6 Dynamik der Atmosphäre

Größe: px
Ab Seite anzeigen:

Download "6 Dynamik der Atmosphäre"

Transkript

1 6 Dynamik der Atmosphäre Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute ohnehin klar, dass die Mathematik wie ein Dämon in alle Anwendungen unseres Lebens gefahren ist. (Robert Musil, Der Mann ohne Eigenschaften, Kp. 11) Die Verteilung der meisten Spezies in der Atmosphäre wird bestimmt durch chemische Prozesse und durch Transportphänomene. Das Gebiet der Dynamik der Atmosphäre behandelt ganz allgemein Bewegungsvorgänge in der Atmosphäre. So wird sie nicht nur für die Bestimmung der Verteilung von Gasen, sondern besonders auch in der dynamischen Meteorologie eingesetzt, insbesondere in Modellen für die Wettervorhersage. Der Charakter von atmosphärischen Bewegungen hängt stark von deren horizontalen Dimensionen ab. Dabei wird eine extrem mannigfaltige Skala abgedeckt, die von ca m (mittlere freie Weglänge) bis zu 10 7 m(planetarewellen)reichenkann.durchdieimmer schnelleren Computer sind auf dem Gebiet der angewanen Atmosphärendynamik in den letzten Jahren enorme Fortschritte erzielt worden. Nicht nur werden Wetterprognosen mittels Modellen über mehrere Tage bestimmt, sondern auch die grossräumige Verteilung reaktiver Gase in der mittleren Atmosphäre zu bestimmen, ist möglich sowie ihre Bewegungen über Tage zu extrapolieren, oder die Herkunft von Luftpaketen rückwärts zu berechnen. Für die Beschreibung der atmosphärischen Bewegungen wird die Atmosphäre als Flüssigkeit betrachtet und man verwendet die klassischen Gesetze der Hydrodynamik und der Thermodynamik. Die Zirkulation der Atmosphäre kann im Wesentlichen mit Hilfe von drei Erhaltungssätzen beschrieben werden: Erhaltung des Impulses (Newton) Erhaltung der Masse (Kontinuitätsgleichung) Erhaltung der Energie (1. Satz der Thermodynamik) Für atmosphärische Bewegungen sind primär die folgenden Kräfte von Bedeutung: Druckgradienten-Kraft Gravitationskraft Reibungskraft In einem rotierenden Koordinaten-System, wie dies für die Erde der Fall ist, kommen zusätzlich Scheinkräfte dazu: 119

2 6DynamikderAtmosphäre Zentrifugalkraft Corioliskraft Da es sich bei der Atmosphärendynamik um ein komplexes Gebiet handelt, wollen wir nur einige Grundlagen erarbeiten. Für eine ausführliche Behandlung muss auf die Literatur oder auf eine allfällige spätere Vorlesung verwiesen werden. 6.1 Koordinatensysteme Es ist üblich zur Beschreibung dynamischer Prozesse in der Atmosphäre sphärische Koordinaten zu verwenden. Dabei rotiert das Koordinatensystem mit der Erde mit. Bezeichnen wir mit φ die geographische Breite, mit λ die geographische Länge und mit r den Abstand vom Erdmittelpunkt, wobei r R E =6370km und R E der Erdradius ist, so erhalten wir für die Geschwindigkeitskomponenten: u = dx/ = R E cos ϕ dλ (6.1) dϕ v = dy/ = R E (6.2) w = dz/. (6.3) Dabei ist u die zonale, v die meridionale Komponente und w diejenige in der Höhe. Häufig wird als vertikale Komponente auch die Druckhöhe, die potentielle Temperatur oder die geopotentielle Höhe genommen. 6.2 Wichtige Kräfte Druck-Gradientenkraft Unter der Wirkung eines Druckgradienten erfährt Luft eine Kraft, die sog. Druck- Gradientenkraft, F p : F p = 1 ρ p. (6.4) Diese Kraft steht senkrecht zu den Isobarenflächen und zeigt vom höheren zum tieferen Druck. Der Abstand der Isobaren gibt ein Mass für die Grösse des Luftdruckgradienten. Die Wirkung der vertikalen Komponente wird sozusagen dadurch eliminiert, dass der Luftdruck mit der Höhe abnimmt, so dass hydrostatisches Gleichgewicht herrscht. Typische Werte für den Druckgradienten sind: in vertikaler Richtung ca. 1mb auf 8m und in horizontaler Richtung ca. 1mb auf 10km! 120

