Rissbeschreibung Kapitel 5 35 5.1 Allgemeine Erläuterungen 5 Rissbeschreibung 5.1 Allgemeine Erläuterungen Ein Bruch ist die schwerste Ursache für das Versagen einer Konstruktion. Der Bruch wird durch die Bildung und Ausdehnung von Rissen eingeleitet und mit dem Verlust der Stabilität nach Erreichen einer kritischen Risslänge beendet. Die Entstehung von Rissen ist demnach stets mit einem Bruch im Werkstoff verbunden. Die Vorgänge, wie ein Riss in einem Bauteil entsteht und sich fortsetzt und der Versagensfall (ein Bruch) eintritt, sind sehr komplex. Mit der Rissausbreitung unter statischen und dynamischen Belastungen bis zum Bruch bzw. mit dem Materialverhalten (Versagen) risshafter Bauteile befasst sich die Bruchmechnik. Sie vereint Elemente aus der Werkstoff- und Materialkunde ebenso wie aus der Elasto- und Plastomechanik. Verursacht werden Risse durch wirkende innere Spannungen. Ebenso können Risse erst später während der Herstellung und Verarbeitung eines Baustoffs bzw. der Nutzung von Bauteilen aufgrund von Einwirkung äußerer Kräfte oder Beanspruchungen auftreten. Da ein Mikroriss im Allgemeinen zuerst innerhalb des Baustoffgefüges entsteht, ist die Bildung von Rissen von außen nicht wahrnehmbar. Mikrorisse existieren jedoch nicht nur in Bauteilen bzw. in Baustoffen wie im Beton oder im Mörtel, sondern u.a. auch im Glas, Porzellan, Stahl, Holz. So entstehen sie beispielsweise bei der Wärmebehandlung (Härterisse), der spanlosen und spanabhebenden Bearbeitung (Schmiede- bzw. Schleifriss) oder beim Löten oder Schweißen. hen und dort als Makrorisse sichtbar werden. Die Erstarrungsrisse verlaufen grundsätzlich senkrecht zur stärksten Schrumpfverformung. Auch bei der Herstellung von Fenster- oder Fassadenverglasungen entstehen z.b. während des Schneideprozesses Mikrorisse. Wird solch eine Verglasung direkt in eine anliegende Metallrahmenkonstruktion eingebaut und kommt es zu einer ansteigenden Temperatureinwirkung, kann sich die Scheibe nicht ausdehnen. Es bilden sich sehr hohe Spannungen in der Scheibe, die einen dann erkennbaren Glasbruch auslösen können. Generell ist zwischen einem Riss und einem Bruch zu unterscheiden. Es wird davon ausgegangen, dass in einem Bauteil bereits Fehlstellen wie Lunker oder Einschlüsse, wie schon erwähnt, als Folge des Herstellungsprozesses enthalten sind. Zu einem unzulässigen Risswachstum bis hin zum Bruch, dem Zeitpunkt des Überschreitens der Bruchfestigkeit, kann es unter bestimmten geometrischen Bedingungen (Lage, Art und Beanspruchung der Fehlstelle) kommen. Für die Beschreibung der Vorgänge bei der Bildung und allmählichen Ausbreitung von Rissen ist eine Unterteilung in drei Stadien zweckmäßig: Rissbildung in Verbindung mit Änderungen in den mechanischen und physikalischen Eigenschaften von Werk- bzw. Baustoffen Rissausbreitung durch das Wachsen des Risses bis zum Erreichen einer kritischen Rissgröße Bruch des Restquerschnitts Die Problematik der Rissbildung und -ausbreitung ist von solcher Komplexität, dass die Entwicklung einheitlicher Theorien selbst den Werkstoffwissenschaften bisher noch nicht gelungen ist. Deshalb beziehen sich die hier angeführten Darlegungen nur auf grundlegende Erkenntnisse. Durch das Schweißen kann es zur Schädigung des Bauteils u.a. in Form von Erstarrungsrissen (Härterissen) kommen. Sie treten bei der Kristallisation des Baustoffs aus der flüssigen Phase auf. Im Innern der Schweißraupe kommt es zunächst zur Bildung von Mikrorissen. Diese können sich bei weiter zunehmender Erstarrung bis zur Oberfläche hinzie-
