Physische Anfrageoptimierung

Größe: px
Ab Seite anzeigen:

Download "Physische Anfrageoptimierung"

Transkript

1 Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 201/14

2 Ziel der physischen Optimierung π[titel] Konkrete Implementation der Operatoren einsetzen π[persnr] π[titel, gelesenvon] σ[name = 'Einstein'] Professoren Vorlesungen Mehrere Implementation des gleichen logischen Operators Auswahl der am besten geeigneten Implementation 2

3 Iteratorkonzept

4 Prozeduraler Ansatz π[titel] Jeder Operator ist eine Prozedur π PersNr π Titel, gelesenvon Einfach zu implementieren σ name = 'Einstein' Professoren Vorlesungen Zwischenergebnisse müssen immer komplett vorgehalten werden 4

5 Iteratorkonzept Operatoren zum Durchlaufen der Ergebnismenge Liefern immer nur ein (nächstes) Tupel Iterator Abstrakter Datentyp Standard-Methoden Open Next Close Im Idealfall müssen keine Zwischenergebnisse gespeichert werden Schwieriger zu implementieren Cost Size Kostenmodelle 5

6 Pull-based Query Evaluation Wurzeliterator next open Ergebnis 6

7 Pipelining vs. Pipeline-Breaker R S T 7

8 Pipelining vs. Pipeline-Breaker R S T 8

9 Pipeline-Breaker Unäre Operationen Sortieren (SORT BY) Duplikaten-Elimination (UNIQUE, DISTINCT) Aggregierende Operatoren (MIN, MAX, SUM, ) Binäre Operationen Mengendifferenz (MINUS, WHERE NOT) Je nach Implementierung Join (JOIN, ) 9

10 Iteratortypen und deren Implementation 10

11 Iteratortypen 1. Selektion 2. Matching Join Mengendurchschnitt Mengendifferenz. Gruppierung Duplikate Aggregation 4. Projektion (Vereinigung) 5. Zwischenspeicher Sortierung, Hashing, B-Baum 11

12 Selektion (Brute Force) Select σ[p] open next close cost size open: Öffne Eingabe (open bei Vorgänger) next: Hole Tupel von Vorgänger (wiederholt next aufrufen) bis ein Tupel die Bedingung P erfüllt oder der Vorgänger keine Tupel mehr liefert. Gib dieses Tupel zurück (wenn vorhanden) close: Schließe Eingabe (close bei Vorgänger) 12

13 Selektion mit Index (z.b. B-Baum) IndexSelect σ[p] open next close cost size open: Öffne Eingabe Schlage in Index erste Stelle nach, die P erfüllt next: Gib nächstes Tupel zurück sofern P noch erfüllt ist close: Schließe Eingabe 1

14 Matching: Join, Schnitt & Differenz Studenten MatrNr Name 209 Adam 210 Berta 211 Claus 212 Dora hoeren MatrNr VorlNr Studenten hoeren MatrNr Name VorlNr 209 Adam Adam Claus Dora 5022 Mengenschnitt und -differenz: Analog zu Join, mit Vergleich über alle Attribute der Tupel 14

15 Join: Brute-Force-Ansatz Nested loop brute force -Algorithmus Input: Relationen R, S mit Attributen R.B und S.A Output: Relation Ret = R A=B S Äußere Relation / Schleife Ret = {} foreach r R Innere Relation / Schleife foreach s S if s.b == r.a then Ret = Ret ( r s) Hinweis: r s ist Verbund von r und s Bei Mengendifferenz R \ S muss R immer die Äußere Relation sein 15

16 Join: Nested Loop (Brute Force) NestedLoopJoin A=B open next close cost size open: Öffne linke Eingabe und hole erstes linkes Tupel r next: Öffne rechte Eingabe falls noch geschlossen Hole rechtes Tupel s bis r.a = s.b erfüllt ist Falls rechts keine Tupel mehr liefert: Schließe rechte Eingabe Hole nächstes linkes Tupel r Starte next von vorne (für diesen Operator) Gib Verbund r s zurück close: Schließe beide Eingaben Zwei Vorgänger 16

17 Join: Blocked Nested Loop Eingaben Seitenweise laden Kapazität des Hauptspeichers ausnutzen Platz für m Seiten Block Nested Loop Verfeinerter brute force -Algorithmus Lade (m k) Seiten der äußeren Relation (R) Lade k Seiten der inneren Relation (S) Vergleiche die Tupel in den Seiten im Hauptspeicher Optimale Parameterwahl: k = max(1, m R ) Ideal wenn R < m, d.h. wenn R komplett in den Hauptspeicher passt Als äußere Relation die kleinere Relation wählen: R < S Innere Relation abwechselnd rückwärts durchlaufen spart einige Seitenzugriffe ( R und S sind Anzahl der Seiten in jeder Relation. )

