Lösungsvorschlag zur 11. Übung

Größe: px
Ab Seite anzeigen:

Download "Lösungsvorschlag zur 11. Übung"

Transkript

1 Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 ösungsvorschlag zur 11. Übung 1 Präsenzübungen 1.1 Schnelltest a) Was gehört zu den Aufgaben eines Geräte-Treibers? Vereinheitlicht die Nutzungsschnittstelle für die geräteunabhängige S- Schicht. Konvertiert sequentielle itströme in Datenblöcke. Prüft den Status der Interrupt-eitungen. Versteckt die Unterschiede verschiedener Controller. b) Welche der Aussagen über Kommunikationsbusse sind richtig? usse sind Kommunikationsverbindungen zwischen mehreren Teilsystemen. usse verhindern die ildung eines Kommunikations-Flaschenhalses. usse verwenden gemeinsame eitungen. Die usgeschwindigkeit ist unabhängig von physikalischen Faktoren. ei synchronen ussen müssen die Komponenten die gleiche Geschwindigkeit haben. Asynchrone usse sind weniger Aufwändig weil sie kein Protokoll brauchen. c) Wie läuft die us-arbitrierung bei einer Daisy Chain ab? Request, Warten auf Poll, inhibit-eitung belegen, us belegen, inhibit eitung freigeben Request, Warten auf Grant, us belegen Request, Warten auf Grant, us belegen, Release Request, Warten auf Poll, Inhibit-eitung belegen, us belegen d) Was ist ein Semaphor? Ein Signalmast zur Nachrichtenübermittlung mit beweglichen Flügeln. Eine Datenstruktur mit zwei speziellen Nutzungsoperationen. Eine Variablenart zur Speicherung der Anzahl von Weckrufen. Semaphoren können Deadlocks verhindern. Die einzige Umsetzungsmöglichkeit eines wechselseitigen Ausschlusses. Mit Semaphoren lässt sich wechselseitiger Ausschluss verhindern. 1.2 Scheduling (Klausuraufgabe WS 06-07) Gegeben seien fünf Prozesse mit jeweiligen Start- und CPU-Zeiten, sowie deren Priorität (Prozesse mit kleinerem Prioritätswert kommen vor Prozessen mit größeren Werten): 1

2 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 Prozess Startzeit CPU-Zeit Statische Priorität P P P P P Zeichnen Sie für jedes der folgenden Schedulingverfahren ein Gantt-Diagramm der Prozesse. etrachten Sie nur die Prozesszustände bereit () und laufend (). a) Statische Priorität (non-preemptive): 0 P1 P2 P3 P4 P t b) Shortest Job First (non-preemptive): 0 P1 P2 P3 P4 P t c) Shortest remaining time next (preemptive): 0 P1 P2 P3 P4 P t d) erechnen Sie die mittlere Wartezeit für jedes Schedulingverfahren. 2

3 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 Prozess Prio. SJF SRTN P P P P P Mittlere Wartezeit 7,6 6,8 5,4 1.3 Speisende Philosophen Ein sehr bekanntes Problem der Synchronisation ist das Problem der speisenden Philosophen, das auf Folie 165 erwähnt wurde. Es besteht folgende Situation: An einem runden Tisch sitzen fünf Philosophen. Vor jedem Philosophen steht ein Teller mit Nudeln und zwischen je zwei Tellern liegt ein Stäbchen (es handelt sich offensichtlich um chinesische Philosophen). Die Philosophen agieren unabhängig voneinander und von Zeit zu Zeit wird jeder dieser Philosophen von den Nudeln auf seinem Teller essen. Er benötigt dazu die beiden Stäbchen rechts und links von seinem Teller. Abbildung 1: Der Tisch der speisenden Philosophen Verwenden Sie die aus der Vorlesung bekannten Mittel wie Mutex oder Semaphore, um den wechselseitigen Ausschluss der Stäbchen zu garantieren. Die grundlegende ösung des Problems besteht darin, dass die Philosophen in einem durch einen Mutex (binäre Semaphore) geschützten ereich entweder beide oder kein Stäbchen aufnehmen. Weil bei dieser Abstraktion die einzelnen Stäbchen unwichtig geworden sind, kann man zusätzlich eine Semaphore für jeden Philosophen einführen, anstatt auf einzelnen Stäbchen zu warten. Ein Philosoph schaut innerhalb eines durch den Mutex geschützten ereichs nach, ob einer seiner Nachbarn isst. Ist dem so, legt er sich außerhalb des Mutex auf seiner eigenen Semaphore schlafen. Andernfalls belegt er seine Semaphore und fängt an zu essen. Verläßt ein Philosoph den Essensbereich, so schaut er, ob einer seiner Nachbarn gerade hungrig ist (auf das Stäbchen wartet). Ist dies der Fall so weckt er diesen Nachbarn auf. In der ösung im Modern Operating Systems (Ed. 1) von Andrew Tanenbaum werden beide Tests, beim etreten und Verlassen, in einer Funktion realisiert (Der Parameter i steht dabei immer für die Nummer des Philosophen. Es gibt einen Mutex mutex und für jeden Philosophen i ein Semaphor s[i].): 1 void test ( int i) 3