36 Kapitel 5 Rissbeschreibung 5.2 Bildung und Ausbreitung von Rissen 5.2 Bildung und Ausbreitung von Rissen Bevorzugt entstehen Risse an der Oberfläche durch höhere Lastspannungen (wie Torsion, Biegung), Mikrokerben (Riefen, Scheuerstellen), unzureichende Stützwirkung durch Nachbarkörner, im Inneren eines Werkstoffs durch Poren, Einschlüsse (wie Kerben), niedrigere Festigkeit, hohe Zugeigenspannungen. In Bild 1 ist ganz allgemein der Ablauf von der Inbetriebnahme bis zum Versagen eines Bauteils mit den einzelnen Phasen der Rissbildung und -ausbreitung dargestellt. An einem Material oder einem Baustoff können durch einwirkende Beanspruchungen oder unter bestimmten Umgebungseinflüssen Schädigungen auftreten (wie Materialermüdungen oder Korrosionsabtrag). Diese sind in der ersten Phase global vorhanden. Die schädigenden Prozesse setzen sich fort und konzentrieren sich zunehmend auf Stellen, an denen die Schädigung am massivsten fortgeschritten ist. Es kommt zu einer Lokalisierung, der beginnenden Rissbildung. Der Steinschlag bei Autoscheiben ist ein bekanntes Problem und mancher kennt es aus eigener Erfahrung. Das Auftreffen eines Steins schädigt die Autoscheibe. Oftmals wird der entstandene Riss gar nicht wahrgenommen, was allerdings von der Größe und Intensität des Steins bzw. des Aufpralls abhängt. Wie andere Materialien dehnt sich die Glasscheibe bei Hitze aus und zieht sich bei Kälte zusammen. Ist ein Steinschlag vorhanden, ist so eine Vergrößerung des Risses vorprogrammiert. Im Winter können sich Wassertropfen in diesem Steinschlag ansetzen und gefrieren. Durch das Gefrieren dehnt sich das Wasser aus, der Riss vergrößert sich. Im Winter, wenn die Autoscheibe morgens gefroren ist, wird die Fahrzeugheizung auf hoher Stufe zum schnellen Enteisen der Scheibe genutzt. Die kalte Scheibe erwärmt sich schneller, sie dehnt sich aber auch schnell aus. Diese schnelle Ausdehnung führt zu einer starken Beanspruchung der Glasfläche. Der Steinschlag, die schwächste Stelle im Glas, wird sich über kurz oder lang zu einem großen Riss ausweiten. Auch Stahl kann reißen. Wird z.b. ein Stahlbehälter durch einen Innendruck bis zum Bruch belastet, dann reißt der Behälter an der schwächsten Stelle, zumeist entlang den Schweißnähten, auf. 1. Phase globale Schädigung 2. Phase Lokalisierung/Rissbildung 3. Phase Rissausbreitung Ursachen u.a. Umgebungsbedingungen Beanspruchungen wie - Materialermüdungen - starke plastische Deformation Konzentration schädigender Prozesse auf schon stark geschädigten Bereich Herausbilden Hauptriss aus einem der zahlreichen Risskeime Risswachstum unkritisch Riss wächst durch mechanische Belastung an der Rissspitze sowie zusätzlich erforderlicher nicht-mechanischer Schädigungsprozesse wie Korrosion, Kriechen und/oder Ermüdung Stabil Rissausbreitung überkritisch Ausbreiten der Risse bei weiterer Laststeigerung/ Bauteil behält noch bis zuletzt gewisse Tragfähigkeit Instabil-dynamisch Unkontrolliertes Ausbreiten der Risse führt zum schlagartigen Versagen des Bauteils Inbetriebnahme Zeit Bruch Bild 1: Allgemeiner zeitlicher Ablauf von der Rissbildung bis zum Bruch bei einem Bauteil (in Anlehnung an [6])
Rissbeschreibung Kapitel 5 37 5.2 Bildung und Ausbreitung von Rissen Diese beiden Beispiele bringen im Grunde Folgendes zum Ausdruck. Eine Krafteinwirkung die Aktion führt in einem Baustoff zu Belastungen (Spannungen) den Reaktionen. Der Baustoff möchte der Verformung ausweichen bzw. die Spannung abbauen. Wird er daran gehindert, kann der Baustoff nur bis zu einer gewissen Grenze dieser Belastung standhalten. Wird diese Grenze überschritten, will sich der Baustoff von dieser Last befreien. Das passiert an der Stelle, an der dem Baustoff der geringste Widerstand entgegengebracht wird, folglich an der schwächsten Stelle im Baustoff oder Baustoffverbund. In dem Augenblick, in dem sich der Baustoff entspannt, entsteht an der Schwachstelle ein Makroriss als Merkmal für die Entspannung. Was ein Mikroriss ist, dafür gibt es verschiedene Erklärungen: Hohlräume oder voids kleinste Risse, die von der Oberfläche aus in das Material führen Jede mechanisch bearbeitete Oberfläche wird solche Mikrorisse aufweisen. interne Risse, z.b. zwischen Körnern oder an der Kontaktfläche zwischen einer Bindemittelmatrix und den Zuschlagstoffen aufgestaute Versetzungen, z.b. an einer Korngrenze Das heißt, eine Rissbildung tritt dann ein, wenn an einer Stelle innerhalb eines Werkstoffs eine bleibende örtliche Trennung entsteht unter der Voraussetzung, dass an dieser vorher eine Verbindung bestand und deren Umgebung rissfrei war. Diese Trennung wird durch Spannungskonzentrationen verursacht. Während der Belastung ist ein Bauteil ständig Spannungen ausgesetzt. Das führt zu Versetzungsbewegungen, die sich auf einige sich langsam vertiefende und verbreiternde Ermüdungsgleitbänder an der Oberfläche konzentrieren. Versetzungen mit gleichem Vorzeichen, die in einer Gleitebene wandern, stauen sich auf. Die sich bildenden Spannungskonzentrationen führen zu einem mikroskopischen Anriss durch Spaltung. Eine Spaltung wird vermieden, wenn die Spannungskonzentrationen im Kopf des Versetzungsstaus in Nachbarbereiche abgleiten. Es kommt jedoch nicht nur an der Oberfläche eines Werkstoffs zur Rissbildung. Auch im Inneren treten Versetzungserscheinungen auf. Abhängig vom Zustand des Gefüges bewirken diese eine Verfestigung (Erhöhung der mechanischen Festigkeit) oder Entfestigung, wodurch die physikalischen und mechanischen Eigenschaften geändert werden. Bei dem durch den Aufstau der Versetzungen verursachten Anriss handelt es sich zunächst um einen submikroskopischen Anriss. Sind die Voraussetzungen für eine Ausbreitung des Risses vorhanden, geht dieser submikroskopische Anriss zuerst in einen Mikroriss über. Bild 2: Riss in einem Fe3C-Teilchen eines Werkzeugstahls, der sich nicht in die Matrix hinein fortsetzt [7] Die Größe von Mikrorissen, für die keine einheitlichen Werte vorliegen, wird mit kleiner 1 μm angegeben. Sie sind deshalb mit dem bloßen Auge nicht erkennbar. Im weiteren Verlauf wird aus dem Mikroriss ein mit dem Auge wahrnehmbarer Makroriss. Bei der sich anschließenden dritten Phase, der Rissausbreitung, die zuerst als sog. unkritisches Risswachstum verläuft, bewirken die mechanischen Belastungen der Rissspitze und zusätzliche Spannungs- und Dehnungsprozesse das weitere Wachsen des Risses. Mit zunehmender Risstiefe steigt die mechanische Beanspruchung des Risses. Das Wachstum des Risses wird beschleunigt. Die kritische mechanische Rissbeanspruchung ist bei einer bestimmten Risslänge erreicht. Ab diesem Zeitpunkt breitet sich der Riss allein aus, was durch die lokal vorhandene mechanische Beanspruchung bedingt ist. Maßgebend können bei der sich fortsetzenden Ausbreitung des Risses Spannungen oder
38 Kapitel 5 Rissbeschreibung 5.3 Erscheinungsbilder von Rissen plastische Dehnungen sein, die Rissausbreitung ist entweder spannungs- oder dehnungsinduziert. Die Rissausbreitung kann entweder instabil oder stabil weiter verlaufen. Das ist in der Praxis (z.b. im Baugeschehen) von Wichtigkeit. Im Stadium der stabilen Rissausbreitung, die unter ständiger Energiezufuhr abläuft, vergrößern sich die Ausmaße des Risses nur zögerlich. Dabei besteht zwischen der Veränderung der Rissausmaße und der steigenden Belastung Proportionalität. Durch eine Entlastung kann die Ausbreitung des Risses zu jeder Zeit unterbrochen werden (Stillstand). Der auslösende Moment für einen Riss ist schließlich erreicht, wenn die stabile in die instabile Rissausbreitung übergeht. Diese erfolgt unter ständigem Energieverbrauch. Der ausgelöste Riss breitet sich unter weiterer Belastung mit hoher Geschwindigkeit aus, bis er das belastete Bauteil zum Teil oder vollständig trennt. Im Allgemeinen führt die instabile Rissausbreitung zu einem makroskopischen Sprödbruch, d.h., das Material versagt schlagartig. Dann sind Risse, nunmehr die Makrorisse, von außen sichtbar. 5.3 Erscheinungsbilder von Rissen Es sind nach dem jeweiligen Rissbild verschiedene Rissformen und Rissarten zu unterscheiden. Diese sind getrennt in der Tabelle 1 zusammengestellt. Die Formen von Rissen werden nachfolgend beschrieben. Erläuterungen zu den Rissarten erfolgen im Zusammenhang mit den Ursachen für Rissschäden im Kapitel 6. Tab. 1: Am häufigsten vorkommende Rissformen und Rissarten Rissformen vertikale (auch verzahnte oder gerade) Risse horizontale Risse schräge (auch diagonale, abgestufte oder treppenförmige) Risse netzförmige Risse Rissarten Sackrisse Schwindrisse Schwindrisse im frühen Zustand (Schrumpfrisse) Schwindrisse im Unterputz Schwindrisse in der gesamten Putzdicke (erhärteter Mörtel) Kerbrisse Fugenrisse Spannungsrisse Fettrisse Schubrisse Setzungsrisse Beschreibung einzelner Rissformen a) Vertikale (auch verzahnte oder gerade) Risse vertikal verzahnt vertikal gerade Bild 3: Schematische Darstellung Vertikalriss im Mauerwerk (in Anlehnung an [8])
Rissbeschreibung Kapitel 5 39 5.3 Erscheinungsbilder von Rissen b) Horizontale Risse Bild 5: Schematische Darstellung Horizontalriss im Mauerwerk (in Anlehnung an [8]) Bild 4: Reales Beispiel für einen vertikalen Riss Ihr Verlauf ist entweder verzahnt durch die Lagerund Stoßfuge oder gerade durch die Mauersteine und Stoßfugen. Verursacht werden diese Risse durch Abkühlen und/oder Schwinden der gemauerten Wand in horizontaler Richtung. Hauptsächlich das Schwinden der Wandscheibe ist dafür verantwortlich. Es gibt aber auch noch andere Ursachen. Zum Beispiel können unterschiedlich gegründete Gebäudeteile einen Vertikalriss ergeben oder nicht übernommene Bewegungsfugen. Bild 6: Reales Beispiel für einen horizontalen Riss Sie kommen meist in der Lagerfuge bedingt durch eine zu geringe Haftzugfestigkeit zwischen Mauerstein und Mörtel vor. Partiell fehlender Mörtel in der Lagerfuge kann ebenso zu horizontalen Rissen führen. Veränderungen der Form benachbarter Bauteile wie durchgebogene Geschossdecken bewirken einen horizontalen Verlauf von Rissen. Der Riss kann möglicherweise auch durch einen Mauerstein verlaufen wie im Fall von verbauten Steinen mit einer geringeren vertikalen Zugfestigkeit als der Haftzugfestigkeit in Verbindung mit einem Dünnbettmörtel. Auch im Bereich von Deckenauflagen treten horizontale Risse auf.