von Magnesium

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Stationsunterricht im Physikunterricht der Klasse 10

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Chemie für Mediziner

Es soll eine schriftliche Ausarbeitung abgegeben werden (1 Exemplar pro Gruppe).

Zeichen bei Zahlen entschlüsseln

Element. Verbindung. Reinstoff. Gemisch

Technische Thermodynamik

Abb. 1: Exotherme und endotherme Reaktionen Quelle:

Wird vom Korrektor ausgefüllt: Aufgabe Punkte

Kapitel 13: Laugen und Neutralisation

2.8 Laugenbildung durch Reaktion von Metalloxiden mit Wasser. Aufgabe. Woraus lassen sich Laugen herstellen? (2)

Komplex: Bestimmung der Wasserhärte - Komplexometrische Titration

Organisch-Chemisches Grundpraktikum. trans-1,2-cyclohexandiol

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Endstoffe (Produkte) Aus dem Reaktionsgemisch entweichendes Gas, z. B. 2 Welche Informationen kann man einer Reaktionsgleichung entnehmen?

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Informationsblatt Induktionsbeweis

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Kapitel 4: Chemische. Woher stammen die chemischen Symbole?

Redox- und Fällungstitration P 3

Empfohlene Hilfsmittel zum Lösen der Arbeitsaufträge: Arbeitsblätter, Theorieblätter, Fachbuch, Tabellenbuch und Ihr Wissen aus dem Praxisalltag

4. Physiktest Kapitel 04 Der elektrische Strom Teil 1 Grundlagen Gruppe 1

Titration. Weiterbildung für fachfremd unterrichtende Lehrkräfte

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Lichtbrechung an Linsen

Komplex: Kalorimetrische Bestimmung von Verbrennungswärmen (Heizwerten und Brennwerten)

Dissoziation, ph-wert und Puffer

EMIS - Langzeitmessung

1. Theorie: Kondensator:

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

In welchen Stoffen befinden sich Laugen, wozu werden sie verwendet?

Biochemisches Grundpraktikum

Gruppe 01: Verbesserung Weißer Zucker... Schwarze Kohle

Kap.7 ph-wert und ph-indikatoren

Grundlagen der Elektronik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Stöchiometrie. (Chemisches Rechnen)

Titration einer Säure mit einer Base

Säure-Base-Titrationen

Was meinen die Leute eigentlich mit: Grexit?

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

3. Anwendungen Chemische Reaktionen. Aufgabe: Die Gleichung + +

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

2.9 Aufbau und Funktion eines Bunsenbrenners. Aufgabe. Wie ist der Bunsenbrenner aufgebaut?

Redoxgleichungen. 1. Einrichten von Reaktionsgleichungen

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Chemie (Grundkurs) Thema 1 Wasserstoff

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure.

Lernaufgabe: Richtigstellen von Reaktionsgleichungen

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008

7. Chemische Reaktionen

Transkript:

Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH) Fb Informatik, Mathematik und Naturwissenschaften - Chemie - Chemisches Praktikum: Energietechnik Komplex: Bestimmung des Kupfer- und Zinkgehalts einer Messing-Legierung (Kupfer durch Elektrolyse; Zink durch komplexometrische Titration) 1. Aufgabenstellung Als Elektrolysen bezeichnet man Redoxreaktionen, die durch Zufuhr elektrischer Energie erzwungen werden können. Damit laufen bei der Elektrolyse die elektrochemischen Vorgänge gegenüber dem galvanischen Element in entgegengesetzter Richtung ab. Die theoretischen Grundlagen der elektrolytischen Zersetzungsreaktionen finden ihre Anwendung bei der industriellen Erzeugung von metallischen Werkstoffen hoher Reinheit (Metallraffination), bei der Oberflächenveredlung in der Galvanotechnik, bei elektrochemischen Analysenverfahren (z. B. Elektrogravimetrie, Elektroanalyse, Polarographie), bei der Aufklärung der Mechanismen von Katalyse und Korrosion sowie der Funktion biologischer Membranen. Besonders geeignet sind Elektrolyseverfahren zur Abscheidung von Metallen mit einem positiveren Standardpotenzial als die Wasserstoffelektrode; hat das Metall ein negativeres Potenzial als diese, kann die Abscheidung häufig noch durch Einhaltung bestimmter Bedingungen bei der Elektrolyse erzwungen werden. Solche Elektrolysen sind oft schlecht reproduzierbar, weshalb hier das unedlere Zink komplexometrisch bestimmt werden soll. Folgende Schritte sind durchzuführen: 1.1. Probenvorbereitung: Abwägen und Inlösungbringen einer vorgegebenen Messing - Legierung 1.2. Elektrolyse: Abscheidung der in der Lösung vorhandenen Kupferionen 1.3. Komplexometrische Titration: Bestimmung der in der Lösung vorhandenen Zinkionen 2. Theoretische Grundlagen Die elektrolytischen Methoden umfassen alle katodischen und anodischen Abscheidungen, die gravimetrisch - also durch Auswägen - ausgewertet werden. Nach Arrhenius ist der größte Teil der anorganischen Verbindungen, insbesondere die Salze, aus Ionen aufgebaut. Diese Tatsache wurde bereits durch die Überprüfung der elektrischen Leitfähigkeit von Salzlösungen im entsprechenden Praktikumskomplex bestätigt. Aus wässrigen Lösungen lassen sich nun alle die Kationen elektrolytisch abscheiden, deren Abscheidungspotenzial (Entladbarkeit, Zersetzungsspannung) größer als das des Wasserstoffs ist. Die Überspannung von Wasserstoff an einer rauen Platinoberfläche ist nahezu gleich Null. So lässt sich Kupfer bereits in stark saurer Lösung abscheiden. Für Metalle mit negativerem Abscheidungspotenzial als Wasserstoff (vergleiche Reihe der Entladbarkeit) müsste entweder in alkalischer Lösung gearbeitet werden oder es müssten Elektroden zur Anwendung kommen, an denen die Überspannung des Wasserstoffs sehr groß ist. Sind in einer Lösung verschiedenartige Kationen und Anionen vorhanden, so werden beim Anlegen einer Gleichspannung nur diejenigen Ionen entladen, deren Elektrodenpotenzial gemäß der Spannungsreihe und der Nernstschen Gleichung geringer ist als die angelegte äußere Spannung. Eine Apparatur zur Elektrolyse besteht im Prinzip aus zwei Metallelektroden, welche in eine Elektrolytlösung oder eine Salzschmelze eintauchen. Die Entladungsvorgänge stellen erzwungene Redoxreaktionen dar. An der Katode (Minuspol) findet die Reduktion und an der Anode (Pluspol) die Oxidation statt. Diese endergonischen Reaktionen ( R G > 0) verlaufen niemals von allein ab, sondern nur durch Zufuhr der erforderlichen Energie. Die Kationen werden an der Katode reduziert und dort in

metallischer Form abgeschieden. Blei und Mangan oxidiert man an der Anode zu Blei(IV)-oxid bzw. Mangan(IV)-oxid, da beide Metalle an der Katode schlecht haftende Metallüberzüge bilden. Eine elektrogravimetrische Bestimmung ist nur dann durchführbar, wenn die Abscheidung quantitativ erfolgt, die abgeschiedenen Metalle keine Fremdstoffe enthalten und fest auf der Oberfläche der Elektrode haften. Pulvrige, schwammige oder blättrige Niederschläge mit geringem Haftvermögen führen zu Massenverlusten beim Wägen. Um das Metall in gut wägbarer Form zu erhalten, ist bei möglichst niedriger Stromdichte zu arbeiten. Die Spannung ist am Ende der Elektrolyse zu erhöhen, da das sich ausbildende galvanische Halbelement (hier Cu/Cu 2+ ) mit seinem zunehmenden Elektrodenpotenzial E der Zersetzungsspannung entgegen wirkt. An die sogenannten Primärreaktionen des eigentlichen Elektrolysevorganges können sich noch Sekundärreaktionen des Reaktionsproduktes z. B. mit sich selbst, mit der Elektrolytlösung oder mit der Elektrode anschließen. Die beiden Grundgesetze der Elektrolyse wurden von Faraday bereits 1832 formuliert: 1. Faradaysches Gesetz Die an den Elektroden abgeschiedene Masse m eines Stoffes ist proportional dem Produkt aus Stromstärke I und der Zeit t bzw. der durch den Elektrolyten geflossenen Elektrizitätsmenge Q (k Proportionalitätsfaktor). m = k l t (1) = k Q 2. Faradaysches Gesetz Die bei gleicher Stromstärke in gleicher Zeit abgeschiedenen Stoffmengen n verschiedener Ionen entsprechen dem jeweiligen Quotienten aus molarer Masse und Ladung. Zur Entladung von einem Mol Ionen mit der Ladung 1 sind 96487 As = 1 Faraday (1F) erforderlich. Elektrolysen finden vielfältige Anwendungen in der Technik: - elektrolytische Gewinnung von Metallen wie Alkali- und Erdalkalimetalle sowie Zn, Ni, Cd, Mn, Cu und Al - elektrolytische Gewinnung von Nichtmetallen wie F 2, H 2, Cl 2 und anorganischen Stoffen wie NaOH, H 2 O 2, KMnO 4, K 3 [Fe(CN 6 )] - Metallraffination von Cu, Ni, Ag - elektrolytische Passivierung (Eloxal-Verfahren, Galvanik) - elektrolytische Aufarbeitung von industriellen Abwässern, fotografischen und galvanischen Bädern. Die theoretischen Grundlagen zur komplexometrischen Bestimmung des Zinks entsprechen denen des Calciums im Praktikumskomplex "Wasserhärte - Komplexometrische Titration". Sie sind in der Praktikumsanleitung zu diesem Komplex nachzulesen. 3. Hinweise zur Versuchsdurchführung 3.1. Probenvorbereitung 100-150 mg der ausgegebenen Messingprobe werden in ein 150 ml-becherglas auf 0,1 mg genau eingewogen und mit ca. 1 ml konzentrierter Salpetersäure (65%ig) vorsichtig übergossen. Verwenden Sie dazu eine Saugpipette und arbeiten Sie unter dem Abzug, da nitrose Gase entstehen. Anschließend erfolgt im gleichen Becherglas die Elektrolyse gemäß 3.2. 3.2. Elektrolyse der vorhandenen Kupferionen Die Elektrolyseapparatur (regelbare Gleichstromquelle) wird nach der vorliegenden Betriebsanweisung für die elektrogravimetrische Cu-Bestimmung vorbereitet. Vor der Elektrolyse wird die Masse der als Katode zu schaltenden sauberen und trockenen Platin-Netzelektrode (etwa 100 cm 2 Oberfläche) auf einer automatischen Analysenwaage ermittelt. 2

Zu der vorbereiteten Analysenlösung werden ca. 2 ml 30%ige Harnstofflösung zugesetzt, um ein Ablösen des Kupfers von der Netzelektrode während der Elektrolyse - durch eine konkurrierende Redox- Reaktion mit entstandenem NO 2 - Ionen - zu verhindern. Die Lösung wird auf ca. 120 ml verdünnt und auf ca. 60 C erwärmt. Nun erfolgt die eigentliche Elektrolyse bei ca. 2,5 V und 0,2 A bis zur vollständigen Abscheidung der Kupferionen, die nach ca. 35 bis 40 min beendet sein müsste. Nunmehr ist das Rührwerk abzuschalten und die unter Spannung stehenden Elektroden sind aus dem Elektrolysebad zu entfernen. (Warum unter Spannung?) Nach Unterbrechung der Stromzufuhr wird die Netzelektrode mit deionisiertem Wasser abgespült und anschließend mit Aceton vom Wasser befreit. Alle anderen Einbauten (Anode, Thermometer, Magnetrührer), die mit der Elektrolytlösung in Berührung gekommen sind, werden ebenfalls abgespült. Das Spülwasser und die verbliebene Elektrolyselösung werden für die quantitative Bestimmung der Zinkionen gemäß 3.3. gesammelt. Die luftgetrocknete Elektrode wird auf der Analysenwaage gewogen und so die abgeschiedene Kupfermasse bestimmt. Nach dem Reinigen der Netzelektrode in 6 M Salpetersäure (unter dem Abzug, da nitrose Gase entstehen) wird die Elektrode wie eben beschrieben mit deionisiertem Wasser und Aceton behandelt und zur Kontrolle gewogen. Die Platinelektrode soll ihre Ausgangsmasse wieder erreicht haben, ggf. ist die Reinigungsprozedur zu wiederholen. 3.3. Titration der vorhandenen Zinkionen mittel 0,01m EDTA - Lösung Die nach der Elektrolyse zurückbleibende Lösung wird verlustfrei in einen 500 ml Maßkolben überführt und das Elektrolysegefäß fünfmal mit wenig deionisiertem Wasser ausgespült. Das Spülwasser kommt ebenfalls in den Maßkolben. Damit soll gewährleistet werden, dass keine Zinkionen im Becherglas zurückbleiben. Der Maßkolben wird dann auf 500 ml aufgefüllt und geschüttelt. Zur Titration werden mit einer Pipette genau 100 ml der Lösung in einen 200 ml Erlenmeyerkolben abgemessen und nach Zugabe von 10 ml Pufferlösung (ph 5) - zum Erhalt eines konstanten ph-wertes 2 Spatelspitzen Xylenolorange - als Farbindikator mit 0,01 molarer EDTA-Lösung bis zum Umschlag von rot nach gelb titriert. Die Titration ist mindestens dreimal durchzuführen. 3.4. Berechnung des Zinkgehaltes Der Zinkgehalt in mg wird wie folgt berechnet: m Zn = 0,6539 V (verbrauchte EDTA-Lösung in ml) 4. Kontrollfragen 4.1 Bei der Probenvorbereitung erfolgt das Lösen einer Messing - Legierung mit konzentrierter HNO 3. Formulieren Sie die entsprechenden Redoxreaktionen mit den sich ändernden Oxidationszahlen! Beachten Sie dabei die E 0 - Werte der beteiligten Redoxpaare! Was sind nitrose Gase? 4.2 Formulieren Sie die Elektrodenvorgänge, getrennt für die Pt-Katode und Pt-Anode, bei der Elektrolyse einer Magnesiumchloridschmelze und einer wässrigen Magnesiumchlorid-Lösung! Kennzeichnen Sie die Vorgänge an Katode und Anode! 4.3 Magnesium wird durch die Schmelzflusselektrolyse aus Magnesiumchlorid gewonnen. Die Elektrolyseanlage besteht aus 20 Bädern in Reihenschaltung. Diese Anlage produziert im Jahr (365 Tage) 1200 t Mg bei einer durchschnittlichen Stromstärke von 18,4 ka und bei einer Spannung von 6 V pro Bad. Berechnen Sie a) die Stromausbeute in %, b) den Energiebedarf im Jahr in kwh, c) die Magnesiummasse(in g), die pro kwh erzeugt wird! 3

4.4 Eine Kupfersulfat-Lösung wird mit einer Badspannung von 5 V elektrolysiert. Wie viel kwh sind zur Reindarstellung von 100 kg Elektrolytkupfer erforderlich, wenn die Stromausbeute 87 % beträgt? 4.5 Eine unedle Metalloberfläche von 100 cm 2 soll mit einer 0,01 mm dicken Nickelschicht auf galvanischem Wege überzogen werden. Die Stromstärke beträgt 1,5 A, die Stromausbeute 90 % und die Dichte des Nickels 8,76 g cm -3. Welche Zeit (Angabe in min, sec) ist hierfür nötig? 4.6 Was versteht man unter einem Diaphragma? 4.7 Was sind Brennstoffzellen? Nennen Sie zwei Beispiele! 5 Arbeitsschutz im chemischen Praktikum Für die in diesem Versuchskomplex durchzuführenden Laborarbeiten, insbesondere den Umgang mit Gefahrstoffen, gelten die folgenden, in der Arbeitschutzunterweisung erläuterten, Betriebsanweisungen (BA) nach 20 Gefahrstoffverordnung: 1. Arbeitsplatzbezogene BA (Allgemeine Laborordnung des Praktikumslabors) 2. Stoffbezogene BA für die laut Praktikumsvorschrift verwendeten Stoffe und Zubereitungen Die Betriebsanweisungen sind Bestandteil der Versuchsvorschrift und hängen im Labor aus! Erste Hilfe bei Unfällen wird durch das Lehrpersonal organisiert. Ersthelfer: Frau Dipl-Chem. U. Greif Literatur: R. Pfestorf, H. Kadner: Chemie - ein Lehrbuch für Fachhochschulen, Verlag Harri Deutsch, Thun und Frankfurt / Main Forst, M. Kolb, H. Roßwag: Chemie für Ingenieure, VDI Verlag Düsseldorf G. O. Müller: Praktikum der quantitativen chemischen Analyse, Hirzel Verlag Leipzig Praktikumsanleitung zum Praktikumskomplex: Bestimmung der Wasserhärte Komplexometrische Titration 4

Weitere Übungsaufgaben zur Vorbereitung auf die Praktikumsabschlussklausur Chemie (2. Semester), deren Lösungen ebenfalls zu Beginn des Praktikums Elektrolyse abzugeben sind: Komplex: Kalorimetrische Bestimmung von Verbrennungswärmen (Heizwerten und Brennwerten) 4. Kontrollfragen 4.1 Erläutern Sie den formelmäßigen Zusammenhang zwischen den Begriffen Wärme sowie Temperatur und erklären Sie die Größen C Kal. und C spez.! Geben Sie deren Einheiten an! 4.2 Berechnen Sie die durch Oxidation von Ethanol (zu flüssigem Wasser und CO 2 ) gebildete Verbrennungswärme V H, die im Laufe eines Jahres (365 Tage) im Körper eines Menschen entstehen würde, wenn dieser im Durchschnitt täglich einen Liter 5 Vol.-%iges Bier trinkt. Welche Massenzunahme würde der Mensch erfahren, falls die gesamte Verbrennungswärme in Form von Fett gespeichert würde? Ethanol B H - 277,6 kj mol -1 Dichte 0,789 g cm -3 Fette V H ca. - 39 MJ kg -1 4.3 Bei der Verbrennung von festem Harnstoff zu CO 2, N 2 und flüssigem Wasser wird eine Wärmemenge von 632 kj mol -1 frei. a) Formulieren Sie zunächst die Reaktionsgleichungen für die Verbrennung und die formale Bildung (aus den Elementen) von Harnstoff! b) Berechnen Sie die Standardbildungsenthalpie für Harnstoff mit dem Satz von Hess! 4.4 Wie groß ist die molare Standardreaktionsenthalpie bei der Herstellung von Acetylen (Ethin) aus Calciumcarbid? Verläuft die Reaktion exotherm oder endotherm? B H (kj mol -1 ) C 2 H 2 (g) +226 Ca(OH) 2 (s) - 986 CaC 2 (s) - 63 H 2 O (l) - 286 4.5 Wie sind die Begriffe oberer, unterer Heizwert und Brennwert definiert? Wie werden diese Kenngrößen berechnet? In welcher Einheit werden diese Größen angegeben? Welches Vorzeichen verwendet der Ingenieur? Version: 09/2004 S 5