3 6.2 Wichtige Kräfte Corioliskraft Jede Masse, die sich in einem mit der Winkelgeschwindigkeit ω rotierenden Bezugssystem mit der Geschwindigkeit v relativ zu diesem System bewegt, erfährt eine Scheinkraft, genannt Corioliskraft, F c,promasseneinheit: F c =2v ω. (6.5) Bezogen auf die Erde ist ω =Ω=2π/Sterntag = sec 1.Für die Corioliskraft pro Einheitsmasse erhalten wir bei zonaler Geschwindigkeit, u, undbeidergeografischen Breite ϕ = 2Ωu sin ϕ (6.6) und analog bei meridionaler Bewegung du Dabei bezeichnet man mit f den Coriolisparameter =2Ωv sin ϕ. (6.7) f =2Ωsinϕ. (6.8) f ist am Aequator gleich null und an den Polen f = ± sec 1. Die Corioliskraft wirkt senkrecht auf die Bewegungsrichtung und zwar nach rechts auf der nördlichen Halbkugel und nach links auf der südlichen Halbkugel. Da die Corioliskraft immer senkrecht auf die Bewegungsrichtung wirkt, kann sie keine Arbeit verrichten und kann daher die Bewegungsenergie eines Luftpakets nicht verändern. Die Corioliskraft ist am grössten an den Polen, am Aequator verschwindet sie. Die horizontale Komponente lässt sich auch schreiben mit F ch = f k v. (6.9) Dabei ist k ist der Einheitsvektor in z-richtung Reibungskraft Der für die Dynamik der Atmosphäre wichtigste Fall von Reibung ist die Bodenreibung, die sich in der sog. planetaren Grenzschicht (ungefähr bis 1km über den Boden) auswirkt. In diesem Bereich ist die Reibungskraft von ähnlicher Grösse wie die anderen Komponenten in horizontaler Richtung. Die Reibungskraft ist proportional der Geschwindigkeit und es gilt F R = av. (6.10) 121

4 6DynamikderAtmosphäre Allgemeine Bewegungsgleichung Aus der Summe der betrachteten Kräfte erhalten wir die allgemeine Bewegungsgleichung für ein Luftvolumen = F p + F c + F R + F G (6.11) resp. = 1 p ρ 2Ω v av + g. (6.12) Der Beschleunigungsterm kann aufgespalten werden in eine rein zeitliche Geschwindigkeitsänderung bei festgehaltenem Ort, d.h. v/ t, undineinefeldbeschleunigung. Dieser zweite Term kommt dadurch zustande, dass ein Luftpaket bei seiner Bewegung in einem gegebenen Geschwindigkeitsfeld an einen Ort gelangt, wo die Strömung eine andere Geschwindigkeit hat. Es gilt allgemein d = t + v. (6.13) Durch diese Feldbeschleunigung wird die Bewegungsgleichung quadratisch in der Geschwindigkeit Geostrophischer Wind Die Bewegungsgleichung für eine horizontale Bewegung lautet = F p + F ch + F R (6.14) = 1 ρ p f k v av. (6.15) Oberhalb einer Höhe von etwa 1km kann die Reibung vernachlässigt werden, so dass nur Druckgradienten- und Corioliskraft wirken. Ein Luftpaket sei anfänglich in Ruhe. Infolge eines Druckgradienten wird es beschleunigt, was aber sofort eine Corioliskraft bewirkt und zu einer Ablenkung nach rechts (auf der Nordhalbkugel) führt. Die Geschwindigkeit erhält also eine Komponente senkrecht zum Druckgefälle bis Gleichgewicht herrscht. Es gilt dann f k v = 1 ρ p. (6.16) Durch Multiplikation mit k von links erhalten wir k k v = v = 1 fρ k p. (6.17) Die so erhaltene Geschwindigkeit, v g, nennen wir geostrophischer Wind v g = 1 ρ f k p. (6.18) 122