4 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 2 { 3 /* wenn i hungrig ist und kein Nachbarn von i isst */ 4 if ( state [ i] == HUNGRY && state [ EFT ]!= EATING 5 && state [ RIGHT ]!= EATING ) { 6 state [ i] = EATING ; /* i zum essen schicken /* 7 up (&s[i ]); 8 } 9 } Damit ist das Aufnehmen der Stäbchen und das Ablegen denkbar einfach, wobei besonderes Augenmerk auf die Position des down(&s[i]) gelegt werden sollte. Dieses muss außerhalb des Mutex geschehen, weshalb sich der Prozess in der Testroutine selber ein up schickt sofern er selbst hungrig ist und seine Nachbarn nicht essen. 1 void take_ sticks ( int i) 2 { 3 down (& mutex ); 4 state [ i] = HUNGRY ; /* Hunger melden */ 5 test ( i); /* testen ob essensbereit 6 up (& mutex ); 7 down (&s[i ]); /* auf Freigabe des Essens warten */ 8 } eim Verlassen des Essensbereiches muss nur darauf geachtet werden, dass ich alle eventuellen Nachbarn, die jetzt essen könnten, aufwecke. 1 void put_ sticks ( int i) 2 { 3 down (& mutex ); 4 state [ i] = THINKING ; /* Essen beenden */ 5 test ( EFT ); /* Nachbarn ggf. aufwecken */ 6 test ( RIGHT ); 7 up (& mutex ); 8 } 1.4 Deadlock Zwei Funktionen S und T arbeiten mit den exklusiven etriebsmittel A,, C, D und E. Da diese etriebsmittel jeweils nur von einem Prozess bzw. Thread gleichzeitig verwendet werden können, müssen sich nebenläufige Prozesse, die S und T ausführen, die etriebsmittel teilen. Zur Regelung des Zugriffs werden Semaphoren angefordert und reserviert. Die Prozesse benötigen teilweise mehrere etriebsmittel gleichzeitig zur Durchführung einer Operation. Alle Semaphore werden am Anfang mit 1 initialisiert. 1 void S() { 2 while (1) { 3 A. down (); 4. down (); 5 C. down (); 6 A.up (); 7.up (); 4

5 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 8 D. down (); 9 C.up (); 10 D.up (); 11 } 12 } 1 void T() { 2 while (1) { 3 E. down (); 4 D. down (); 5 E.up (); 6 A. down (); 7 D.up (); 8 A.up (); 9 } 10 } Geben Sie bei beiden Teilaufgaben im Falle eines möglichen Deadlocks sowohl die Ablaufreihenfolge, welche zu einem Deadlock führt, als auch den dazugehörenden Ressourcengraphen an. Ansonsten begründen Sie, warum es keinen Deadlock geben kann. a) Angenommen Sie starten genau einen Prozess oder Thread, der Funktion S ausführt, und genau einen Prozess oder Thread, der Funktion T ausführt. Kann es zu einem Deadlock kommen? Zu einem Deadlock kann es bei zwei Prozessen dann kommen, wenn der eine ein etriebsmittel A blockiert und ein weiteres etriebsmittel anfordert, und der zweite Prozess blockiert und A anfordert (es entsteht ein Zyklus im Zugriffsgraphen). Es kann hier zu keinem Deadlock kommen, weil S und T sich nur A und D teilen und S A freigibt, bevor S D anfordert (danach wird A nicht mehr von S angefordert). Ebenso fordert T nur A an, wenn er im esitz von D ist und gibt beide danach wieder frei. b) Nehmen Sie jetzt an, dass es genau zwei Prozesse bzw. Threads gibt die Funktion S ausführen, und einen, der Funktion T ausführt. Kann dabei ein Deadlock entstehen? Ja, es kann zu einem Deadlock kommen: S 1 besitzt C und wartet auf D (hat A und wieder freigegeben). S 2 besitzt A und und wartet auf C. T besitzt D und wartet auf A. C S 1 S 2 A D T Hinweis: In einem Ressourcengraph werden alle etriebsmittel und Prozesse durch Knoten repräsentiert. Eine gerichtete Kante von einem etriebsmittel zu einem Prozess bedeutet, dass der Prozess das etriebsmittel zu einem Zeitpunkt reserviert hat. Eine gerichtete 5

