Ionisierende Strahlung



Ähnliche Dokumente
Ionisierende Strahlung

Vorlesung zu Q11: Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz. Röntgenstrahlung: Grundlagen und Bildgebung & CT-Prinzip und Technik

Computertomographie (CT), Magnetresonanztomographie (MRT) und Ultraschall (US)

Röntgenstrahlung. CT-Prinzip und Technik. Röntgenstrahlung. Ionisierende Strahlung. Elektromagnetische Strahlung

Bildgebende Systeme in der Medizin

IRIS CT-Dosisreduktion durch iterative Rekonstruktion

Aufbau der Röntgenapperatur

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

Eigenschaften der Röntgenstrahlen

Rekonstruktion dynamischer Kardio-CT-Daten

Herz-CT. Herz-CT: Durchführung und Nachverarbeitung. Matthias Kerl. Geschwindigkeit. Patientenvorbereitung. Prospektives EKG-Triggering

Grundlagen der Elektrotechnik

Funktionsprüfung der automatischen Dosisregelung (ADR) an CT-Anlagen nach Sachverständigen-Richtlinie

Dosisberechnung in der Computertomographie mittels Monte-Carlo Simulationen am Beispiel von Augenlinsen-Protektoren

VOM RÖNTGENBILD ZUM COMPUTERTOMOGRAMM

Dosismessungen der Augenlinse (Schwerpunkt: Patient CT) Gabriele Schüler Unfallkrankenhaus Berlin (vorgetragen von K. Ewen)

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Kundenevent Qualitech Innotec, , Technorama Winterthur

Zweckmässigkeit von Schutzmitteln am CT

Messung radioaktiver Strahlung

Mobile 3D-Terahertz-Bildgebung beim Fügen von Kunststoff und Keramik

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

Röntgeninspektion von Baugruppen in der Elektronik

JENOPTIK. Geschwindigkeitsmessungen mit Lasertechnologie. Referent: Wolfgang Seidel

Die Röntgentechnik ist heute aus einer modernen Zahnmedizin nicht mehr wegzudenken.

Teilchen sichtbar machen

Kardio CT. Technik und Durchführung. Philipp Begemann. CT Geschichte & Grundlagen 1

Public. Technische Computer Tomographie DELPHI Wuppertal

Röntgendiagnostik Strahlen:

Physikalische Grundlagen der Röntgentechnik und Sonographie Bildaufnahme Röntgen

Reduzierung der Augenlinsendosis Fazit und Zusammenfassung

Iterative Bildrekonstruktion

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Kontinuierliches und automatisches Dosis-Monitoring in einem heterogenen klinischen Umfeld beim Umstieg auf ein iteratives Rekonstruktionsverfahren

Wichtige Eigenschaften

h- Bestimmung mit LEDs

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu Valenzelektron

FORTBILDUNG. Röntgendiagnostik Strahlenschutz. Donnerstag, 9. März Thema: Cardio CT und aktuelle Entwicklungen in der Computertomographie

Neue Strahlenwichtungsfaktoren Neue Dosis

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie

FORTBILDUNG. Fortbildung STRAHLENSCHUTZBEAUFTRAGTE. Röntgendiagnostik. Donnerstag, 9. November 2017

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007

Atomphysik NWA Klasse 9

GRUNDWISSEN CHEMIE 9 - MuG erstellt von der Fachschaft Chemie

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

LX 16 Akustisches Variometersystem Handbuch

Lichtbrechung an Linsen

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Wasserfall-Ansätze zur Bildsegmentierung

Verschiedenste Dosisindikatoren im Routineeinsatz Bericht aus der klinischen Praxis II

Seiko Instruments GmbH NanoTechnology

ABSCHLUSSKLAUSUR SS

Wärmebildkamera. Arbeitszeit: 15 Minuten

Patienten-Dokumentationsliste Erwachsene ÄK-Geräte-ID.: LWS ap Bitte verwenden Sie diese Liste, um erbetenen Patientendaten zu dokumentieren

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Analyseschritte ROOT Zusammenfassung. Offline-Analyse. Seminar Teilchendetektoren und Experiment an ELSA. Karsten Koop

Elektrische Energie, Arbeit und Leistung

2.8 Grenzflächeneffekte

Standard Optics Information

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Rekonstruktion 3D-Datensätze

Strategien zur Dosisreduktion bei der CT Angiographie des akuten Thoraxschmerzes

Optische Aktivität α =δ k d 0

Elektromagnetische Verträglichkeit Versuch 1

Christian-Ernst-Gymnasium

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1

Arbeit Leistung Energie

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

Administratives BSL PB

78 1 3D Modellieren Allgemeine Volumenkörper

Optik. Optik. Optik. Optik. Optik

Wie funktioniert eine Glühlampe?