5 6.2 Wichtige Kräfte Der geostrophische Wind weht parallel zu den Isobaren. Auf der Nordhalbkugel liegt dabei der tiefere Luftdruck links von der Bewegungsrichtung. Ein Tiefdruckgebiet wird in derselben Richtung umweht, wie die Erde rotiert (zyklonaler Wind). Geostrophischer Wind um ein Hochdruckgebiet ist ergo antizyklonaler Wind. Je enger die Isobaren, desto stärker der Wind. Da der geostrophische Wind senkrecht zum Gefälle des Luftdrucks weht, kann er Druckunterschiede nicht ausgleichen. Reibung in der planetaren Grenzschicht bewirkt, dass die Windgeschwindigkeit subgeostrophisch wird. Auch im stationären Fall gibt es nun eine Komponente in Richtung des Druckgefälles und es können somit Druckunterschiede ausgeglichen werden Primitive Gleichungen Unter den primitiven Gleichungen versteht man die grundlegenden Gleichungen, die für die Beschreibung der zeitlichen Entwicklung atmosphärischer Bewegung benötigt werden. Diese Gleichungen sind eine Synthese aus der allgemeinen Bewegungsgleichung nach Newton der Gasgleichung = 1 ρ p 2 Ω v av + g, (6.19) dem ersten Hauptsatz der Thermodynamik und der Kontinuitätsgleichung p = ρrt, (6.20) dt = 1 dp c p ρ + Q (6.21) c p p t + ρ v =0. (6.22) Das ganze Set der Gleichungen in sphärischen Koordinaten lautet: du = uv r tan ϕ uw r +2Ωsinϕv 2Ω cos ϕw 1 p ρr cos ϕ λ + F λ (6.23) = u2 r tan ϕ uw r 2Ω sin ϕu 1 p ρr ϕ + F ϕ (6.24) dw = u2 + v 2 +2Ωcosϕu g 1 p r ρ r + F z (6.25) Mit F sind die Komponenten der Reibungskraft gemeint. Es ist ferner die Euler sche Zerlegung zu berücksichtigen für die totale Ableitung nach der Zeit. In Kugel-Koordinaten ist sie gegeben durch 123

6 6DynamikderAtmosphäre d = t + u r cos ϕ λ + v r ϕ + w z. (6.26) Bei der Anwendung dieses Gleichungs-Systems müssen die verschiedenen Terme auf ihre Wichtigkeit untersucht werden, um dann allenfalls durch die Vernachlässigung der weniger wichtigen Beiträge das System zu vereinfachen. 6.3 Erhaltung der Wirbelstärke, Vorticity Neben den primitiven Gleichungen sind die Gleichungen, welche die Wirbelstärke in einem Strömungsfeld beschreiben von Wichtigkeit. Insbesondere ist der Satz der Erhaltung der Wirbelstärke von zentraler Bedeutung für die Erklärung von Wellen in der Atmosphäre. Als Wirbelstärke ζ oder vorticity eines horizontalen Strömungsfeldes bezeichnet man die vertikale Komponente z v = ζ. (6.27) Allgemein ist die Rotorkomponente n v senkrecht zu einer vorgegebenen Fläche definiert als die auf die Flächeneinheit bezogene Zirkulation Z einer Strömung auf dieser Fläche Z = v ds. (6.28) Gemäss dem Satz von Stokes ist gleich bedeutend mit In x, y, z-koordinaten ist n v = d da n v d A = v ds (6.29) v ds. (6.30) ζ = z v = v y x v x y = v x u y. (6.31) Vorticity zeigt sich in zwei Formen: In gekrümmten Bewegungen und in geradlinigen Bewegungen mit horizontaler Scherung. Im einfachsten Fall haben wir eine starre Rotation und es ist v = ω r. (6.32) Die Zirkulation ist in diesem Fall Z = v ds = v 2πr =2πr 2 ω (6.33) und die zugehörige Wirbelstärke, nach Division durch die Fläche ζ = Z r 2 π =2 ω. (6.34) 124

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Wetter. Benjamin Bogner

Wetter. Benjamin Bogner Warum ändert sich das ständig? vorhersage 25.05.2011 Warum ändert sich das ständig? vorhersage Inhaltsverzeichnis 1 Definition 2 Warum ändert sich das ständig? Ein einfaches Atmosphärenmodell Ursache der

Mehr

Die Bedeutung des Windes für das Fliegen und Ballonfahren Wetterkunde von Dr. Manfred Reiber Teil 2

Die Bedeutung des Windes für das Fliegen und Ballonfahren Wetterkunde von Dr. Manfred Reiber Teil 2 Die Bedeutung des Windes für das Fliegen und Ballonfahren Wetterkunde von Dr. Manfred Reiber Teil 2 2. Wie entsteht der Wind? Die Voraussetzung dafür, dass sich Luft in Bewegung setzt, ist ein horizontaler

