Integration of Renewable Energies by distributed Energy Storage Systems. A new ECES Annex Proposal and a collaborative action within the



Ähnliche Dokumente
The Solar Revolution New Ways for Climate Protection with Solar Electricity

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Paving the way to the Smart Grid

Integration of Wind into Future Energy Systems

Energieeffizienz und Erneuerbare Energien Programme der EZ -- ein Zwischenstand

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

ELEKTRISCHE UND THERMISCHE ENERGIESPEICHER IM SMART GRID

BAYNES HYDROPOWER SCHEME ON THE LOWER CUNENE. June 2009

Energy efficiency in buildings and districts Key technologies within a case study of the Young Cities Project, Iran

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Connecting the dots on Germany s Energiewende and its impact on European energy policy

Algorithms for graph visualization

WP2. Communication and Dissemination. Wirtschafts- und Wissenschaftsförderung im Freistaat Thüringen

Cloud Architektur Workshop

Bosch Power Tec Clean Energy Week Energy Storage

TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag,

GIS-based Mapping Tool for Urban Energy Demand

Ein- und Zweifamilienhäuser Family homes

Internationale Energiewirtschaftstagung TU Wien 2015

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank

Dynamic Hybrid Simulation

Solar Energy for Process Heat: Workshop report from the Sol-Ind Swiss project

Exercise (Part V) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Possible Contributions to Subtask B Quality Procedure

Virtual Power System Allgäu. VPS - case of Allgäu region in Germany

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration

Darstellung und Anwendung der Assessmentergebnisse

Chemical heat storage using Na-leach

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem

Corporate Digital Learning, How to Get It Right. Learning Café


Prof. Guillaume Habert

ISO Reference Model

SARA 1. Project Meeting

Participatory methodology at the Intersection of design and technology

The Integration of Renewable Energy Sources Into the Distribution Grid

Solar Air Conditioning -

Contents. Interaction Flow / Process Flow. Structure Maps. Reference Zone. Wireframes / Mock-Up

FEM Isoparametric Concept

Ressourcenmanagement in Netzwerken SS06 Vorl. 12,

Scenario Building Workshop - Interplay of problem framings

IEA International Energy Agency

Newest Generation of the BS2 Corrosion/Warning and Measurement System

How P2G plays a key role in energy storage. Jorgo Chatzimarkakis, Secretary General

Where are we now? The administration building M 3. Voransicht

Hazards and measures against hazards by implementation of safe pneumatic circuits

Einkommensaufbau mit FFI:

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Geometrie und Bedeutung: Kap 5

Rev. Proc Information

Handwerk Trades. Arbeitswelten / Working Environments. Green Technology for the Blue Planet Clean Energy from Solar and Windows

Englisch-Grundwortschatz

Security Patterns. Benny Clauss. Sicherheit in der Softwareentwicklung WS 07/08

CHAMPIONS Communication and Dissemination

Pilot area B: Zeeland (B + NL) Pilot area C: Terschelling and Northern Fryslan (NL) Pilot area D: Borkum (D)

Energy R&D Public Expenditure in Austria 2011

Rough copy for the art project >hardware/software< of the imbenge-dreamhouse artist Nele Ströbel.

Stand der Recherche nach publizierten Identity Management Standards - ISO/IEC, DIN, BSI, CEN/ISSS und OASIS

Product Lifecycle Manager

EINSPEISEMANAGEMENT: GRUNDLAGEN, ANALYSE- UND PROGNOSEMÖGLICHKEITEN

prorm Budget Planning promx GmbH Nordring Nuremberg

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Developing clusters to promote S³ innovation

Englisch. Schreiben. 18. September 2015 HTL. Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung. Name: Klasse/Jahrgang:

Providers of climate services in Germany

Mitglied der Leibniz-Gemeinschaft

Model EUSALP Presentation by Larissa Willamowski & Johannes Marco Oberhofer

Kurzanleitung um Transponder mit einem scemtec TT Reader und der Software UniDemo zu lesen

ISEA RWTH Aachen Electric Bus Simulation

Produzierendes Gewerbe Industrial production

Sport Northern Ireland. Talent Workshop Thursday 28th January 2010 Holiday Inn Express, Antrim

Eclipse User Interface Guidelines

Zurich Open Repository and Archive. Anatomie von Kommunikationsrollen. Methoden zur Identifizierung von Akteursrollen in gerichteten Netzwerken

Economics of Climate Adaptation (ECA) Shaping climate resilient development

How can the connectivity of the greenway network in Southwest Montreal be improved? Scenarios for enhancing the wellbeing of biodiversity and humans

Neue E-Business Modelle zwischen sozialer Utopie und Wirklichkeit. TransactiveEnergy das Ende der zentralen Energiesysteme

HIR Method & Tools for Fit Gap analysis

Social Sciences and Humanities role in Social Innovation Some key observations from the experience of TU Dortmund University sfs

Energieeffizienz im internationalen Vergleich

Communications & Networking Accessories

Aluminium-air batteries: new materials and perspectives

Einführung in die Robotik Einführung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / mohamed.oubbati@uni-ulm.de

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

TMF projects on IT infrastructure for clinical research

Munich Center for Technology in Society

CABLE TESTER. Manual DN-14003

INFORMATION ABOUT COLLECTIVE TRANSFERS

Specialist networks for the INSPIRE data themes in Germany

Order Ansicht Inhalt

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str Jena

Integrating storages in energy regions and local communities a range of storage capacities

Wenn Russland kein Gas mehr liefert

Pilot Project Biogas-powered Micro-gas-turbine

Forschungsaktivitäten und Kooperationen der Internationalen Energieagentur mit österreichischer Beteiligung Martina Ammer, 6.