EINMALEINS BEZIEHUNGSREICH

Divergenz 1-E1. Ma 2 Lubov Vassilevskaya

2 Gleichstrom-Schaltungen

Version 0.3. Installation von MinGW und Eclipse CDT

Mit Somatom Definition Edge wird Dual Energy zur Routine in der CT-Bildgebung

Aufbau der Elektronenhülle des Wasserstoffatoms

Welche wichtigen Begriffe gibt es?

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Monaco Kontrollierbare IMRT-Planung. Dr. Gustav Meedt Neuruppin,

Qualitätssicherung nach RöV (Konstanzprüfungen)

Revolutionärer Höchstleistungs- Röntgenstrahler für die Computertomographie

Seminar: ZNS-Grundlagen Grundlagen der radiologischen Diagnostik. D. Koenen


ENERGY GMBH. ENVIRONEERS Energy GmbH * Alfred-Delp-Str. 4 * Oberteuringen * Germany Seite: 1

Mobile. Werbewirkungscase

Strahlenschutz Kurz und bündig

IT-Unternehmensarchitektur Übung 01: IT-Strategie

Maximale Wirtschaftlichkeit im Windpark. Stefan Bockholt

3. Halbleiter und Elektronik

Gepulste Laser und ihre Anwendungen. Alexander Pönopp

Wie sieht unsere Welt im Kleinen aus?

1 mm 20mm ) =2.86 Damit ist NA = sin α = α=arctan ( nm ) Berechnung eines beugungslimitierten Flecks

3B SCIENTIFIC PHYSICS

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

Transkript:

Vorlesung zu Q11: Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz Röntgenstrahlung Grundlagen & Bildgebung Prof. Dr. Willi Kalender, PhD Institut für Medizinische Physik Universität Erlangen www.imp.uni-erlangen.de Ionisierende Strahlung Elektromagnetisch Röntgenstrahlung Photonen: Gammastrahlung Das Thema heute! Korpuskular geladene Teilchen» Elektronen e-» Pionen π-» Protonen p+» Alphateilchen α++» Ionen X+ ungeladene Teilchen» Neutronen n Seite 1 1

Spiral CT Angiography in 2004 64-slice scanner 3 s total t scan time 0.5 mm isotropic spatial resolution Röntgenstrahlung Erzeugung von Röntgenstrahlung t Wechselwirkung mit Materie, Schwächung der Strahlung Bildgebung mit Röntgenstrahlung g CT-Bildgebung Berta Röntgen 1895 Seite 2 2

Röntgenstrahlung (= Bremsstrahlung ) entsteht, wenn energiereiche Elektronen beim Aufprall auf Materie abgebremst werden. Erzeugung von Röntgenstrahlung Röntgenröhre e Vakuum Heizstrom und -spannung z.b. 15 V, 6 A ( Filament ) Gehäuse (Glas oder Keramik) Glühdraht/Kathode e Anodenteller (z.b. Wolfram) Röhrenstrom I [ma] Achse γ Austrittsfenster Röntgenstrahlung (Zentralstrahl) + Röhrenspannung U [kv] Anodenwinkel z.b. ϑ = 10 Seite 3 3

Info zu Röntgenröhren Röntgenstrahlung entsteht in allen Materialien. Die Ausbeute nimmt mit der Ordnungszahl Z zu (~ Z 2 ). Die Anode besteht meistens aus Wolfram (Z = 74) mit Beimischungen von Rhenium (Z = 75). Wolfram ist wegen des hohen Schmelzpunktes (T = 3410 C) günstig. Blei ist weich und schmilzt zu schnell. Die Ausbeute liegt im Bereich von 0,1-1,0% der Energie. Der Rest der elektrischen Energie geht als Abwärme verloren! Hochspannungswerte liegen typ. zwischen 25 kv (Mammographie) und 140 kv (Hartstrahltechnik, CT), Leistungswerte zwischen 10 und 100 kw. Klassische Röntgenröhre (Stehanode) Seite 4 4

Frühe Drehanoden-Röntgenröhre Moderne Drehanoden-Röntgenröhre Drehanode Seite 5 5

Linearbeschleuniger Linearbeschleuniger Elektronen- und Photonen von typ. 3 25 MeV Beschleunigungsstrecke e - -Injektor Seite 6 6

Röntgenspektren bei 40, 60 und 80 kv Anode: W (Z=74) / Re (Z=75) Winkel ϑ =10 2.5 mm Al Eigenfilterung N(E) Bremsstrahlung ungefiltert K-charakteristische Strahlung Dosis: α 1 α 2 Strom Zeit [mas]: I T Spannung [kv]: U Abstand [cm]: R β 1 Bremsstrahlung β 2 0 20 40 60 80 E [kev] Photonenergie E max = eu Charakteristische Strahlung z.b. Wolfram E max = eu E Bindung = E Seite 7 7

