Der Transistor: Gehäuse und Anschlussbelegungen



Ähnliche Dokumente
Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

Physik-Übung * Jahrgangsstufe 9 * Der Transistor Blatt 1

3. Halbleiter und Elektronik

ELEXBO A-Car-Engineering

Copyright by EPV. 6. Messen von Mischspannungen Kondensatoren Brummspannungen

Elektrische Spannung und Stromstärke

ELEXBO. ELektro - EXperimentier - BOx

Waggonbeleuchtung. Stützkondensatoren

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Grundlagen der Elektronik

Geneboost Best.- Nr Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Aufgaben Wechselstromwiderstände

Lichtbrechung an Linsen

Aufbau und Bestückung der UHU-Servocontrollerplatine

4. Physiktest Kapitel 04 Der elektrische Strom Teil 1 Grundlagen Gruppe 1

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

Professionelle Seminare im Bereich MS-Office

Fachbereich Physik Dr. Wolfgang Bodenberger

Messgröße Abk. Einheit Abk. Messgerät Schaltezeichen. 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol

Bauanleitung Elektronik Version 1.0. April 2015 M.Haag

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Baubericht für den AX81-GKR Einleitung

Zeichen bei Zahlen entschlüsseln

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Verbraucher. Schalter / offen

Ph 15/63 T_Online-Ergänzung

Arbeitspunkt einer Diode

Elektrischer Widerstand

Aufgaben Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

h- Bestimmung mit LEDs

Bauanleitung Elektronik Version 1.1. Oktober 2015 M.Haag

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Batterie richtig prüfen und laden

Bauanleitung. Morse-Piep JOTA-JOTI 2009

1. Theorie: Kondensator:

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

VOLTmonitor. VOLTmonitor. Schritt 1: Schaltung. file://localhost/users/rainer/xp-exchange/erzeugte%20websites/p... 1 of

Verkabelung Decoder-Einbau in Loks Erstellen von Elektronik-Schaltungen Oberleitungsbau Herstellen von Metallmodellen, und vieles andere.

Simulation LIF5000. Abbildung 1

2. Ohmscher Widerstand

Primzahlen und RSA-Verschlüsselung

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\ e...

Markus Kühne Seite Digitaltechnik

Strukturen und Analogien im Physikunterricht der Sekundarstufe 1. Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8)

Strom - Spannungscharakteristiken

1 Wiederholung einiger Grundlagen

Platinen mit dem HP CLJ 1600 direkt bedrucken ohne Tonertransferverfahren

TO-220 TO-202 TO-92 TO-18. Transistoren mit verschiedenen Gehäusen

Klasse : Name : Datum :

Grundlagen der Elektrotechnik

Bruchrechnung Wir teilen gerecht auf

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Im Prinzip wie ein Fotokopierer

2 Gleichstrom-Schaltungen

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Verschiedene feste Stoffe werden auf ihre Leitfähigkeit untersucht, z.b. Metalle, Holz, Kohle, Kunststoff, Bleistiftmine.

PS II - Verständnistest

Was ist eine Batterie?

Einführung in. Logische Schaltungen

Elektromagnetische Relais sind Schalter, die durch Elektromagnete betätigt werden.

Inhalt. Thema: Energie. Gedanke. Experiment/Spiel. Thema. Batterietests. Batterie. Batterien haben zwei Pole. Strom erzeugen

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Kennlinienaufnahme elektronische Bauelemente

2 LED-Grundversuche. 2.1 LED mit Vorwiderstand

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

Elektrische Energie, Arbeit und Leistung

PTC-Widerstand. Material. Thema. Aufbau. Experiment. Messergebnisse

EINFACHES HAUSHALT- KASSABUCH

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

trivum Multiroom System Konfigurations- Anleitung Erstellen eines RS232 Protokolls am Bespiel eines Marantz SR7005

Gefahr durch Batterien!

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Was sind Soziale Netzwerke? Stelle dazu selbstständig Überlegungen an!

Elektrische Logigsystem mit Rückführung

Lineare Gleichungssysteme

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am Gruppe X

Laborübung Gegentaktendstufe Teil 1

Spannung - Stromstärke - Widerstand

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Diagnostisches Interview zur Bruchrechnung

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Alle gehören dazu. Vorwort

Bestücken von Leiterplatten

Schnupperstudium. Einführung. Aufbau einer Audioverstärkerschaltung. Audioverstärker letzte Änderung: 4. Februar S.

Hinweise zu den Aufgaben:

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Arbeitsblatt Elektrotechnik

Der Gabelstapler: Wie? Was? Wer? Wo?