18 Join: Blocked Nested Loop R m k m k m k m k m k S k k k k k k k k Anzahl Zugriffe auf Plattenspeicher = O( R + S R / (m k)) 18

19 Join: Merge Join Voraussetzung: Eingaben sind beide nach Joinattribut sortiert (z.b. B-Baum) Falls A oder B eindeutiges Attribut ist, wird jedes Tupel in R und S nur genau einmal gelesen Implementation: zwei Iteratoren ( ) C R A B S D

20 Join: Index Join Voraussetzung: Mindestens eine der Eingaben hat einen Index 20

21 Join: Index Join IndexJoin A=B open next close cost size Index auf rechte Eingabe open: Öffne linke Eingabe und hole erstes linkes Tupel Öffne rechte Eingabe next: Hole nächstes passendes Tupel aus rechter Eingabe Falls rechts kein passendes Tupel mehr Hole nächstes Tupel von links und schlage rechts nach State next von vorne (in diesem Operator) Gib Verbund von linken und rechtem Tupel zurück close: Schließe beide Eingaben 21

22 Join: Hash Join Idee: Daten so partitionieren, dass die Hashtabelle in den Hauptspeicher (m Seiten) passt Partitionierung: Definiert über kleinere Relation (build input) Hashfunktion zur Abbildung auf (m 1) Partitionen Je eine Seite pro Partition Speicherung der Partitionen Bei Überlauf Rekursion (Partitionierung der Partitionen mit orthogonaler Hashfunktion) Partitionierung der größeren Relation (probe input) Berechnung des Verbunds: Laden von (m 1) Seiten aus den build-partitionen Seitenweises Durchlaufen der probe-partitionen 22

23 Join: Hash-Join Anschaulich: Einschränkung des Suchraumes beim Nested-Loop ABER: Pipeline-Breaker 2

24 Join: Hash Join R R S S mod mod

25 Gruppierung Analogie zum Join: Relation mit sich selbst vergleichen Duplikaten-Entfernung wichtig wegen Mengensemantik: Brute force (Nested Loop) NestedDup Vorhandene Sortierung kann ausgenutzt werden SortedDup Index: In B-Baum liegen die gleichen Werte direkt hintereinander Hash-Index: gleicher Bucket IndexDup Allgemein: Ähnliches Vorgehen wie Hash-Join oder künstlich Sortierung einfügen 25

26 Projektion Project π[a] open next close cost size open: Öffne Eingabe next: Hole Tupel von Vorgänger und reduziere die Attributmenge auf A Gib tupel zurück close: Schließe Eingabe 26

27 Zwischenspeicher Puffer Ablegen im Hintergrundspeicher Sinnvoll, wenn Zwischenergebnisse mehrfach benötigt werden (z.b. Nested-Loop-Join) Puffer mit Index B-Baum und Varianten Hash-Index Gesonderte Funktion Sortieren (i.a. nicht im Hauptspeicher möglich) Für die Ausgabe Als Vorbereitung für effizientere Operatoren Nested-Loop: O(NM) Sortieren: O(N log N + M log M), dann Merge-Join O(N + M) 27

28 Illustration: Externes Sortieren

29 Illustration: Externes Sortieren sort 29

30 Illustration: Externes Sortieren

31 Illustration: Externes Sortieren sort

32 Illustration: Externes Sortieren

33 Illustration: Externes Sortieren sort

34 Illustration: Externes Sortieren merge

35 Illustration: Externes Sortieren 2 merge

36 Illustration: Externes Sortieren 2 merge

37 Illustration: Externes Sortieren 2 5 merge

38 Illustration: Externes Sortieren merge

39 Illustration: Externes Sortieren merge

40 Illustration: Externes Sortieren merge

41 Illustration: Externes Sortieren merge

42 Illustration: Externes Sortieren mit B-Baum B-Baum

43 Mehrstufiges Sortieren + Merge Wenn beim Zerlegen mehr Stücke entstehen als im Hauptspeicher Platz für Seiten ist Iteratives Zusammenlegen von Stücken Level 0 m Level 1 m Level 2 4

44 Übersetzung der logischen Algebra 44

45 Übersetzung der logischen Algebra: Join NestedLoop R.A=S.B MergeJoin R.A=S.B R [Bucket] [SortR.A] [SortS.B] S A=B R S IndexJoin R.A=S.B R S R [Hash S.B Tree S.B] HashJoin R.A=S.B S R S 45

46 Übersetzung der logischen Algebra: Selektion IndexSelect P R σ P Select P R R 46

47 Übersetzung der logischen Algebra [IndexDup] [Hash Tree] π A [SortDup] Project A R [NestedDup] R [Sort] Project A R Project A R 47

48 Wiederholung der Optimierungsphasen SELECT DISTINCT s.semester FROM Studenten s, hören h, Vorlesungen v, Professoren p WHERE p.name = 'Einstein' AND v.gelesenvon = p.persnr AND v.vorlnr = h.vorlnr AND h.matrnr = s.matrnr π semester σ name = 'Einstein' p v s h 48

49 s s h v h v 49

50 Zusammenfassung Physische Optimierung Auswahl konkreter Operatorimplementierungen für den Operatorbaum Vielzahl an physischer Imlentierungen der logischen Operatoren Iteratorkonzept verringert die Notwendigkeit Zwischenergebnisse zu speichern Ergebnis: Operatorbaum mit konkreten Implementierungen Abhängig von physischer Umsetzung 50

51 Fragen? 51

Anfrageoptimierung Physische Optimierung

Anfrageoptimierung Physische Optimierung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Physische Optimierung Dr. Thomas Gottron Wintersemester 01/1 Ziel der phyischen Optimierung Konkrete Implementation der Operatoren

Mehr

Anfragebearbeitung 2. Vorlesung Datenbanksysteme vom

Anfragebearbeitung 2. Vorlesung Datenbanksysteme vom Vorlesung Datenbanksysteme vom 21.11.2016 Anfragebearbeitung 2 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Physische Optimierung Iterator: einheitliche Schnittstelle

Mehr

Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1

Anfragebearbeitung. Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Anfragebearbeitung Logische Optimierung Physische Optimierung (Kostenmodelle Tuning ) Kapitel 8 1 Ablauf der Anfrageoptimierung Deklarative Anfrage (SQL) Scanner Parser Sichtenauflösung Algebraischer Ausdruck

Mehr

Anfrageoptimierung Kostenmodelle

Anfrageoptimierung Kostenmodelle Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Anfrageoptimierung Kostenmodelle Dr. Jérôme Kunegis Wintersemester 2013/14 Regel vs. Kostenbasierte Optimierung

Mehr

[W, T4, D, 15] [start_transaction, T3] [W, T3, C, 30] [W, T4, A, 20] [commit, T4] [W, T2, D, 25] System Crash

[W, T4, D, 15] [start_transaction, T3] [W, T3, C, 30] [W, T4, A, 20] [commit, T4] [W, T2, D, 25] System Crash Übungen Aufgabe 1 Geben ist die folgende Logdatei: [start_transaction, T1] [W, T1, D, 20] [commit, T1] [checkpoint] [start_transaction, T2] [W, T2, B, 12] [start_transaction, T4] [W, T4, D, 15] [start_transaction,

Mehr

Anfrageoptimierung Logische Optimierung

Anfrageoptimierung Logische Optimierung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer

Mehr

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520 Kapitel 7 Anfragebearbeitung 285 / 520 Übersicht Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis 286 / 520 Übersetzung Übersetzung SQL ist deklarativ, irgendwann muß Anfrage aber für Laufzeitsystem

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 9.1.2008 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Anfrageoptimierung Kostenabschätzung

Anfrageoptimierung Kostenabschätzung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Kostenabschätzung Dr. Thomas Gottron Wintersemester 2012/13 Regel vs. Kostenbasierte Optimierung Bisher: Regeln, wie Optimierung

Mehr

Übung 4. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)

Übung 4. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Übung 4 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik

Mehr

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning Kapitel 8 Anfragebearbeitung Logische Optimierung Physische Optimierung Kostenmodelle Tuning Ablauf der Anfrageoptimierung Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck Anfrage-

Mehr

Kapitel 8 Anfragebearbeitung

Kapitel 8 Anfragebearbeitung Kapitel 8 Anfragebearbeitung Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie

Mehr

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning Kapitel 8 Anfragebearbeitung Logische Optimierung Physische Optimierung Kostenmodelle Tuning Ablauf der Anfrageoptimierung Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck Auswertungs-

Mehr

6. Anfragebearbeitung

6. Anfragebearbeitung 6. Anfragebearbeitung 6.1 Einleitung 6.2 Indexstrukturen 6.3 Grundlagen der Anfrageoptimierung 6.4 Logische Anfrageoptimierung 6.5 Kostenmodellbasierte Anfrageoptimierung 55 Fokus: Effiziente Berecnung

Mehr

Fortsetzung: Projektion Selektion. NULL Werte

Fortsetzung: Projektion Selektion. NULL Werte Fortsetzung: Anfragen mit SQL Bisher: Projektion Selektion Duplikatbehandlung NULL Werte Professoren PersNr Name Rang Raum 2125 Sokrates 226 2126 Russel 232 2127 Kopernikus C3 310 2133 Popper C3 52 2134

Mehr

Web Science & Technologies University of Koblenz Landau, Germany. Grundlagen der Datenbanken. SQL Teil 2. Dr. Jérôme Kunegis Wintersemester 2013/14

Web Science & Technologies University of Koblenz Landau, Germany. Grundlagen der Datenbanken. SQL Teil 2. Dr. Jérôme Kunegis Wintersemester 2013/14 Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken SQL Teil 2 Dr. Jérôme Kunegis Wintersemester 2013/14 Bereichsanfragen und Mitgliedschaft in der Menge Anfrage:

Mehr

Kostenmodelle und Tuning. Anfragebearbeitung 3. Kostenmodelle. Kostenbasierte Optimierung. VL Datenbanksysteme

Kostenmodelle und Tuning. Anfragebearbeitung 3. Kostenmodelle. Kostenbasierte Optimierung. VL Datenbanksysteme Kostenmodelle und Tuning Anfragebearbeitung 3 VL Datenbanksysteme Ingo Feinerer Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Grundidee

Mehr

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung

Mehr

Aufgabe 1: Verschachtelte Anfragen

Aufgabe 1: Verschachtelte Anfragen Aufgabe 1: Verschachtelte Anfragen (1 P.) (a) Betrachten Sie folgenden Ausschnitt des TPC-H Schemas: CREATE TABLE partsupp ( ps_ availqty INT, ps_ partkey INT ); CREATE TABLE lineitem ( l_ partkey INT,

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 22.6.2009 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #4. SQL (Teil 2) Vorlesung #4 SQL (Teil 2) Fahrplan Eine weitere Aggregation: median Geschachtelte Anfragen in SQL Korrelierte vs. Unkorrelierte Anfragen Entschachtelung der Anfragen Operationen der Mengenlehre Spezielle

Mehr

Übung Datenbanksysteme II Anfrageausführung

Übung Datenbanksysteme II Anfrageausführung Übung Datenbanksysteme II Anfrageausführung Leon Bornemann Folien basierend auf Maximilian Jenders, Thorsten Papenbrock Einleitung: Themen 2 Iterator-Operatoren Algorithmen-Klassen Sort-basierte Hash-basierte

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 12, 2017 Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 12, 2017 Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 12, 2017 Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen Datendefinition (DDL) in SQL Anlegen einer Tabelle create

Mehr

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning

Kapitel 8 Anfragebearbeitung. Logische Optimierung Physische Optimierung Kostenmodelle Tuning Kapitel 8 Anfragebearbeitung Logische Optimierung Physische Optimierung Kostenmodelle Tuning Ablauf der Anfrageoptimierung Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer Ausdruck AnfrageOptimierer

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 12, Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 12, Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 12, 30.5.2016 Datenbanksysteme: Datendefinition in SQL, Kompliziertere Datenbankabfragen Datendefinition (DDL) in SQL Datentypen character (n),

Mehr

Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2008/2009 Prof. Dr. W. Kießling 23. Nov. 2007 Dr. A. Huhn, M. Endres, T. Preisinger Lösungsblatt 5 Aufgabe 1: SQL-Queries Datenbanksysteme I a) Geben Sie

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof Alfons Kemper, PhD Blatt Nr 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS5/6 Harald Lang, Linnea Passing (gdb@intumde) http://www-dbintumde/teaching/ws56/grundlagen/

Mehr

Joins / Implementierung von Joins

Joins / Implementierung von Joins Join wichtigste Operation, insbesondere in relationalen DBS: komplexe Benutzeranfragen (Star-Joins) Normalisierung der Relationen (Snowflake-Schema) verschiedene Sichten ( views ) auf die Basisrelationen

Mehr

Rückblick: Relationale Normalisierung

Rückblick: Relationale Normalisierung Rückblick: Relationale Normalisierung Gute Relationenschema vermeiden Redundanz und führen nicht zu Anomalien beim Einfügen, Löschen oder Ändern Relationale Normalformen (1NF, 2NF, 3NF, BCNF, 4NF) charakterisieren

Mehr

Anfrageverarbeitung. Einführung

Anfrageverarbeitung. Einführung Anfrageverarbeitung Prof. Dr. T. Kudraß 1 Einführung Wir betrachten die Implementierung der Operatoren der Relationenalgebra: Basis-Operationen: Selektion ( σ ) Auswahl einer Teilmenge von Tupeln aus der

Mehr

Datenbanksysteme noch Kapitel 7: SQL. Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme noch Kapitel 7: SQL. Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2015 noch Kapitel 7: SQL Vorlesung vom 12.05.2015 Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Schlüsselworte select from where order by asc desc as like upper

Mehr

Diskussion: Personal (1)

Diskussion: Personal (1) Diskussion: Personal (1) ER-Diagramm: Abteilung ist beschäftigt in [0, n] [0, 1] Person Umsetzung ins Relationenmodell? Diskussion: Personal (2) Zusätzliche Regel: In jeder Abteilung (Person) muss mindestens

Mehr

Wintersemester 2016/ Matrikelnummer: Hinweise. Unterschrift

Wintersemester 2016/ Matrikelnummer: Hinweise. Unterschrift Fachbereich für Computerwissenschaften Prof. Dr. Nikolaus Augsten Jakob-Haringer-Str. 2 5020 Salzburg, Austria Telefon: +43 662 8044 6347 E-Mail: nikolaus.augsten@sbg.ac.at Datenbanken II Prüfung Wintersemester

Mehr

Anfragebearbeitung 3

Anfragebearbeitung 3 Anfragebearbeitung 3 VL Datenbanksysteme, WS 2014/5 Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Kostenmodelle und

Mehr

5.2.2 Physische Optimierung

5.2.2 Physische Optimierung Physische Optimierung 5.2.2 Physische Optimierung 2002 Prof. Dr. ainer Manthey Informationssysteme 1 Physische Optimierung: Übersicht "logischer" A-Ausdruck logische Optimierung verbesserter logischer

Mehr

Rückblick: Relationales Modell

Rückblick: Relationales Modell Rückblick: Relationales Modell Relationales Modell als vorherrschendes Datenmodell Relationen (Tabellen) besitzen Attribute (Spalten) mit Wertebereichen und beinhalten Tupel (Zeilen) Umsetzung eines konzeptuellen

Mehr

Datenbanken Vertiefung Wintersemester 2013/ Matrikelnummer: Hinweise. Unterschrift

Datenbanken Vertiefung Wintersemester 2013/ Matrikelnummer: Hinweise. Unterschrift Fachbereich für Computerwissenschaften Prof. Dr. Nikolaus Augsten Jakob-Haringer-Str. 2 5020 Salzburg, Austria Telefon: +43 662 8044 6347 E-Mail: nikolaus.augsten@sbg.ac.at Datenbanken Vertiefung Prüfung

Mehr

Vorlesung Datenbanksysteme vom

Vorlesung Datenbanksysteme vom Vorlesung Datenbanksysteme vom 27.10.2008 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D 1,

Mehr

9 Auswertung von Anfrageoperatoren 9.1 Selektion

9 Auswertung von Anfrageoperatoren 9.1 Selektion 9. Auswertung von Anfrageoperatoren 9.1. Selektion Seite 1 9 Auswertung von Anfrageoperatoren 9.1 Selektion Auswertung von σ[a op val]r. Index zu A, Sortierung zu A, Operator op. Auswertung von Formeln

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VL Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Aufgabe 1 Indexstrukturen

Aufgabe 1 Indexstrukturen 8. Übung zur Vorlesung Datenbanken im Sommersemester 2006 mit Musterlösungen Prof. Dr. Gerd Stumme, Dr. Andreas Hotho, Dipl.-Inform. Christoph Schmitz 25. Juni 2006 Aufgabe 1 Indexstrukturen Zeichnen Sie

Mehr

Übung Datenbanksysteme II Anfrageausführung. Thorsten Papenbrock

Übung Datenbanksysteme II Anfrageausführung. Thorsten Papenbrock Übung Datenbanksysteme II Anfrageausführung Thorsten Papenbrock Einleitung: Themen 3 Iterator-Operatoren Algorithmen-Klassen ort-basierte Hash-basierte Index-basierte Algorithmen-chwierigkeitsgrade One-Pass-Algorithmen

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

Anfrageoptimierung. Datenbankpuffer

Anfrageoptimierung. Datenbankpuffer Anfrageoptimierung Java : Assembler (Faktor 2-10), aber SQL : SQL optimiert (Faktor 1-100 und mehr) - Warum? - Datenbankpuffer - Speicherstrukturen - Logische Anfrageoptimierung - Physische Anfrageoptimierung

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Joins 1 Literatur IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN A. Kemper, A. Eickler: Datenbanksysteme Eine Einführung, 8. Auflage Oldenburg Verlag, 2011, ISBN 978-3-486-59834-6 (als E-Book mit dem Übungsbuch

Mehr

Datenbanksysteme noch Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme noch Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2013 noch Kapitel 7: SQL Vorlesung vom 13.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Sprung Transititve Hülle Transitive Hülle 35.) Liste alle Voraussetzungen

Mehr

Relationale Anfragesprachen

Relationale Anfragesprachen Relationale Anfragesprachen Structured Query Language: SQL Query by Example: QBE Kapitel 1 Übungen Fr 8.0 Uhr Michael Kühn Raum E 11 SQL standardisierte - Datendefinitions (DDL)- - Datenmanipulations (DML)-

Mehr

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Joins 1 IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Literatur Priti Mishara, Maragaret H. Eich, Join Processing in Relational Databases, ACM Computing Surveys, Vol. 24, No. 1, March 1992 Goetz Graefe,

Mehr

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung

Rückblick. SQL bietet viele Möglichkeiten zur Anfrageformulierung Rückblick SQL bietet viele Möglichkeiten zur Anfrageformulierung mathematische Funktionen (z.b. ABS(A) und SIGN(A)) Aggregatfunktionen (z.b. MIN(A) und SUM(A)) Boole sche Operatoren (AND, OR, EXCEPT) Verknüpfungen

Mehr

Grundlagen des relationalen Modells

Grundlagen des relationalen Modells Historische Entwicklung relationaler DBMS Grundlagen des relationalen Modells Seien D 1, D 2,..., D n Domänen (~Wertebereiche) Relation: R D 1 x... x D n Bsp.: Telefonbuch string x string x integer Tupel:

Mehr

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme Vorlesung vom noch Kapitel 7: SQL. Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2009 Vorlesung vom 19.05.2009 noch Kapitel 7: SQL Oliver Vornberger Institut für Informatik Universität Osnabrück SQL: Self Join 15.) Liste die Namen der Assistenten, die für denselben

Mehr

Algorithmen für Sortierung und relationale Operatoren

Algorithmen für Sortierung und relationale Operatoren Algorithmen für Sortierung und relationale Operatoren In diesem Kapitel betrachten wir folgende Themen: 1. Relationale Operatoren und Sortieroperator 2. Grundlegende Operationen: Tabellen-Scan, Index-Scan,

Mehr

Wiederholung: Relationale Algebra

Wiederholung: Relationale Algebra Vorlesung Datenbanksysteme vom 7.10.01 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D 1, D,,

Mehr

Datenbankoptimierung

Datenbankoptimierung Datenbankoptimierung Lehrveranstaltung Datenbanktechnologien Prof. Dr. Ingo Claßen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Hardware c Ingo Claßen, Martin Kempa Architektur:

Mehr

Kapitel 8 Dr. Jérôme Kunegis. SQL Continued. WeST Institute for Web Science & Technologies

Kapitel 8 Dr. Jérôme Kunegis. SQL Continued. WeST Institute for Web Science & Technologies Kapitel 8 Dr. Jérôme Kunegis SQL Continued WeST Institute for Web Science & Technologies Lernziele Syntax von SQL Anfragen Erweiterte Konstrukte in SQL Abfragen: Aggregation, Gruppierung, rekursive Anfragen..

Mehr

(4 Punkte) Aufgabe 1: Relationenalgebra - Relationenkalkül

(4 Punkte) Aufgabe 1: Relationenalgebra - Relationenkalkül Musterlösunq zur Klausur 1665 Datenbanksvsteme 19.03.2005 Aufgabe 1: Relationenalgebra - Relationenkalkül (4 Punkte) In der Relationenalgebra werden die gewünschten Relationen durch Angabe einer Folge

Mehr

Datenbanken Vertiefung Wintersemester 2014/ Matrikelnummer: Hinweise. Unterschrift

Datenbanken Vertiefung Wintersemester 2014/ Matrikelnummer: Hinweise. Unterschrift Fachbereich für Computerwissenschaften Prof. Dr. Nikolaus Augsten Jakob-Haringer-Str. 2 5020 Salzburg, Austria Telefon: +43 662 8044 6347 E-Mail: nikolaus.augsten@sbg.ac.at Datenbanken II Prüfung Datenbanken

Mehr

Rückblick: Datenorganisation & Indexstrukturen

Rückblick: Datenorganisation & Indexstrukturen Rückblick: Datenorganisation & Indexstrukturen Datenorganisation der Tupel einer Relation als Haufen, sequenzielle Datei oder indexsequenzielle Datei Indexstrukturen zum effizienteren Zugriff auf Datensätze

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1) Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)

Mehr

7.3 Baum-Indexstrukturen

7.3 Baum-Indexstrukturen 7. Physischer Datenbankentwurf 7.3. Baum-Indexstrukturen Seite 1 7.3 Baum-Indexstrukturen B-Baum der Ordnung (m, l); m > 2, l > 1. Die Wurzel ist entweder ein Blatt oder hat mindestens zwei direkte Nachfolger.

Mehr

Entity Relationship Modell

Entity Relationship Modell Entity Relationship Modell 2 Entity/Relationship (ER) Modell Legi Name Semester Entity = Gegenstandstyp Relationship = Beziehungstyp Schlüssel (Identifikation) Studenten hören Hörer Kurs Vorlesungen Attribut

Mehr

Datenbanksysteme noch Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück

Datenbanksysteme noch Kapitel 7: SQL Vorlesung vom Oliver Vornberger. Institut für Informatik Universität Osnabrück Datenbanksysteme 2013 noch Kapitel 7: SQL Vorlesung vom 7.5.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Sprung Transititve Hülle SQL: avg, group by 16.) Liste die durchschnittliche

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 04 Übung zur Vorlesung Grundlagen: Datenbanken im W16/17 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

Datenbanken 2. Anfragebearbeitung. Nikolaus Augsten. FB Computerwissenschaften Universität Salzburg. Version 1.

Datenbanken 2. Anfragebearbeitung. Nikolaus Augsten. FB Computerwissenschaften Universität Salzburg. Version 1. Datenbanken 2 Anfragebearbeitung Nikolaus Augsten nikolaus.augsten@sbg.ac.at FB Computerwissenschaften Universität Salzburg Version 1. Juni 2017 Wintersemester 2017/18 Augsten (Univ. Salzburg) DB2 Anfragebearbeitung

Mehr

Einordnung. 6. Basisalgorithmen für DB-Operationen. Datenbankparameter. Datenbankparameter (II)

Einordnung. 6. Basisalgorithmen für DB-Operationen. Datenbankparameter. Datenbankparameter (II) 6. Basisalgorithmen für DB-Operationen Datenbankparameter Komplexität von Grundalgorithmen Unäre Operationen (Scan, Selektion, Projektion) Binäre Operationen: Mengenoperationen Berechnung von Verbunden

Mehr

Grundlagen: Datenbanken

Grundlagen: Datenbanken Grundlagen: Datenbanken 3. Zentralübung / Fragestunde Linnea Passing Harald Lang gdb@in.tum.de Diese Folien finden Sie online. Die Mitschrift stellen wir im Anschluss online. Agenda Hinweise zur Klausur

Mehr

Relationale Algebra. Thomas Heimrich. Rel. Algebra. Grundlagen. Beispielrelationen. rel. Algebra. Definition der rel. Algebra.

Relationale Algebra. Thomas Heimrich. Rel. Algebra. Grundlagen. Beispielrelationen. rel. Algebra. Definition der rel. Algebra. 1 / 17 Rel. Relationale Thomas Heimrich rel. Formale Sprachen Rel. relationale Die relationale ist prozedural orientiert. Sie beinhaltet implizit einen Abarbeitungsplan für die Anfrage. Die rel. ist wichtig

Mehr

DATENBANKSYSTEME: SQL

DATENBANKSYSTEME: SQL Datendefinitions-, Manipulations- und Anfrage-Sprache SQL, Datendefinition, Veränderung am Datenbestand, Einfache SQL Abfrage, Anfragen über mehrere Relationen, Mengenfunktionen, Aggregatfunktion und Gruppierung,

Mehr

Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017)

Übung 3. Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Übung 3 Tutorübung zu Grundlagen: Datenbanken (Gruppen Do-T24 / Do-T31 WS 2016/2017) Dennis Fischer dennis.fischer@tum.de http://home.in.tum.de/~fischerd/ Technische Universität München Fakultät für Informatik

Mehr

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung Logische Optimierung Höhere, nichtprozedurale Abfragesprachen (SQL, QBE,...) verlangen keine Kenntnisse des Benutzers über die Implementierung, müssen aber in prozedurale Form (z. B. Relationenalgebra)

Mehr

Inhalt. Datenbanken 2. Literatur und Quellen. Inhalt. Anfragebearbeitung. Nikolaus Augsten. Wintersemester 2017/18

Inhalt. Datenbanken 2. Literatur und Quellen. Inhalt. Anfragebearbeitung. Nikolaus Augsten. Wintersemester 2017/18 Inhalt Datenbanken 2 Anfragebearbeitung 1 Einführung Nikolaus Augsten 2 Anfragekosten anschätzen nikolausaugsten@sbgacat FB Computerwissenschaften Universität Salzburg Version 1 Juni 2017 Wintersemester

Mehr

Inhalt. Datenbanken Vertiefung. Literatur und Quellen. Inhalt. Anfragebearbeitung. Nikolaus Augsten. Wintersemester 2013/14

Inhalt. Datenbanken Vertiefung. Literatur und Quellen. Inhalt. Anfragebearbeitung. Nikolaus Augsten. Wintersemester 2013/14 Inhalt Datenbanken Vertiefung Anfragebearbeitung Nikolaus Augsten nikolaus.augsten@sbg.ac.at FB Computerwissenschaften Universität Salzburg 1 Einführung 2 Anfragekosten anschätzen 3 4 Wintersemester 2013/14