Der Begriff Cloud. Eine Spurensuche. Patric Hafner geops

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

Transkript:

Integration of Renewable Energies by distributed Energy Storage Systems A new ECES Annex Proposal and a collaborative action within the IEA Energy Technology Network Introduction Over the next years a growing contribution by renewable energies to the overall energy consumption can be expected worldwide. Most renewables, like wind, PV or solar-thermal, are fluctuating resources. For a reliable future energy system storage capacities are needed. At the moment the focus is on large, central energy storage technologies like pumped hydro or the conversion of surplus electricity into Hydrogen or Methane. The potential of small, distributed energy storage technologies is mostly unexplored. Distributed energy storages (DES) can be defined by their location within an energy system. They are generally located at the consumer side. In case of an electricity grid this would be the low voltage distribution grid. In case of a district heating net it would be at the level of heat substations. Facing a growing impact of distributed renewable energy generation by PV, solar-thermal or biomass (via Combined-Heat & Power) only DES are able balance the storage demand at this level. Provided that the grid is able to transport the energy to the DES locations, DES could contribute to the storage demand given by the fluctuations of larger Wind and PV installations. In this case a number of DES can be connected to build a larger storage capacity. In any case the communication between the distribution net and the DES (e.g. by smart grids ) is an important question. DES can be real storage systems, like a Lithium-ion-battery in a PV-system or a hot water storage in a solar-thermal installation. In this case electricity or heat will be charged and the same energy will be discharged later. But DES can also be a virtual storage. An example is the conversion of electricity from wind power in to cold, which can be stored thermally: Thermal energy storage used to create a dispatchable load (in this case the cold demand). No electricity can be discharged from this storage. However this DES can contribute to the integration of renewable energy sources. Some decentralized energy storages are not connected to the grids (electricity, heat and cold), while others are connected and have to be controlled by appropriate communication technologies (smart grids) for an optimized integration of renewables. A variety of technologies can be used for decentralized energy storage applications. From first principle mechanical, electrical, electro-chemical, thermal and chemical energy storage could be implemented. A diversified energy system based on a number of different energy storage sizes and technologies is able to provide high system stability and reliability. This Annex will focus on the overall storage properties and its impact for the integration of renewable energies and not on the storage technology and its specific technological challenges.

ECES had several Annexes in the past dealing with energy storage technologies. At the moment Annex 26 is working on electrical storage technologies. The proposed Annex should lead to better coordinated international R&D activities. It should visualize possible synergies among the different system approaches. Objectives Identifying possibilities actual applications for distributed energy storages (DES) to integrate fluctuating renewable energy sources into future energy systems FocussingFocusing on decentralizeddiscussing distributed energy storage technologies and their properties (including mechanical, electro-chemical, thermal and chemical approaches) Defining storage properties requirements depending on the different renewable energy sources (wind, PV, solar thermal, ) Developing Discussing possible control strategies for decentralized energy storagesdes and technologies by smart grids Quantifying potential of DES systems for the integration of renewable energies based on the actual final energy demand Developing guidelines for choosing the most suitable DESenergy storage technology for the actual application Promoting best practice and success stories examples Scope All storage technologies, which show a technical and economical potential for distributed applications (e.g. batteries or cold and heat storages) All fluctuating, renewable energy sources (wind, PV, solar-thermal, ) All countries (which are interested)with their national energy scenarios with focus on the development of renewable energies Collaboration with Other Parties Collaboration with other Implementing Agreement (IA) within the IEA Technology Network is crucial for this Annex. Concerning the Renewable energy sources the IAs Wind, PV and Solar Heating and Cooling from the Renewable Energy Working Party (REWP) could will be contacted. Since distributed energy storage could be applied in buildings, appliances and electric vehicles, the IAs ECBCS, HPP, 4E and HEV could be partners. ENARD, Demand Side Management, District Heating and Cooling and the International Smart Grid Action Network (ISGAN) could will be addressed as well. For the potential of DES in future energy systems ETSAP will be asked for participation. Structure of the Annex The Annex should have two annual experts meetings and workshops. At atask definition workshop, held in Paris on September 18/19 it was decided to have one of the two annual expert meetings and workshops as an open workshop for all interested parties (see Collaboration with other Parties ). These annual workshops should take place at the IEA in Paris in order to involve the IEA secretariat and other interested person from IEA and OECD in this activity. Implementing Agreements and other parties will be invited to these workshops, where information about related activities will be exchanged and findings of the Annex will be discussed.