Die elektrische Spannung ist ein Maß für die Stärke einer Quelle.

Praktikum Grundlagen der Elektrotechnik

Transkript:

Der Transistor: Gehäuse und Anschlussbelegungen BC 549 BC 556 NPNTransistor Plastikgehäuse TO 92 PNPTransistor Plastikgehäuse TO 92 BC 107 B NPNTransistor Metallgehäuse TO 18 Kennzeichnung des s Platine BD 139 Rückseite: Metall NPNLeistungstransistor (Darlington) Gehäuse TO 125 Platine

Vergleich von Transistor und Diode Im Gegensatz zur Diode findest Du beim Transistor 3 Anschlüsse vor. Zeichne das Schaltbild eines Transistors und benenne die Anschlüsse! Versuch: Überprüfe, wie sich der Transistor zwischen jeweils zwei Anschlüssen verhält. Wieviel Möglichkeiten gibt es? Achtung! Der Transistor ist ein sehr empfindliches Bauelement. Der Strom der darf nicht zu groß sein, deshalb soll immer ein Vorwiderstand als Schutz eingebaut werden. () () () Versuche 1 und (2) () Versuche 3 und (4) () () Versuche 5 und (6) Versuch Nr. Pluspol an Minuspol an Beobachtung Versuche, den Transistor zeichnerisch mit Hilfe von zwei Dioden darzustellen!

Der Transistor: Transistortypen Transistoren sind aktive Halbleiterbauelemente, die für Regel und Schaltzwecke, zur Schwingungserzeugung, zur Verstärkung und für digitale Verknüpfungen verwendet werden. Transistoren arbeiten mit Gleichspannung. Man unterscheidet zwei Grundarten von Transistoren: NPNTransistor und PNPTransistor Schaltzeichen: Mit einem geringen strom schalten Transistoren einen größeren Strom. Dabei ist auf die richtige Polung der Anschlüsse zu achten, die jedoch bei den beiden Transistorarten unterschiedlich ist! Die von uns eingesetzten Transistoren schalten durch wenn die spannung ca. 0,65 V beträgt. Transistoren tragen Bezeichnungen, die aus einer Kombination von Zahlen und Buchstaben bestehen: 1. Buchstabe: Ausgangsmaterial 2. Buchstabe:Verwendung A: Germanium C: Tonfrequenzbereich B: Silizium D: Leistungstransistor im Tonfrequenzbereich Die Zahlen geben den Transistortyp an. In Datenbüchern ist neben wichtigen Kenndaten auch die Angabe zu finden, ob es sich um einen NPN oder einen PNPTransistor handelt. Uns stehen folgende Transistoren zur Verfügung: NPNTransistoren PNPTransistoren BC 547 BC 548 BC 549 BC 556

Der Transistor als Schalter Baue folgende Schaltung auf: 330Ω BC 549 10 kω Wenn alles richtig verkabelt ist, darf die Leuchtdiode nicht leuchten. Der Transistor wirkt hier noch wie ein offener Schalter. Er unterbricht den Stromkreis, man sagt auch: der Transistor sperrt. Verbinde nun den offenen Eingang (vorwiderstand) mit dem Pluspol. Was passiert? Löse die Verbindung und schließe den vorwiderstand an den Minuspol an. Was passiert? Zusammenfassung: Ein Transistor schaltet durch, wenn er an der angesteuert wird. Ein Transistor sperrt, wenn er an der angesteuert wird.

Transistormodelle (1) gesperrt Transistor schaltet durch leitend

Transistormodelle (2) B C B: kleines Rohr mit Absperrventil C: großes Rohr, durch einen Stopfen verschlossen, der von einem Hebelmittels einer Feder in das Rohr gedrückt wird E: Rohr, durch das das Wasser aus dem Gehäuse abfließen kann Transistor sperrt E B C Transistor halb leitend E B C Transistor schaltet durch E

Der Transistor als Verstärker Beim Transistor bewirkt ein kleiner strom das Fließen eines großen stroms. Das Verhältnis von strom I C zum strom I B bezeichnet man als Gleichstromverstärkungsfaktor B. Baue die folgende Transistorschaltung auf und bestimme mit dem Digitalmultimeter zuerst den strom und danach den strom. Bedenke, dass zur Strommessung der Stromkreis aufgetrennt werden muss (Messgerät in Reihe schalten!). Notiere die Messwerte und berechne den Gleichstromverstärkungsfaktor. Die Formel zur Berechnung des Gleichstromverstärkungsfaktors lautet: I I B = I C I B BC 549 I B = I C = 10 kω

TransistorAnwendung: Alarmanlage Hausbesitzer und Geschäftsleute schützen oft ihr Eigentum durch eine Alarmanlage vor Einbrechern. Dabei wird beim Öffnen einer Tür oder eines Fensters ein dünner Draht zerrissen und dadurch Alarm ausgelöst. Eine solche Alarmanlage können wir nach dem folgenden Schaltplan leicht selbst herstellen: 10 kω BC 547 Sicherungsdraht Prüftaste Überlege, welche Funktion des Tasters hier gebraucht wird. Als Sicherungsdraht benutzt du einfach ein Verbindungskabel, das du beim Einbrechen an einer Seite vom Steckstift der Platine löst. Baue die Schaltung auf.