6 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 Kante von einem Prozess zu einem etriebsmittel zeigt an, dass der Prozess das etriebsmittel gerade reservieren möchte. Enthält der resultierende Graph einen Zyklus, liegt ein Deadlock vor. 2 Hausübungen 2.1 Threads Zur Sortierung von Zahlen verwendet ein Programm den Sortieralgorithmus Slowsort, der wie folgt definiert ist 1. Die Parameter i und j geben hierbei die untere und obere Grenze des Datenfeldes A an. 1 procedure slowsort (A,i,j) 2 if i >= j then return 3 m := (i+j )/2 4 slowsort (A,i,m) 5 slowsort (A,m+1,j) 6 if A[j] < A[m] then vertausche A[j] und A[m] 7 slowsort (A,i,j -1) 8 end a) Implementieren Sie Slowsort in C. Erzeugen Sie sich zum Testen eine main-methode und ein Datenfeld mit 400 Einträgen, das absteigend sortiert ist (399,..., 1, 0). Die sortierte iste soll vor dem Programmende ausgegeben werden. Siehe separate Datei auf Homepage. b) Sie stellen fest, dass die Ausführungszeit leider sehr hoch ist. ei genauerer etrachtung stellen Sie fest, dass von zwei Prozessorkernen nur einer ausgelastet ist. Sie entscheiden sich daher, das Sortierverfahren auf zwei Threads aufzuspalten. Verändern Sie Ihre Implementierung und lassen Sie Slowsort in zwei Threads das Datenfeld parallel sortieren. Nutzen Sie hierfür die standardisierte pthreads ibliothek. 2 Jeder Thread soll eine Hälfte der iste sortieren. Siehe separate Datei auf Homepage. c) Welche Veränderungen stellen Sie fest? (Falls Sie ein Einprozessorsystem verwenden, gehen Sie davon aus, dass Sie einen Prozessor mit zwei Kernen verwenden.) Es werden zwei Prozessorkerne ausgenutzt. Die aufzeit ist geringer. Der Algorithmus sortiert nur noch Teillisten. d) Das Datenfeld ist nach Programmende nicht vollständig korrekt sortiert. Was könnten Sie tun, um für dieses eispiel am Ende ein korrekt sortiertes Datenfeld zu haben? Würde dieser Ansatz auch allgemein für andere Datenfelder funktionieren? egründen Sie. 1 Quelle: Wikipedia 2 In Unix-artigen Systemen bereits vorhanden. Unter Windows können Sie alternativ die ibliothek http: //sourceware.org/pthreads-win32/ nutzen. 6

7 ösungsvorschlag zur 11. Übung Grundlagen der Informatik 3, WS 09/10 Da man weiß, dass das ursprüngliche Datenfeld absteigend sortiert ist und dadurch seine beiden Hälften korrekt sortiert sind, könnte man die beiden Hälften miteinander vertauschen, womit dann das komplette Datenfeld korrekt sortiert wäre. Allgemein funktioniert diese ösung nicht, da dies voraussetzt, dass die untere Hälfte des Datenfeldes nur Werte enthält, die auch sortiert in der untere Hälfte stehen würden (analog mit der oberen Hälfte). e) Könnte man an der Stelle von Threads auch mehrere Prozesse verwenden (z.. durch fork)? egründen Sie. Nein, da sich verschiedene Prozesse keinen Speicherbereich teilen und auch nicht auf fremde Speicherbereiche zugreifen dürfen. Um Ihnen den Einstieg zu erleichtern, können Sie auf folgendem Programmrahmen aufbauen. 1 # include < pthread.h> 2 # include <stdio.h> 3 void * thread ( void * threadid ) 4 { 5 printf (" Das ist Thread %d.\n", ( int ) threadid ); 6 pthread_exit ( NU ); 7 } 8 int main ( int argc, char * argv []) 9 { 10 // Zwei Threads erzeugen, die mit der Funktion " thread " starten. 11 pthread_ t threads [ 2]; 12 pthread_create (& threads [0], NU, thread, ( void *)0); 13 pthread_create (& threads [1], NU, thread, ( void *)1); // Auf das Ende beider Threads warten. 16 pthread_ join ( threads [0], NU ); 17 pthread_ join ( threads [1], NU ); printf (" Alle Threads wurden beendet.\ n"); 20 } eachten Sie, dass Programme, die Threads enthalten, mit dem Aufruf gcc -pthread <datei.c> kompiliert werden müssen, um die nötigen Thread-ibliotheken einzubinden. 7