Mehr

6. Formaler Datenbankentwurf 6.1. Definitionen

6. Formaler Datenbankentwurf 6.1. Definitionen 6. Formaler Datenbankentwurf 6.1. Definitionen Minimale Überdeckung Eine Menge funktionaler Abhängigkeiten F min ist eine minimale Überdeckung zu F, wenn wir sie durch Anwendung der folgenden Schritte

Mehr

Bitte tragen Sie sofort und leserlich Namen, Studienkennzahl und Matrikelnummer ein und legen Sie Ihren Studentenausweis

Bitte tragen Sie sofort und leserlich Namen, Studienkennzahl und Matrikelnummer ein und legen Sie Ihren Studentenausweis Gruppe A Bitte tragen Sie sofort und leserlich Namen, Studienkennzahl und Matrikelnummer ein und legen Sie Ihren Studentenausweis bereit. PRÜFUNG AUS DATENBANKSYSTEME VU 184.686 09. 01. 2015 Kennnr. Matrikelnr.

Mehr

Übungsblatt 8 Lösungsvorschläge

Übungsblatt 8 Lösungsvorschläge Prof. Dr. T. Härder Fachbereich Informatik Arbeitsgruppe Datenbanken und Informationssysteme Universität Kaiserslautern Übungsblatt 8 Lösungsvorschläge für die freiwillige Übung Unterlagen zur Vorlesung:

Mehr

Kapitel 10: Relationale Anfragebearbeitung

Kapitel 10: Relationale Anfragebearbeitung Ludwig Maimilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 201/2016 Kapitel 10: Relationale Anfragebearbeitung Vorlesung:

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):

Mehr

Historische Entwicklung relationaler DBMS. Ted Codd: A Relational Model of Data for Large Shared Data Banks, Comm. ACM, Juni 1970, S.

Historische Entwicklung relationaler DBMS. Ted Codd: A Relational Model of Data for Large Shared Data Banks, Comm. ACM, Juni 1970, S. Historische Entwicklung relationaler DBMS Ted Codd: A Relational Model of Data for Large Shared Data Banks, Comm. ACM, Juni 1970, S. 377 387 Grundlagen des relationalen Modells Seien D 1, D 2,..., D

Mehr

Datenbanksysteme 2013

Datenbanksysteme 2013 Datenbanksysteme 2013 Kapitel 8: Datenintegrität Vorlesung vom 14.05.2013 Oliver Vornberger Institut für Informatik Universität Osnabrück Datenintegrität Statische Bedingung (jeder Zustand) Dynamische

Mehr

Datenbanksysteme 2009

Datenbanksysteme 2009 Datenbanksysteme 2009 Vorlesung vom 11.05.2009: Anfang von Kapitel 6: Das Relationale Modell Oliver Vornberger Institut für Informatik Universität Osnabrück Das Relationale Modell Wertebereiche (Domänen):

Mehr

Kapitel 8: Datenintegrität

Kapitel 8: Datenintegrität Kapitel 8: Datenintegrität Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines Schlüssels 1:N - Beziehung Angabe einer Domäne Jetzt:

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 7a: Structured Query Language (SQL) MySQL 5.0 (enthalten in: http://www.apachefriends.org/de/xampp.html)

Mehr

Datenbanken: Indexe. Motivation und Konzepte

Datenbanken: Indexe. Motivation und Konzepte Datenbanken: Indexe Motivation und Konzepte Motivation Warum sind Indexstrukturen überhaupt wünschenswert? Bei Anfrageverarbeitung werden Tupel aller beteiligter Relationen nacheinander in den Hauptspeicher

Mehr

Kommunikation und Datenhaltung

Kommunikation und Datenhaltung Kommunikation und Datenhaltung Anfrageoptimierung Überblick über den Datenhaltungsteil Einleitung und Grundlagen Architektur von Datenbanksystemen Datenbankanfragen Relationenmodell und Relationenalgebra

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 27.6.2011 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Grundlagen des relationalen Modells

Grundlagen des relationalen Modells Grundlagen des relationalen Modells Seien D 1, D,, D n Domänen (Wertebereiche) Relation: R D 1 x x D n Bsp.: Telefonbuch string x string x integer Tupel: t R Bsp.: t = ( Mickey Mouse, Main Street, 4711)

Mehr

Architektur eines DBMS Logische Optimierung

Architektur eines DBMS Logische Optimierung Vorlesung Datenbanksysteme vom 16.11.2015 Anfragebearbeitung 1 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Architektur eines DBMS SW-Komponenten der Anfragebearbeitung

Mehr

Semi-Skylines und Skyline Snippets

Semi-Skylines und Skyline Snippets Skyline von Manhattan, NY, USA Semi-Skylines und Skyline Snippets Markus Endres Universität Augsburg 10. Februar 2011 Skyline Queries Finde preiswerte Hotels in Strandnähe! Distance to the beach [km] 2.0

Mehr