Der Fotowiderstand (LDR) Ein Fotowiderstand ist ein HalbleiterBauteil, dessen Widerstand lichtabhängig ist. Je mehr Licht auf den Fotowiderstand fällt, desto geringer wird sein Widerstand und desto besser seine elektrische Leitfähigkeit. Fachleute nennen den Fotowiderstand LDR light dependent resistor (engl. = lichtabhängiger Widerstand) Das Schaltzeichen setzt sich zusammen aus dem Zeichen für den Widerstand und einem Doppelpfeil (Doppelpfeil bedeutet bei Schaltzeichen Licht), der zum Widerstand zeigt. Schaltzeichen des LDR: Erinnere dich an das, was du über den Widerstand gelernt hast: großer Widerstand großer Spannungsabfall = wenige Elektronen fließen kleiner Widerstand kleiner Spannungsabfall = viele Elektronen fließen Nun kannst du selbst den Widerstandswert eines LDR bestimmen, z.b. mit einem Digitalmultimeter (DMM). In dieser Zeichnung sind nur die für diese Messung not 0.00 kω 200 Ohm 2k 20k 2M 20M Die beiden Anschlussdrähte führen zu Kontakten (hellgrau), die wie zwei Kämme ineinandergreifen, sich aber nicht berühren. Dazwischen befindet sich ein meist bräunlich aussehendes Material, das lichtempfindlich ist. Diese Schicht besteht bei den meisten Fotowiderständen aus CadmiumSulfid (CdS). Bei Dunkelheit ist dieser Stoff ein schlechter elektrischer Leiter, denn fast alle Elektronen sind an feste Atome gebunden. Auf den LDR einfallendes Licht schlägt mit seiner Energie einige Elektronen los. Diese freien Elektronen machen das CadmiumSulfid zum elektrischen Leiter. Je mehr Licht auftrifft, um so besser wird die Leitfähigkeit. Selbst das für uns Menschen unsichtbare infrarote Licht führt zu diesem Effekt. wendigen Teile dargestellt. Und so wird das DMM gehandhabt: schwarze Messleitung an die COMBuchse rote Messleitung an die Buchse V/Ω Bereichseinstellung auf 20 kω Multimeter einschalten Messspitzen mit den Anschlußdrähten des LDR verbinden (ggf. zusätzliche Leitung mit Krokoklemmen verwenden) Widerstandswerte bei unterschiedlichem Lichteinfall ablesen und notieren 20 A A COM V/Ω Lichteinfall LDR abgedunkelt (Oberfläche abdecken) dunkle Zimmerseite Tageslicht am Fenster hell (Lampe, z.b. Schreibtischlampe) Widerstand

TransistorAnwendung: lichtabhängige Alarmanlage mit Summer Manchmal soll ein wertvolles Kunstwerk durch eine Alarmanlage gesichert werden. Eine Möglichkeit hierzu bietet z.b. der Einbau in den Sockel einer Statue. Wenn die Statue entfernt wird, fällt Licht auf einen Fotowiderstand und ein Alarmsignal ertönt. 470 Ω BC 549 Baue die Schaltung auf. Erkläre die Funktionsweise der Schaltung.