Mehr

Modul: Kräftegleichgewichte und Gleichgewichtswinde

Modul: Kräftegleichgewichte und Gleichgewichtswinde Modul: Kräftegleichgewichte und Gleichgewichtswinde Lernziel: Verständnis der elementaren Kräftegleichgewichte in der atmosphärischen Dynamik und der dazugehörigen Gleichgewichtswinde sowie Einführung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

3. Übung: Analyse von Wetterkarten in 300 und 500 hpa

3. Übung: Analyse von Wetterkarten in 300 und 500 hpa 3. Übung: Analyse von Wetterkarten in 300 und 500 hpa Nächste Übung Donnerstag, 07.11.2011, 14:00 MEZ Listen Anwesenheitsliste Wetterbesprechung Bildung von 3er Gruppen bzw. Paaren Tragt euch in das Dokument

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)

Mehr

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System 3 Beschleunigte Bezugssysteme und Trägheitskräfte 3.1 Trägheitskräfte bei linearer Bewegung 3. Trägheitskräfte in rotierenden Bezugssystemen 3.3 Corioliskraft 3.4 Trägheitskräfte R. Girwidz 1 3.1 Trägheitskräfte

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen 1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen z.b.: Ort: Festlegung der Nullpunkte Klassische Mechanik a) Zeitnullpunkt und Maßstab unabhängig von Ort und sonstigen

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Theoretische Meteorologie

Theoretische Meteorologie 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Dieter Etling Theoretische Meteorologie Eine Einführung VII 1 Einführung

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Die Hadley Zelle Patrick Kalb-Rottmann Seminarvortrag Wintersemester 04/05

Die Hadley Zelle Patrick Kalb-Rottmann Seminarvortrag Wintersemester 04/05 Die Hadley Zelle Patrick Kalb-Rottmann Seminarvortrag Wintersemester 04/05 Inhalt: 0. Einleitung und Motivation 1. Wer war George Hadley? 2. Die Allgemeine Zirkulation 3. Was ist die Hadley Zelle 4. Die

Mehr

Theoretische Meteorologie

Theoretische Meteorologie Dieter Etling Theoretische Meteorologie Eine Einführung 2. Auflage Mit 135 Abbildungen und 5 Tabellen Springer Inhaltsverzeichnis Einführung und Definitionen 1 1.1 Einleitung 1 1.2 Physikalische Größen

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Dynamische Meteorologie und Synoptik

Dynamische Meteorologie und Synoptik Dynamische Meteorologie und Synoptik Andreas Fink & Michael Kerschgens mit V. Ermert, T. Sperling, F. Steffany Institut für Geophysik und Meteorologie Universität zu Köln Wintersemester 2007/2008 Synoptik

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 216 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 9. PD

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten

Mehr

Die Wirkung der Reibungskraft

Die Wirkung der Reibungskraft Die Wirkung der Reibungskraft T H Die Wirkung der Reibungskraft In einem Drucktrog (z.b. entlang einer Front) und in einem Tiefdruckzentrum konvergiert die Strömung. ----- Dabei wird die Luft gehoben.

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten

Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropische Bewegung Druckkoordinaten Näcster Abscnitt => Das zweites Gesetz von Newton in einem rotierenden Bezugssystem Geostropisce Bewegung Druckkoordinaten Matematisce Herleitung der Coriolisbescleunigung Darstellung eines beliebigen

Mehr

Physik I - Integrierter Kurs -

Physik I - Integrierter Kurs - Physik I - Integrierter Kurs - Klausur I, WS 2006/07 13. Dezember 2006 Name: Übungsgruppe/Betreuer: Aufgabe V1 V2 V3 V4 A1 A2 A3 A4 A5 A6 Summe (max. 50) Punkte Name: Betreuer/Übungsgruppe: 1 Verständnis

Mehr

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

nicht nur für Piloten

nicht nur für Piloten Meteorologie Wetterkunde, nicht nur für Piloten Dr. Helmut Albrecht, Institut für Mathematik und Informatik an der PH Ludwigsburg Inhalt Grundlagen Adiabatische Vorgänge Hoch- und Tiefdruckgebiete Fronten