e) Welche Aussage zu Speicherzuteilungsverfahren ist falsch?

e) Welche Aussage zu Speicherzuteilungsverfahren ist falsch? Aufgabe 1: (1) Bei den Multiple-Choice-Fragen ist jeweils nur eine richtige Antwort eindeutig anzukreuzen. Auf die richtige Antwort gibt es die angegebene Punktzahl. Wollen Sie eine Multiple-Choice-Antwort

Mehr

Leser-Schreiber-Realisierung mit Semaphoren

Leser-Schreiber-Realisierung mit Semaphoren Leser-Schreiber-Realisierung mit Semaphoren Reader: down(semwriter); down(semcounter); rcounter++; up(semwriter); read(); down(semcounter); rcounter--; Writer: Problem: down(semwriter); Busy Waiting siehe

Mehr

Threads Einführung. Zustände von Threads

Threads Einführung. Zustände von Threads Threads Einführung Parallelität : Zerlegung von Problemstellungen in Teilaufgaben, die parallelel ausgeführt werden können (einfachere Strukturen, eventuell schneller, Voraussetzung für Mehrprozessorarchitekturen)

Mehr

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 User-Level Threads: Federgewichtige Prozesse Realisierung von Threads auf Anwendungsebene innerhalb eines Prozesses

Mehr

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 U9-2 Motivation von Threads U9-2 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller

Mehr

Tafelübung zu BSRvS1. 3. Philosophen. Fortsetzung Grundlagen C-Programmierung

Tafelübung zu BSRvS1. 3. Philosophen.  Fortsetzung Grundlagen C-Programmierung Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

H Verklemmungen. 1 Motivation. 1 Motivation (2) H Verklemmungen. Beispiel: die fünf Philosophen am runden Tisch

H Verklemmungen. 1 Motivation. 1 Motivation (2) H Verklemmungen. Beispiel: die fünf Philosophen am runden Tisch 1 Motivation Beispiel: die fünf Philosophen am runden Tisch Verklemmungen Philosophen denken oder essen "The life of a philosopher consists of an alternation of thinking and eating." (Dijkstra, 1971) zum

Mehr

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes PThreads Prozesse und Threads Ein Unix-Prozess hat IDs (process,user,group) Umgebungsvariablen Verzeichnis Programmcode Register, Stack, Heap Dateideskriptoren, Signale message queues, pipes, shared memory

Mehr

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1 I 7. Übung I 7. Übung I-1 Überblick Besprechung Aufgabe 5 (mysh) Online-Evaluation Posix Threads I.1 I-2 Evaluation I-2 Evaluation Online-Evaluation von Vorlesung und Übung SOS zwei TANs, zwei Fragebogen

Mehr

leave: mov flag, 0 ; 0 in flag speichern: Lock freigeben ret

leave: mov flag, 0 ; 0 in flag speichern: Lock freigeben ret Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

POSIX-Threads. Aufgabe 9 SP - Ü U10.1

POSIX-Threads. Aufgabe 9 SP - Ü U10.1 U10 10. Übung U10 10. Übung POSIX-Threads Aufgabe 9 U10.1 U10-1 Motivation von Threads U10-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Lösungsvorschlag zur 10. Übung

Lösungsvorschlag zur 10. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 10. Übung 1 Präsenzübungen 1.1 Wissensfragen Versuchen Sie diese Aufgabe erst

Mehr

Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware

Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, Dr. W. Wörndl, WS 2011/12) Die Bearbeitungsdauer beträgt 90 Minuten. Es sind keine Hilfsmittel zugelassen.

Mehr

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation U8 POSIX-Threads U8 POSIX-Threads U8-1 Motivation von Threads U8-1 Motivation von Threads Motivation Thread-Konzepte UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

U8 POSIX-Threads U8 POSIX-Threads

U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads Motivation Thread-Konzepte pthread-api pthread-koordinierung U8.1 U8-1 Motivation von Threads U8-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung

Mehr

Kapitel 6. Verklemmungen (Deadlocks)

Kapitel 6. Verklemmungen (Deadlocks) Seite 1 Kapitel 6 Verklemmungen (Deadlocks) Prof. Dr. Rolf Hennicker 16.06.2016 6.1 Charakterisierung von Deadlocks Seite 2 Eine Verklemmung entsteht, wenn alle Prozesse in einem System blockiert (d.h.

Mehr

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester Seminar: Multicore Programmierung Sommersemester 2009 16.07.2009 Inhaltsverzeichnis 1 Speichermodell 2 3 Implementierungsvielfalt Prioritätsinversion 4 Threads Speichermodell Was sind Threads innerhalb

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 13: Software-Entwicklung 1 (WS 2017/18)

Lösungshinweise/-vorschläge zum Übungsblatt 13: Software-Entwicklung 1 (WS 2017/18) Dr. Annette Bieniusa Mathias Weber, M. Sc. Peter Zeller, M. Sc. TU Kaiserslautern Fachbereich Informatik AG Softwaretechnik Lösungshinweise/-vorschläge zum Übungsblatt 13: Software-Entwicklung 1 (WS 2017/18)

Mehr

1 Prozesse und Scheduling (12 Punkte)

1 Prozesse und Scheduling (12 Punkte) 1 Prozesse und Scheduling (12 Punkte) a) UNIX Shell-Operatoren (insgesamt 4 Punkte) 1. Operator (1,5 Punkte) Beschreiben Sie die Funktionsweise des Operators. 2. Operator Beispiel (1 Punkt) Geben Sie für

Mehr

Homogene Multi-Core-Prozessor-Architekturen

Homogene Multi-Core-Prozessor-Architekturen Homogene Multi-Core-Prozessor-Architekturen Praktikum Parallele Rechnerarchitekturen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009

Mehr

C- Kurs 09 Dynamische Datenstrukturen

C- Kurs 09 Dynamische Datenstrukturen C- Kurs 09 Dynamische Datenstrukturen Dipl.- Inf. Jörn Hoffmann jhoffmann@informaak.uni- leipzig.de Universität Leipzig InsAtut für InformaAk Technische InformaAk Flexible Datenstrukturen Institut für

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik inführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris etriebssysteme ufgaben Management von Ressourcen Präsentation einer einheitlichen Schnittstelle

Mehr

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion Betriebssysteme Vorlesung im Herbstsemester 2010 Universität Mannheim Kapitel 6: Speicherbasierte Prozessinteraktion Felix C. Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung

Mehr

Aufgaben zum Thema Verklemmungen

Aufgaben zum Thema Verklemmungen Aufgaben zum Thema Verklemmungen V1. Untersuchen Sie das folgende Prozeßsystem auf das Auftreten von Deadlocks (s1, s2, s3: binäre Semaphore, mit true initialisiert): 95/5 Prozeß 1 Prozeß 2 Prozeß 3 P(s1);

Mehr

Besprechung Aufgabe 5 (crawl) POSIX-Threads. Problem: UNIX-Prozesskonzept ist für viele heutige Anwendungen unzureichend

Besprechung Aufgabe 5 (crawl) POSIX-Threads. Problem: UNIX-Prozesskonzept ist für viele heutige Anwendungen unzureichend U7 6. Übung U7 6. Übung U7-1 Motivation von Threads U7-1 Motivation von Threads Besprechung Aufgabe 5 (crawl) OSIX-Threads Motivation Thread-Konzepte pthread-ai Koordinierung UNIX-rozesskonzept: eine Ausführungsumgebung

Mehr

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 5: Semaphoren

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 5: Semaphoren Universität Stuttgart Prof. Dr.-Ing. Dr. h. c. P. Göhner Aufgabe 5.1: Übung 5: Semaphoren Semaphor-Operationen In Bild 5.1.1 ist die Anordnung von Semaphor-Operationen am Anfang und am e der asks A,B,C

Mehr

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Kapitel V Deadlocks (Verklemmungen) 1 Deadlocks System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Prozesse benötigen Genehmigung vor der Benutzung von Ressourcen.

Mehr

Systeme I: Betriebssysteme Kapitel 6 Deadlocks. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 6 Deadlocks. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 6 Deadlocks Wolfram Burgard Version 13.12.2017 1 Inhalt Vorlesung Verschiedene Komponenten / Konzepte von Betriebssystemen Dateisysteme Prozesse Nebenläufigkeit und wechselseitiger

Mehr

Kontrollflüsse. Dining Philosophers. 6. Verklemmungen. Systemsoftware. Seite 6.1. (c) 2002, Prof. Dr. P. Sturm, Universität Trier

Kontrollflüsse. Dining Philosophers. 6. Verklemmungen. Systemsoftware. Seite 6.1. (c) 2002, Prof. Dr. P. Sturm, Universität Trier Kontrollflüsse 6. Verklemmungen Dining Philosophers Philosophen wechseln zwischen zwei Zuständen Denken Essen Hauptgericht Reis Pur n Sitzplätze Links Stäbchen Philosoph braucht rechtes und linkes Stäbchen

Mehr

Shared-Memory Programmiermodelle

Shared-Memory Programmiermodelle Shared-Memory Programmiermodelle mehrere, unabhängige Programmsegmente greifen direkt auf gemeinsame Variablen ( shared variables ) zu Prozeßmodell gemäß fork/join Prinzip, z.b. in Unix: fork: Erzeugung

Mehr

Aufgabenblatt 6 Musterlösung

Aufgabenblatt 6 Musterlösung Prof. Dr. rer. nat. Roland Wismüller Aufgabenblatt 6 Musterlösung Vorlesung Betriebssysteme I Wintersemester 2018/19 Aufgabe 1: Implementierung von Threads (Bearbeitung zu Hause) Der größte Vorteil ist

Mehr

U6-1 Organisatories. U6-2 Motivation von Threads. U6-3 Vergleich von Thread-Konzepten. Organisatorisches

U6-1 Organisatories. U6-2 Motivation von Threads. U6-3 Vergleich von Thread-Konzepten. Organisatorisches U6 6. Übung U6 6. Übung U6-1 Organisatories U6-1 Organisatories Organisatorisches Zusätzliche Tafelübung zur S1-Klaurvorbereitung Besprechung Aufgabe 5 (crawl) OSIX-Threads Motivation Thread-Konzepte am

Mehr

Verklemmungen - Deadlocks

Verklemmungen - Deadlocks Verklemmungen - Deadlocks Betriebsmittel Verklemmung Vogelstrauss Algorithmus Erkennung und Auflösung Vermeidung SS2001 Prof. H.D. Clausen - unisal 1 Kritische Betriebsmittel Beispiele Drucker Magnetbandgeräte

Mehr

Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt

Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Aufgaben zur Klausur C und Objektorientierte Programmierung im WS 2003/04 (WI h103, II h105, MI h353) Zeit: 150 Minuten erlaubte Hilfsmittel:

Mehr

5. Übungsblatt zu Algorithmen II im WS 2017/2018

5. Übungsblatt zu Algorithmen II im WS 2017/2018 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Thomas Worsch, Dr. Simon Gog Demian Hespe, Yaroslav Akhremstev 5. Übungsblatt zu Algorithmen II im WS

Mehr

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012 Übung zu Grundlagen der Betriebssysteme 10. Übung 18.12.2012 Aufgabe 1 a) Was versteht man unter einem kritischen Abschnitt oder kritischen Gebiet (critical area)? b) Welche Aufgabe hat ein Semaphor? c)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Threads and Scheduling

Threads and Scheduling Vorlesung Betriebssysteme WS 2010, fbi.h-da.de Threads and Scheduling Jürgen Saala 1. Threads 2. Scheduling 2 1. Threads 3 Prozesse mit je 1 Adressraum 1 Ausführungsfaden d.h. Unabhängiger Adressraum mit

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free()

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free() Übungspaket 29 Dynamische Speicherverwaltung malloc() und free() Übungsziele Skript In diesem Übungspaket üben wir das dynamische Alloziieren 1. und Freigeben von Speicherbereichen 2. von Zeichenketten

Mehr

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem Betriebssysteme WS 2004/05 Deadlocks Christoph Lindemann Fahrplan 14.10. Organisation der Vorlesung, Einführung in Betriebssysteme 21.10. Strukturen von Betriebssystemen 28.10. Prozesse und Threads 4.11.

Mehr

Informatik 12 Kapitel 2 - Kommunikation und Synchronisation von Prozessen

Informatik 12 Kapitel 2 - Kommunikation und Synchronisation von Prozessen Fachschaft Informatik Informatik 12 Kapitel 2 - Kommunikation und Synchronisation von Prozessen Michael Steinhuber König-Karlmann-Gymnasium Altötting 9. Februar 2017 Folie 1/40 Inhaltsverzeichnis I 1 Kommunikation

Mehr

Concurrency and Processes of Pthreads

Concurrency and Processes of Pthreads Concurrency and Processes of Pthreads Pthreads Pthreads is a POSIX standard for describing a thread model, it specifies the API and the semantics of the calls. POSIX: Portable Operating System Interface

Mehr

Betriebssysteme. Wintersemester Kapitel 2 Prozess und Threads. Patrick Kendzo

Betriebssysteme. Wintersemester Kapitel 2 Prozess und Threads. Patrick Kendzo Betriebssysteme Wintersemester 2015 Kapitel 2 Prozess und Threads Patrick Kendzo ppkendzo@gmail.com Programm Inhalt Einleitung Prozesse und Threads Speicherverwaltung Ein- / Ausgabe und Dateisysteme Zusammenfassung

Mehr

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme Seite 1 Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme 1 11.07.2007 Hinweise: Bevor Sie mit der Bearbeitung der Aufgaben beginnen, müssen Sie auf allen Blättern Ihren Namen und Ihre

Mehr

Tafelübung zu BSRvS 1 3. Kreuzung

Tafelübung zu BSRvS 1 3. Kreuzung Tafelübung zu BSRvS 1 3. Kreuzung Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2009/bsrvs1/

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 17. JAVA Kommunikation von Threads 1 Motivation

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10 BS-H Betriebssysteme WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz H: Zusammenfassung v1.0, 2015/01/10 10.01.2015 Betriebssysteme, WS 2014/15, Hans-Georg Eßer Folie H-1 Übersicht: BS

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung https://ess.cs.tu-dortmund.de/de/teaching/ss2018/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de https://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Zeitplan 16.10. Vorlesung 23.10. Vorlesung, Gruppeneinteilung 30.10. Vorlesung, HA1 06.11. Vorlesung, HA2 13.11. Vorlesung entfällt wegen SVV 20.11. Präsentation Vorprojekt

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt 10 Prof. Dr. J. Csirik 7. Januar 00 randt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am 16.

Mehr

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen)

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) Betriebssysteme G: Parallele Prozesse (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) 1 Allgemeine Synchronisationsprobleme Wir verstehen ein BS als eine Menge von parallel

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN:

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: Inhaltsverzeichnis Carsten Vogt Nebenläufige Programmierung Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: 978-3-446-42755-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42755-6

Mehr

Aufgabe (Schreibtischtest, Algorithmenanalyse)

Aufgabe (Schreibtischtest, Algorithmenanalyse) Aufgabe (Schreibtischtest, Algorithmenanalyse) Führen Sie einen Schreibtischtest für den Algorithmus Positionsort für das folgende Eingabe-Array durch. Geben Sie nach jedem Durchlauf der for-schleife mit

Mehr

Übungen zu Systemprogrammierung 1

Übungen zu Systemprogrammierung 1 Übungen zu Systemprogrammierung 1 Ü5 Threads und Koordinierung Sommersemester 2018 Christian Eichler, Jürgen Kleinöder Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl

Mehr

Institut für Informatik der Ludwig-Maximilians-Universität München Systempraktikum Wintersemester 2009/2010 Prof. Dr. Dieter Kranzlmüller Dr. Thomas S

Institut für Informatik der Ludwig-Maximilians-Universität München Systempraktikum Wintersemester 2009/2010 Prof. Dr. Dieter Kranzlmüller Dr. Thomas S Institut für Informatik der Ludwig-Maximilians-Universität München Systempraktikum Wintersemester 2009/2010 Prof. Dr. Dieter Kranzlmüller Dr. Thomas Schaaf, Dr. Nils gentschen Felde Blatt 3 Grundlagen

Mehr

Prüfung Algorithmen und Datenstrukturen I

Prüfung Algorithmen und Datenstrukturen I Hochschule für angewandte Wissenschaften München Fakultät für Informatik und Mathematik Studiengruppe IF 3 B Wintersemester 2014/15 Prüfung Algorithmen und Datenstrukturen I Datum : 20.01.2015, 10:30 Uhr