Röntgenstrahlung Erzeugung g von Röntgenstrahlung Wechselwirkung mit Materie, Schwächung der Strahlung Bildgebung mit Röntgenstrahlung CT-Bildgebung CT-Kolonoskopie Wechselwirkung von Photonen mit Materie abhängig von der Energie E der Strahlung Anzahl der Streuzentren pro Volumen, d.h. der Dichte ρ Ordnungszahl Z Absorption Streuung Seite 8 8

Photoeffekt Wechselwirkung mit gebundenen Elektronen stark abhängig von Ordnungszahl und Energie τ ~ (Z 3 / E 3 ) sprunghafter Anstieg von τ, wenn E > E i gesamte Energie des Photons wird am Wechselwirkungsort als Dosis deponiert Compton-Effekt Wechselwirkung mit einzelnen Elektronen inelastische Streuung mit Richtungsänderung des Photons und mit Energieübertrag nur geringe Energieabhängigkeit, aber σ C ~ ρ Seite 9 9

Wechselwirkung von Photonen mit Materie Photoeffekt τ ~ ρ Z 3 / E 3 Compton-Effekt σ C ~ ρ Rayleigh-Streuung σ R ~ ρ / E 2 Paarbildungseffekt κ ~ ρ Z 2 (bei E > 1.022 MeV) Für die Bildgebung mit Röntgenstrahlung sind Photo- und Compton-Effekt von Bedeutung! Schwächung und Kontrast 10 kv: Photoeffekt (hier Totalabsorption) ) 30 kv: Photo- + Comptoneffekt 60 kv: Photo- + Comptoneffekt 300 kv: Comptoneffekt Seite 10 10

Röntgenstrahlung Erzeugung g von Röntgenstrahlung Wechselwirkung mit Materie, Schwächung der Strahlung Bildgebung mit Röntgenstrahlung CT-Bildgebung ca. 1904 Frauenklinik Erlangen 1918 Leuchtschirm, z.b. CaWO 4 -Folie, der Röntgenphotonen absorbiert und deren Energie in Licht wandelt Seite 11 11

Detektoren in der Radiographie Leuchtschirme (Szintillatoren) Film, Film-Folien-Systeme Bildverstärker Speicherfolien Festkörperdetektoren indirekt Festkörperdetektoren direkt Filmkassette mit Bleiabschirmung dünnere vordere Verstärkerfolie Röntgenfilm dickere hintere Verstärkerfolie Andruckschaumstoff Aufbau einer Röntgenfilmkassette Seite 12 12

Bildverstärker (X-Ray Image Amplifier) Echtzeit Gepulste Aufnahmen möglich Geometrische Verzerrungen Ungünstige Abmessung Quelle: Schinz, Radiologische Praxis in Klinik und Praxis, Georg Thieme Verlag, 1987 Seite 13 13

CT-fähige rotierende C-Bogen-Systeme Bildverstärker Flachdetektor Seite 14 14

Festkörperdetektoren Flachdetektor mit direkt elektronischem Auslesen Röntgenaufnahmen des Schädels a.p. lateral Seite 15 15

CT-Aufnahmen des Gehirns 1974 1994 Röntgenstrahlung Erzeugung g von Röntgenstrahlung Wechselwirkung mit Materie, Schwächung der Strahlung Bildgebung mit Röntgenstrahlung CT-Bildgebung Seite 16 16

Entwicklung der CT im historischen Überblick 1895 W.C. Röntgen entdeckt eine 'neue Art von Strahlen', die später nach ihm als Röntgenstrahlen benannt werden 1917 J.H. Radon entwickelt die mathematischen Grundlagen zur Errechnung von Querschnittsbildern aus Transmissionsmessungen 1972 G.N. Hounsfield und J. Ambrose führen erste klinische Untersuchungen mit Computertomographie durch 1975 erster Ganzkörpertomograph im klinischen Einsatz 1979 Verleihung des Nobelpreises an Hounsfield und Cormack 1989 erste klinische Untersuchungen mit Spiral-CT 1998 erste klinische Untersuchungen mit Mehrzeilen-Spiral Spiral-CT 2007 >50.000 klinische Spiral-CT-Installationen CT, was ist das? Seite 17 17