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Dynamik der Flüssigkeiten Als Beispiel für die Mechanik der Kontinua soll hier noch auf die Bewegung von Flüssigkeiten, eingegangen werden. Traditionell unterscheidet man

Mehr

GmM = r². mv² r. GM r M

GmM = r². mv² r. GM r M 1. Das Problem Galaxien zeigen ein unerwartetes Rotationsverhalten: Selbst in großen Abständen vom Zentrum bleibt die Bahngeschwindigkeit der Objekte (Sterne, Gase usw.) etwa konstant, obwohl eine Keplerrotation

Mehr

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011

Teilnehmer-Nr: Integrierter Kurs I. 2. Klausur, WiSe 2010/ März 2011 Integrierter Kurs I 2. Klausur, WiSe 2010/2011 03. März 2011 Name: Gruppenleiter: Aufgabe Punkte 1 / 5 2 /16 3 /10 4 /13 5 /10 6 /12 7 / 8 8 / 6 insgesamt (max. 80) 1. Gravitationskraft (5 Punkte) Im Jahr

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17 Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17 Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München Blatt 6: Scheinkräfte in beschleunigten Bezugssystemen Ausgabe:

Mehr

Schriftliche Vordiplomprüfung Physik

Schriftliche Vordiplomprüfung Physik Schriftliche Vordiplomprüfung Physik Prof. T. Esslinger / Prof. R. Monnier Dated: Mittwoch, 17. September 2003, 9:00 12:00 Uhr) Aufgaben I. ELEKTRON IM MAGNETFELD Ein Elektron Ladung e, Masse m) bewegt

Mehr

Gleichgewichtswinde F P. p 0 +2δp F C. f p φ k

Gleichgewichtswinde F P. p 0 +2δp F C. f p φ k geostrophischer Wind ( ) Gleichgewichtswinde Die Erde hat annähernd eine Kugelgestalt und deswegen fällt nördlich und südlich der Tropen weniger Sonnenstrahlung auf einen Quadratmeter als in niederen Breiten.

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

Wettersysteme HS 2012

Wettersysteme HS 2012 Wettersysteme HS 2012 Kapitel 1 Grundlegendes zur Erdatmosphäre 19. September 2012 1. Vertikaler Aufbau - Einteilung nach dem Temperaturverlauf - Einteilung in 4 Schichten: - Troposphäre - Stratosphäre

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Lösungblatt III Veröentlichung

Lösungblatt III Veröentlichung Aufgabe 1 a) Ein Block der Masse m = 0.5Kg hängt am unteren Ende einer vertikal aufgehängten Feder. Aufgrund des Blocks streckt sich die Feder um eine Distanz d = 5cm aus ihrer Gleichgewichtslage (vgl.

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

1 Einführung und Definitionen

1 Einführung und Definitionen 1 Einführung und Definitionen 1.1 Einleitung Eine allgemein akzeptierte Charakterisierung der Theoretischen Meteorologie als Hochschulfach stößt auf Schwierigkeiten. Zum einen sind in den Kursvorlesungen

Mehr

f u G = g φ y f v G = g φ x

f u G = g φ y f v G = g φ x Aufgabe 1: In der folgenden Abbildung ist die geopotentielle Höhe auf 500 hpa und 400 hpa eingezeichnet. In erster Näherung ist der Wind gegeben durch die geostrophische Näherung, die aus dem Kräftegleichgewicht

Mehr

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009

Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Musterlösung zu Übungen der Physik PHY 117, Serie 6, HS 2009 Abgabe: Gruppen 4-6: 07.12.09, Gruppen 1-3: 14.12.09 Lösungen zu den Aufgaben 1. [1P] Kind und Luftballons Ein Kind (m = 30 kg) will so viele

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik WS 017 / 018 Lösungen zu Übungsblatt 5 Prof. Dr. Hermann Gaub, Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen ( i.) Sie drehen

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Abbildung 1: Kettenfontäne (Bild: The New York Times, March 3, 2014 [1])

Abbildung 1: Kettenfontäne (Bild: The New York Times, March 3, 2014 [1]) Kettenfontäne Der Mould-Effekt Steve Mould zeigte im Jahr 2013 ein YouTube-Video, das grosse Beachtung fand und von mehr als zwei Millionen Menschen angeschaut wurde. Wird das eine Ende einer in einem

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Aufgabe 5: otierendes Bezugssystem : das nertialsystem, : das rotierende System. d r = d r +

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr