Einführung in die Meteorologie Teil II

Ähnliche Dokumente
Einführung in die Meteorologie Teil II

VL Klimasysteme 12 April Wettersysteme: ihre Bedeutung und Vorhersage. Stephan Pfahl. Gruppe Atmospheric Dynamics

VL Klimasysteme 09 Mai Wettersysteme: ihre Bedeutung und Vorhersage. Heini Wernli. Gruppe Atmospheric Dynamics

Wettervorhersagen und ihre Aussagekraft

Die Wettervorhersage und ihre Tücken

Wettervorhersage -modelle

Numerische Wettervorhersage beim Deutschen Wetterdienst (DWD)

Wie kommt der Vorhersagemeteorologe zu einer schlüssigen Wettervorhersage?

Wettersysteme HS 2012

Einführung in die Meteorologie (met210) - Teil VII: Synoptik

Grundlagen der numerischen Wettervorhersage und der Klimamodellierung

Wie kommt es zu dieser Wetteränderung und zu diesem Temperatursturz?

Einführung in die Meteorologie (met210) - Teil VII: Synoptik

Moderne Wettervorhersage Numerische Modelle in der Meteorologie. Alexander Beck. Zentralanstalt für Meteorologie und Geodynamik

Einführung in die Meteorologie (met210) - Teil VII: Synoptik

Modellierung hochauflösender Windfelder an der deutschen Nordseeküste. 18. KFKI Seminar zur Küstenforschung, H. Frank und B.

Wetter. Benjamin Bogner

Die Atmosphäre der Erde

Das Wetter: schön aber kompliziert Wettervorhersage von damals bis Heute. Reto Stauffer

Dynamische Meteorologie und Synoptik

Einführung in die Meteorologie (met210) - Teil VII: Synoptik

Inhalt. Wetterkarten verstehen

Wetterkarten Wetterkarten a) Bodenwetterkarten und Wetterkartensymbole b) Höhenwetterkarten Auswerten einer Bodenwetterkarte

Wettersysteme HS 2012

Kármánsche Wirbelstraßen in

Modul: Atmosphärische Skalen in Raum und Zeit

Model Output Statistics (MOS)

Die Wirkung der Reibungskraft

COSMO-DE Ensemblevorhersagen

Das numerische Wettervorhersagemodell COSMO von MeteoSchweiz und seine Anwendung für die Gebäudeklimaregulierung

Forschung und Entwicklung - Abteilung Meteorologische Analyse und Modellierung Operationelles NWV-System Änderungsmitteilung

1. Anfangswertprobleme 1. Ordnung

Berechnung von Oberflächendrücken

Raum-zeitlich korrelierte stochastische Beschreibung des Modellfehlers in ICON-EPS und COSMO-D2-EPS

Dynamik der Atmosphäre. Einige Phänomene

Hochauflösende Simulation von Konvektion im Schwarzwald: Fallstudien basierend auf Beobachtungen im Rahmen von VERTIKATOR und PRINCE

Masse, Kraft und Beschleunigung Masse:

Übung 4: Potentielle Vorticity Lösung

Jet Stream. und sein Einfluss auf die Synoptische Wetterlage in den mittleren Breiten

1. Anfangswertprobleme 1. Ordnung

Klimatologische Analyse objektiver Wetterlagen auf Basis von Reanalysen und Klimasimulationen

Modernes Wetterrouting. Herzlich Willkommen beim Wetterseminar für Profis

Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt?

Möglichkeiten und Grenzen von Wettervorhersagen Integration von Wetterdaten in das Düngeberatungsprogramm BEFU

Windfelder auf der Elbe (KFKI-Projekt OPTEL)

Synoptische Meteorologie

Detlev Majewski und Dr. Erland Lorenzen LMK -1-

nicht nur für Piloten

Einführung in die Meteorologie: Teil II. Roger K. Smith

Perspektiven klimatologischen Denkens

Grundlagen der numerischen Wetterprognose

Simulation der instationären Strömung in einem Diffusionsofen mit Wärmestrahlung

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Möglichkeiten und Grenzen der Vorhersage

Modelle zur Beschreibung von Gasen und deren Eigenschaften

O. Sternal, V. Hankele. 5. Thermodynamik

Modelle der Mensch-Umwelt- Interaktion Leitung: Prof. J. Scheffran und Dr. P.M. Link. Thema: Klima Klimamodellierung - Grenzen und Chancen

Numerische Wettervorhersage (NWV) beim Deutschen Wetterdienst (DWD)

Zur Hydrostatik von Inversionen

Die Atmosphäre der Erde

Ein Gedankenexperiment:

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen?

Druckunterschied und Windgeschwindigkeit

Regional Atmospheric Soaring Prediction

Flash-Flood Flood Frühwarnung

Einführung in die Meteorologie (met210) - Teil VII: Synoptik

6 Dynamik der Atmosphäre

Theoretische Meteorologie

3. Übung: Analyse von Wetterkarten in 300 und 500 hpa

Wettersysteme HS 2011

Theoretische Meteorologie

Die Atmosphäre der Erde (2)

PV Streamer über dem subtropischen Nordatlantik in ECWMF Ensemble Vorhersagen: Vorhersagequalität, Vorhersagbarkeit und Dynamik

Höhenvorhersagekarten für die Luftfahrt

Meteogramme. Inhalt. Titel 1/6

Simulationstechnik V

25. Vorlesung Sommersemester

«Regen ist Wasser; manchmal zu viel, bisweilen zu wenig» Zürich-Flughafen

Theoretische Meteorologie Antje Claußnitzer

Numerische Integration

Deutscher Wetterdienst

Das Kaltluftabflußmodell KALM. 1 Allgemeines. Lohmeyer, A., Schädler, G.

Mathematische Grundlagen der dynamischen Simulation

und Synoptische Entwicklung

RCC Node-CM Produktbeschreibung Version 1.0 (Januar 2015)

So viel wie möglich Extremwertaufgaben aus Geometrie

Berechnung der Life Supporting Zones David Neubauer

DeMarine-2 Seegangsmonitor

Hohlspiegel. Aufgabennummer: 2_023 Prüfungsteil: Typ 1 Typ 2. Grundkompetenzen: a) AG 2.1, FA 1.8 b) FA 1.7, FA 1.8 c) AG 2.1, FA 1.

Zukünftig Wachstumsbedingungen für Gras. Wolfgang Janssen, DWD Abteilung Agrarmeteorologie

f u G = g φ y f v G = g φ x

Praktische Einführung in die Programmierung von globalen Wettervorhersagemodellen. Version 2015/2016: Thomas Frisius

Wettersystem M. Sprenger SP WS05/06

ICON. Zwei-Wege-Nesting am sphärischen Dreieicksgitter. Deutscher Wetterdienst, Offenbach. und das ICON-Entwicklungsteam.

Der Dynamische Zustandsindex (DSI)

Die mögliche Genauigkeit von längerfristigen Wettervorhersagen

Tag der Mathematik 2018

Regionale Vorhersage der PV-Leistung zur Netzintegration von Solarstrom

FORSCHUNG AKTUELL. Herausforderungen und Motivation für die Entwicklung des ICON Atmosphärenmodells

Transkript:

Einführung in die Meteorologie Teil II Roger K. Smith Einführung in die Meteorologie II Synoptische Analyse aussertropische Wettersysteme Wettervorhersage Dynamik der Atmosphäre

Methoden der Wettervorhersage Subjektiv Synoptische Analyse der Bodenkarte und extrapolieren Objektiv Objektive Analyse der zur Verfügung stehenden Daten und mit Hilfe eines numerischen Wettervorhersagemodells Eine Fallstudie Winterfall vom November, 1964 über den USA Ein Tief über Nordamerika Ursprünglich aus dem Buch von Wallace und Hobbs

Isohypsen im 500 hpa-niveau am 20 Nov. 1964, 00Z Isohypsen im 500 mb-niveau - November 1964 19/ 00 Z 19/ 12 Z 20/ 00 Z 20/ 12 Z

Luftdruck (auf Meereshöhe reduziert) und Bodenwinde H H H H T H H 19 Nov. 00Z T H T H 20 Nov. 00Z 19 Nov. 12Z Temperaturen in C und Lagen der Bodenfronten 19 Nov. 00Z 20 Nov. 00Z

3-stündige Druckänderung (mb) Isallobaren Abstand 4 hpa/3 Std T T Die Bodenwetterkarte vom 20 November 1964, 12Z T T H

Der Strömungsverlauf in der freien Atmosphäre An der Entstehung der meisten Wettervorgänge sind höhere Schichten der Atmosphäre beteiligt Man benötigt für die Beschreibung der Wetterlage neben der Bodenwetterkarte auch Höhenwetterkarten Es wurde beobachtet, dass die Tiefdruckgebiete am Boden vom Wind in der Mitte der Troposphäre (in ca. 500 hpa) gesteuert werden Höhenwetterkarten Radiosonden messen Temperatur und Wind in Abhängigkeit vom Druck Es ist zweckmäßig, die Höhen bestimmter Druckflächen zu berechnen und die Messwerte in dem jeweiligen Druckniveau anzugeben In den Höhenwetterkarten sind Isohypsen (Linien gleicher geopotentieller Höhe) eingetragen

Isohypsen im 850 mb Niveau am 20 November 1964, 12 Z 850 mb Isohypsen im 700 mb Niveau am 20 November 1964, 12 Z 700 mb

Isohypsen im 500 mb Niveau am 20 November 1964, 12 Z 500 mb Isohypsen im 250 mb Niveau am 20 November 1964, 12 Z 250 mb

Isohypsen im 100 mb Niveau am 20 November 1964, 12 Z 100 mb Omaha, NB Columbia, MS North Bay, Ont Buffalo, NY Pittsburgh, PA Huntington, WV Nashville, TE Jackson, MI Lake Charles, LO Brownsville, TX Charleston, WV Athens, GE

Columbia, MS Omaha, NB 20 70 100 Luftdruck (mb) 150 200 250 300 400 Tropopause AT, NA Tropopause OM 15 10 Höhe (km) 500 5 700 850 1000 Temperatur ( o C) Athens, GE Nashville, TE Isothermen und Isotachen im Querschnitt am 20 Nov. 1964, 12 Z Isotachen 100 Höhe (km) 10 5 J 250 500 Luftdruck (mb) 0 OM CB NA AT CH 1000 Isothermen

Isentropen und Isotachen im Querschnitt am 20 Nov. 1964, 12 Z 100 15 Höhe (km) 10 5 J 250 500 Luftdruck (mb) 0 OM CB NA AT CH Isentropen 1000 Isotachen Schichtdicke Die Schichtdicke ist der geopotentielle Höhenunterschied Z 2 Z 1 zwischen zwei beliebigen Niveaus in der Atmosphäre: R p Z Z = T 1 d 2 1 v g p2 dp p T v ist die mittlere virtuelle Temperatur der eingeschlossenen Luft

Schichtdicke p 2 Z 2 -Z T 1 v p 1 Relative Topographie Die relative Topographie stellt Isolinien konstanter Schichtdicke dar - z. B. Gebiete niedriger Schichtdicke sind Gebiete niedriger mittlerer Temperatur 560 dm kalt 552 dm 546 dm

20 Nov. 1964, 12 Z 504 522 540 558 564 552 570 558 T 576 582 dm 564 500 mb Isohypsen 1024 mb H H 1016 mb Bodendruck 1016 mb 1008 mb Schichtdicke Stadien einer Zyklonenentwicklung 1000-500 mb Schichtdicke a 500 mb Isohypsen b Bodendruck c Wellenbildung Warmsektorzyklone Okklusionsstadium

Idealisierte Querschnitt durch Tief- und Hochdruckgebiete mb Tropopause km 250 kalt warm kalt 10 500 warm kalt warm 5 Druckflächen T H T H Methoden der Wettervorhersage Subjektiv Synoptische Analyse der Bodenkarte und extrapolieren Objektiv Objektive Analyse der zur Verfügung stehenden Daten und mit Hilfe eines numerischen Wettervorhersagemodells

Numerische Wettervorhersagemodelle Basieren sich auf die partielle-differentielle Strömungs - und thermodynamische Gleichungen, die die Newton sche Bewegungsgleichung die erste Hauptsatz von Thermodynamik die Zustandesgleichung die Kontinuitätsgleichung. ausdrücken Die Lösung braucht: Anfangsfelder der vorhergesagten Grössen Randbedingungen an den Rändern des Modellgebiets, ausser für Globalemodelle Eine Darstellung der nicht aufgelössten physikalischen Prozesse (z.b. Gewitter, Kumuluswolken, kleinskalige Turbulenz)

Geschichte 1904 Wilhelm Bjerknes Der Vater der numerischen Wettervorhersage 1922 Lewis Frey Richardson Erste Versuche zur numerischen Wettervorhersage 1950 Charney, Fjortoft und von Neumann Erster erfolgreicher Versuch der numerischen Wettervorhersage 1999 Globale Vorhersagemodelle sind Realität NWP = Numerical Weather Prediction = numerischen Wettervorhersage Eine numerische Wettervorhersage ist die Simulatione atmosphärischer Prozesse auf einem Rechner mit dem Ziel, die zukünftige Entwicklung abzuleiten. Grundlage ist, dass das atmosphärische Geschehen -und damit die Entwicklung des Wetters - sich durch physikalische Gesetzmäßigkeiten beschreiben läßt. Die mathematische Formulierung dieser Gesetzmäßigkeiten führt zu einem Gleichungssystem, das die zeitliche Änderung der atmosphärischen Zustandsvariablen (z.b. Luftdruck, Wind, Temperatur) beschreibt.

Leider ist die mathematische Form dieser Gleichungen so komplex, dass eine exakte (analytische) Lösung zur Bestimmung des zukünftigen Zustandes der Atmosphäre nicht möglich ist. Näherungsweise können sie jedoch mit numerischen Verfahren gelöst werden. Zu diesem Zweck werden alle benötigten Variablen in einem aufspannenden Gitter dargestellt. Ausgehend vom Anfangszustand kann dann mit einem numerischen Lösungsverfahren für das Gleichungssystem die zeitliche Entwicklung der Verteilung der Variablen an den Gitterpunkten näherungsweise berechnet werden. Voraussetzung für die Stabilität der Lösungsverfahren ist eine schrittweise Berechnung der zeitlichen Entwicklung über kleine Zeitintervalle ('Zeitschritte'). Der erste Schritt ist die Definition des Modellgitters. Schwierig, da die räumliche und zeitliche Struktur der wetterrelevanten Prozesse in der Atmosphäre sehr variabel ist. Es gibt großräumige (z. B. Hoch- und Tiefdruckgebiete mit charakteristischen Abmessungen von einigen 1000 km) und kleinräumige Phänomene (z.b. Wärmegewitter mit charakteristischen Abmessungen von einigen km) Demzufolge ist eine möglichst feine Auflösung des Modellgitters erstrebenswert. Im Idealfall sollte das hochauflösende Gitter die ganze Erde umspannen.