Der Kondensator Der Kondensator besteht aus zwei sich gegenüber liegenden Platten, die sich jedoch nicht berühren. Wenn an den beiden Platten ein unterschiedliches elektrisches Potential anliegt, fließt ein Strom vom höheren Potential durch den Kondensator zum niedrigeren Potential. Auf beiden Kondensatorplatten baut sich dabei eine elektrische Ladung auf und der Strom durch den Kondensator nimmt ab. Ist der Kondensator voll, so fließt kein Strom mehr. Polt man nun an den Kondensatorplatten um, so fließt Strom in der umgekehrten Richtung und der Kondensator entlädt sich zunächst. Bleibt der Kondensator an der Stromquelle angeschlossen, so lädt er sich erneut auf. Geschieht das Umpolen so schnell, dass der Strom seine Richtung ändert, bevor der Kondensator dem Stromfluss ein Ende setzt, so bleibt die Leitfähigkeit erhalten. Der Kondensator kann also als Speicherelement für den elektrischen Strom angesehen werden. Das Maß für die Kapazität (Speicherfähigkeit) des Kondensators ist Farad (F). Meist gibt man die Kapazität jedoch in kleineren Einheiten an: µf (Mikrofarad) 1 µf = 1 millionstel Farad nf (Nanofarad) 1 nf = 1/1000 µf pf (Pikofarad) 1 pf = 1/1000 nf Schaltzeichen des Kondensators: oder Bauformen: 1) 2) 3) 4) 5) 6) 7) MKSFolienkondensatoren KeramikVielschichtkondensatoren KeramischeRechteckkondensatoren KeramikScheibenkondensator Bei KeramikKondensatoren ist die Kapazität oft nur mit der Lupe vom Bauteil abzulesen: 1) 6n8 = 6,8 nf 2) n15 = 0,15 nf = 150 pf. Manche Bauteile sind mit einem Farbcode versehen, andere sind mit einer CodeNummer bedruckt: 3) 104M. Folienkondensatoren tragen meist einen Aufdruck. Bei den MKTFolienkondensatoren in der Abbildung ist z.b. abzulesen: Abbildung Aufdruck Bedeutung 4) 47 n 250 47 Nanofarad 250 Volt 5) µ1 400 0,1 Mikrofarad = 100 nf 400 Volt 6) µ33 100 0,33 µf = 330 nf 100 Volt 7) 1µ 100 1µF 100 Volt MKTFolienkondensatoren

Der Elektrolytkondensator Der große Bruder des Kondensators ist der Elektrolytkondensator, kurz Elko genannt. Elkos sind zylinderförmig und besitzen zwei Anschlussdrähte. Grundsätzlich unterscheidet man axiale und radiale Elkos. Elkos sind gepolt, d.h. sie haben einen positiven und einen negativen Anschluss. Elkos sind größer als einfache Kondensatoren gleicher Kapazität. Die Größe hängt von zwei Faktoren ab: von der Kapazität und von der Spannungsfestigkeit. Schaltzeichen des Kondensators: Bauformen: PLUSSeite PLUSSeite MINUSSeite MINUSSeite axiale Elkos radiale Elkos Elkos dürfen auf keinen Fall falsch gepolt werden. Bei fehlerhaftem Einbau und / oder zu hoher Spannung kann ein Elko sogar explodieren und zu bösen Verletzungen führen! Beim Schaltzeichen bedeutet der nicht ausgefüllte Balken immer PLUS, der ausgefüllte immer Minus axiale Elkos radiale Elkos Anschlussdrähte axial: wie eine Achse ein Draht an jeder Seite radial: beide Anschlussdrähte auf einer Seite (im Kreis / Radius) des Zylinders Montage liegend stehend Kennzeichnung der Pole meist Einschürung des Gehäuses an der Plusseite (s. Pfeile in der Abb.) Eine Sonderform des Elkos ist der oft kleinere, tropfenförmige Tantalelko: kürzerer Anschlussdraht und / oder an einer Seite aufgedruckter Streifen mit Minussymbolen

Der monostabile Multivibrator In vielen Wohnhäusern findet man eine Schaltung, die ebenfalls nur für eine bestimmte Zeit (z.b. 5 Minuten) Strom liefert. Überlege, was hier gemeint sein könnte. Eine solche Schaltung heißt in der Elektronik monostabiler Multivibrator. Baue die folgende Schaltung auf: g 10kΩ r 470 µf T 1 10kΩ T 2

Der astabile Multivibrator (1) Der monostabile Multivibrator besaß ein Zeitglied. Wir entfernen nun den Taster, bauen die Schaltung etwas um und erweitern sie nach dem folgenden Plan um ein zweites Zeitglied. g 10kΩ 10kΩ r T 1 470 µf 470 µf T 2 Was ist zu beobachten?

Der astabile Multivibrator (2) Die eben aufgebaute Schaltung hat keinen stabilen Zustand. Sie kippt ständig hin und her. Diese Schaltung heißt astabiler Multivibrator. Das Kippverhalten untersuchen wir nun näher. Tausche die Bauteile nach der unten stehenden Tabelle aus und stoppe die Zeit für das Blinken. g 10kΩ 10kΩ r T 1 470 µf 470 µf T 2 R 10 kω 10 kω 5,6 kω 5,6 kω C 100 µf 220 µf 100 µf 220 µf Zeit für 10x blinken Zeit für 1x blinken