Δy Δx S z y x Fächerstrahlgeometrie (x-y-ebene) Röntgenröhre y x Messfeld mit Objekt Detektor (typ. 1000 Kanäle) y x Seite 18 18

y x Und wie entsteht t das Bild? Pro Detektorschicht und Umlauf werden etwa 1000 Projektionen zu je 1000 Kanälen akquiriert. y x Demonstrationen CT-Bildrekonstruktion Schädelscan Thoraxscan Seite 19 19

Einfluss des Faltungskerns Glättend soft Standard Aufsteilend bone Einfluss des Faltungskerns Glättend Standard Aufsteilend Seite 20 20

Was wird im CT-Bild dargestellt? Der lineare Schwächungskoeffizient gemittelt über jedes Volumenelement in Hounsfield-Einheiten Δy Δx S z y x Die Hounsfield-Skala CT-Wert μ - μ G Wasser μ Wasser 1000 (HU) µ G = linearer Schwächungskoeffizient des Gewebes G Seite 21 21

CT-Wert, HU 3000 2000 Knochenfenster C/W 1000, 2500 1000 Mediastinumfenster C/W -50, 400 0-1000 Lungenfenster C/W -600, 1700 Spiral-CT = schnelle und lückenlose Abtastung März 1989 Schichtdicke 8 mm 12 s Scan bei 1s / Rot. Pitch 1 Scanvolumen 96 mm Seite 22 22

Spiral CT: Scanning Principle Start of spiral scan Path of continuously rotating x-ray tube and detector Direction of continuous patient transport 0 z, mm 0 t, s Kalender WA et al. Radiology 1989; 173(P):414 and 1990; 176:181-183 0.3 mm Cone-beam Spiral CT (CSCT) here: M = 64 0.4 s rotation 64 0.6 mm Seite 23 23

Stand der Technik in der MSCT Rotationszeit pro 360 Min. Schichtdicken Simultan erfasste Schichten 64 Max. Röntgenleistung 0,3 0,4 s 0,5 0,6 mm 80 100 kw Scanzeiten für Ganzkörperscans Scanbereich Isotrope Ortsauflösung Effektive Dosis 10-30 s >1000 mm 0,4 0,6 mm 1-20 msv Typische Werte für Spitzenscanner 28s Scandauer bei 0,4 mm Auflösung isotrop Visualization of the complete peripheral artery tree 1889 mm in 42 s with 0.33 mm isotropic resolution Courtesy of University Hospital Munich-Grosshadern, Germany 48 Seite 24 24

Visualization of the complete peripheral artery tree 1889 mm in 42 s with 0.33 mm isotropic resolution Courtesy of University Hospital Munich-Grosshadern, Germany Dual-Source CT (DSCT) Seite 25 25

Dual Source CT System set-up 2 Straton tubes and 2 x 64-slice acquisition with double z-sampling z sampling 280 ms gantry rotation 1.6 tons rotating mass X-ray power Acquisition with up to 2 x 100 kw Cardiac CT 75 ms temporal resolution (trot/4) Dual Energy CT Simultaneous acquisition with 80 kv / 140 kv * SOMATOM Flash, Siemens Healthcare, Forchheim, Germany Dual Source Cardiac CT DIASTOLE SYSTOLE Achenbach et al., Eur J Radiol 2006; 57(3):331-335 Seite 26 26

Temporal Resolution Phase-correlated reconstructions for heart rates of 40 120 bpm Sphere at rest 40 bpm 60 bpm 80 bpm 100 bpm 120 bpm DSCT SSCT Ertel Kalender. Radiology 2008; 248:1013-1017 How about a cardiac exam in about a quarter of a second? Scan range 12 cm Collimation 38.4 mm Pitch 3.4 Rotation time 280 ms Table speed Scan time 46.6 cm/s 0.26 s = 1.59 km/h!! Seite 27 27

Flash performance: High speed Spiral CT angiography scan range 700 mm pitch 2.8 rot. time 280 ms scan time 1.8 s dose 1.4 msv Flash performance: High speed Flash Cardiac 0.26 s Scan direction 75 ms per slice Scan only for one heart phase and only during one heart beat and at minimum radiation dose!!! Seite 28 28

Cardiac CT with Flash 100 kv 320 mas 59 bpm triphasic CM injection 60 ml Ultravist 370 + 50 ml saline bolus Effective dose 0.98 msv Courtesy of S. Achenbach, University of Erlangen Surf, sand and... whole body CT Seite 29 29

Dose Values are no Secret! Typical patient dose values in MSCT: E = 10 msv (1-20 msv) Dose distribution calculated by Monte Carlo Methods on cadaver scans 59 Danke für Ihre Aufmerksamkeit! ZMP Zentrum für Medizinische Physik, Erlangen, Henkestr. 91 Das pdf ist ab morgen unter http://www.studon.uni-erlangen.de abrufbar! Seite 30 30