Ein globales Modellgebiet und eine feine Auflösung des Gitters ist ein beschränkender Faktor für die endliche Leistungsfähigkeit der zur Verfügung stehende Rechner. Je mehr die Gitterpunktzahl desto größer der Rechenaufwand. Dazu kommt es, dass eine Vorhersage über einen Zeitraum von einigen Tagen in wenigen Stunden Rechenzeit fertig gestellt werden muss. Zum Beispiel im Routinebetrieb des DWD eingesetzten Modelle lösen dieses Problem so, dass in ein Global Modell (mit Namen GME) mit einer Maschenweite von 60 km ein hochauflösendes Lokal-Modell (LM) für das Gebiet Mitteleuropa mit einer Maschenweite von 7 km eingebettet ist. Den Anfangszustand für die numerische Wettervorhersage gewinnt man durch Messung aller relevanten Größen in einem weltumspannenden Beobachtungsnetz. Verfügbare Daten Radiosonden: TEMP Rawinsoundings, Pilotballons, Wind Profiler Bodendaten: SYNOP/SHIP Drifting Buoys Aircraft: ASDARS Satellitendaten: SATOBS/TOVS, SMM/I, QSAT Synthetischedaten: PAOBs

Eine direkte Simulation aller wichtigen atmosphärischen Prozesse in allen Fällen möglich. Prozesse, die auf räumlich-zeitlichen Skalen stattfinden, die nicht von der Gitterstruktur erfasst werden (z.b. Turbulenz, Bildung und Anwachsen von Wolken- und Niederschlagspartikeln), müssen durch sogenannte Parametrisierungen beschrieben werden. Ein schwieriges Problem ist die optimale Bestimmung von freien Parametern, die in den Parametrisierungen auftreten. Da die Parametrisierungen nur eine - manchmal sehr grobe - Annäherung an den jeweiligen Prozess darstellen, sind solche Parameter in der Regel nicht aus physikalischen Überlegungen abzuleiten. Die Vorhersage mit dem Global-Modell GME basiert auf eine Dreiecksgitter Methode (entwickelt in den Jahren 1995 bis 1998) Im Erdkugel ist ein Ikosaeder platziert. Durch Verbindung der Ecken des Ikosaeders mit Großkreisabschnitten auf der Kugel entstehen 20 gleichseitige sphärische Dreiecke mit einer Seitenlänge von etwa 7054 km. Durch Unterteilung (z. B. Halbierung) der sphärischen Dreiecke wird ein Gitter der erwünschten Modellauflösung erzeugt. Als Maschenweite wird dabei die mittlere Seitenlänge der kleinsten sphärischen Dreiecke bezeichnet; sie beträgt beim GME zur Zeit 60 km.

ECMWF DATA COVERAGE - TEMP 09 Apr 2002 00Z Total number of obs = 566

ECMWF DATA COVERAGE - PILOT/PROFILER 09 Apr 2002 00Z Total number of obs = 623 ECMWF DATA COVERAGE - SYNOP/SHIP 09 Apr 2002 00Z Total number of obs = 14028

ECMWF DATA COVERAGE - BUOY 09 Apr 2002 00Z Total number of obs = 2800 ECMWF DATA COVERAGE - AIRCRAFT 09 Apr 2002 00Z Total number of obs = 39863

ECMWF DATA COVERAGE - SATOB 09 Apr 2002 00Z Total number of obs = 110456 ECMWF 3-6 Tage Vorhersage 24-27 Apr 2002 12Z

850 mb Geopot (gpdm) und Temperatur (C) 06 Apr 1999 00Z ECMWF DATA COVERAGE - QSCAT 09 Apr 2002 00Z Total number of obs = 44281

ECMWF DATA COVERAGE - PAOB 09 Apr 2002 00Z Total number of obs = 223 ECMWF DATA COVERAGE - ATOVS 09 Apr 2002 00Z Total number of obs = 158436

ECMWF DATA COVERAGE - SMM/I 09 Apr 2002 00Z Total number of obs = 18511 Ende