Activities Collecting suitable DES-Technologies and defining their storage properties (SWOTanalysis) in the actual application Establishing a data base of distributed energy storage R&D projects Compiling potential studies (within national energy scenarios) in different countries for distributed energy storage Organizing workshops and expert meetings Initiate future R&D projects on Integration of Renewable Energies by distributed Energy Storage Systems. Presentation of findings Major outcomes The major outcomes of the proposed annex will be: Potential studies for distributed energy storage systems Increased awareness of distributed energy storage and better co-ordination of R&D activities in this field. Guidelines: How to identify the appropriate energy storage technology for the actual application (renewable energy source and final energy demand) The overall goal is to foster the role of DES and to increase the storage capacity for the integration of renewables at an economical competitive level. The Annex should run from June 2013 to June 2016

National Project Germany: Balancing Rrenewable Electricity by Cold Storage National scenarios for Renewable Energy development (conjunction to Annex 26!) Decentral ES have to be controlled by smart grids (conjunction to new IA) All possible paths for energy storage of fluctuating RE sources should be included! (conjunction to Energy Storage coordination Forum ) Aim is to define guidelines for choosing proper ES technology Aim is to quantify potential for decentralized storages Defining storage properties requirement depending on the different RE sources (conjunction with PVPS, Wind IA) One way of store electricity could be the EES in EVs (conjunction to HEV IA) Idea: national activity developing demonstration of TES in fridges, International activity potential of decentralize TES in balancing RE (makes only sense in the international context ) Projektskizze möglichst bald, IEA Anteil klar ausweisen Zeitplan: Start frühestens wenn Mobs, SolCool II oder SARA ausläuft, timing mit Annex Start matchen, u.u. etwas früher den Annex starten lassen (z.b. Anfang 2013 mit Task Definition Workshop), bei dem Frühlingstreffen des ECES ExCo 2012 zum ersten Mal präsentieren Objectives: Identifying possibilities to integrate fluctuating renewable energy sources into future energy systems Focussing on decentralized energy storage technologies including mechanical, electro-chemical, thermal and chemical approaches Defining storage properties requirements depending on the different renewable energy sources (wind, PV, solar thermal) Developing control strategies for decentralized energy storages by smart grids Quantifying potential of energy storage systems for the integration of renewable energies Developing guidelines for choosing the most suitable energy storage technology for the actual application

Scope: All storage technologies (decentralized) All renewable energy sources (wind, PV, solarthermal) All countries (which are interested)with their national energy scenarios Mitarbeit in der Internationalen Energieagentur IEA Im Rahmen des Forschungsvorhabens soll eine Arbeitsgruppe der Internationalen Energieagentur IEA im Bereich Energy Conservation through Energy Storage ECES, zum Thema Integration erneuerbarer Energie durch dezentrale Energiespeichersysteme (engl. Integration of Renewable Energies by distributed Energy Storage Systems) geleitet werden. Ziele dieser Aktivität sind: Identifizieren der Möglichkeiten fluktuierende, erneuerbare Energiequellen in zukünftige Energiesysteme zu integrieren Beurteilung dezentraler Energiespeichertechnologien (mechanisch, elektro-chemisch, thermisch und chemisch) in dieser Anwendung Definition der notwendigen Speichereigenschaften in Bezug auf die verschiedenen erneuerbaren Energiequellen (Wind, PV, Solarthermie) Ausarbeiten von Richtlinien bei der Wahl der optimalen Speichertechnologie in Bezug auf die tatsächliche Energienutzung Entwicklung von Kontrollstrategien für dezentrale Energiespeicher durch Smart-Grids Quantifizierung des Potenzials dezentraler Energiespeicher bei der Integration erneuerbarer Energien (National / International Developing guidelines for choosing the most suitable energy storage technology for the actual application Dabei sollen alle Möglichkeiten der Energieumwandlung und speicherung, sowie alle erneuerbaren Energiequellen berücksichtigt werden. Die einzelnen Teilnehmer sollen ihre jeweiligen nationalen Szenarien und Potenziale einbringen. Landesübergreifente Lösungsansätze sollen entwickelt werden. Durch die Leitung (Operating Agent) dieser Arbeitsgruppe sollen internationale Aktivitäten und Trends aufgenommen werden, um diese mit dem nationalen Vorhaben zu verbinden. Konkret können so Verbindungen zwischen deutschen Forschungsinstituten und Firmen, die auf dem Gebiet dezentraler Energiespeicher tätig sind, und ausländischen Interessenten hergestellt werden.

Zusätzlich soll ein auf dem Gebiet der Latentwärmespeicher und thermochemischer Speicher erfahrener Wissenschaftler als Expert in dieser Arbeitsgruppe mitarbeiten. Seine Aufgabe soll die Leitung eines Subtasks.