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Threading mit Qt Plattformübergreifende Thread-Klasse Sehr einfach zu benutzen Leider etwas schlecht dokumentiert Leistungskurs C++ 2 QThread Plattformübergreifende Thread-Klasse

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 e0926364@student.tuwien.ac.at 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +

Mehr

Klausur Echtzeitsysteme

Klausur Echtzeitsysteme Technische Universität München WS 22/23 Fakultät für Informatik 2. Februar 23 Prof. Dr. A. Knoll Klausur Echtzeitsysteme Aufgabe Wissensfragen (5 Punkte). Erläutern Sie den Unterschied zwischen harten

Mehr

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt.

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt. Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

2. Aufgabenblatt Threads

2. Aufgabenblatt Threads Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme Betriebssysteme und Sicherheit, WS 2016/17 2. Aufgabenblatt Threads Geplante Bearbeitungszeit: drei Wochen TEIL A THREADS

Mehr

Threads In dieser Übung beschäftigen wir uns mit der Realisierung von Threads in Java.

Threads In dieser Übung beschäftigen wir uns mit der Realisierung von Threads in Java. Threads In dieser Übung beschäftigen wir uns mit der Realisierung von Threads in Java. Aufgabe 1: Erzeugen und Starten von Threads a) Sei BankKunde eine von einer Klasse Kunde abgeleitete Klasse. Erweitern

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 4 Aufgabe 1 (8 Punkte) Programmverifikation Gegeben ist folgendes Programmfragment

Mehr

TechGI3: Systemprogrammierung. Klausur März 2008

TechGI3: Systemprogrammierung. Klausur März 2008 Klausur März 2008 ACHTUNG Die vorliegende wurde im März 2008 geschrieben. Sie ist für eine Bearbeitungszeit von 120 Minuten gedacht. In diesem Semester wurde das Modul TechGI3 nicht als prüfungsäquivalente

Mehr

Aufgabenblatt 7 Musterlösung

Aufgabenblatt 7 Musterlösung Prof. Dr. rer. nat. Roland Wismüller Aufgabenblatt 7 Musterlösung Vorlesung Betriebssysteme I Wintersemester 2017/18 Aufgabe 1: Steuerung eines Warenautomaten (Bearbeitung zu Hause) Anleitung wie man solche

Mehr

Anwendung (2. Versuch:-) Entkopplung der Locks

Anwendung (2. Versuch:-) Entkopplung der Locks Gut gemeint aber leider fehlerhaft... Jeder Producer benötigt zwei Locks gleichzeitig, um zu produzieren: 1. dasjenige für den Puffer; 2. dasjenige für einen Semaphor. Musser fürden Semaphor einwait()

Mehr

Klausur - Informatik I SS 05. Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel

Klausur - Informatik I SS 05. Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Klausur - Informatik I SS 05 Aufgabe 1 2 3 4 Punkte 40 30 40 10 Gesamtpunkte (max. 120): Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informaik III Winersemeser 21/211 Wolfgang Heenes, Parik Schmia 11. Aufgabenbla 31.1.211 Hinweis: Der Schnelles und die Aufgaben sollen in den Übungsgruppen bearbeie werden. Die Hausaufgaben

Mehr

Tafelübung zu BS 2. Threadsynchronisation

Tafelübung zu BS 2. Threadsynchronisation Tafelübung zu BS 2. Threadsynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 12: Software-Entwicklung 1 (WS 2017/18)

Lösungshinweise/-vorschläge zum Übungsblatt 12: Software-Entwicklung 1 (WS 2017/18) Dr. Annette Bieniusa Mathias Weber, M. Sc. Peter Zeller, M. Sc. TU Kaiserslautern Fachbereich Informatik AG Softwaretechnik Lösungshinweise/-vorschläge zum Übungsblatt 12: Software-Entwicklung 1 (WS 2017/18)

Mehr

Ziele sind das Arbeiten mit Funktionen (Modularisierung, Parameterübergabe), sowie - Reihentyp (Array)

Ziele sind das Arbeiten mit Funktionen (Modularisierung, Parameterübergabe), sowie - Reihentyp (Array) Ziele sind das Arbeiten mit Funktionen (Modularisierung, Parameterübergabe), sowie - Aufgabe 3: Diese Aufgabe baut auf der 2. Aufgabe auf und erweitert diese. Die Funktionalität der 2. Aufgabe wird also

Mehr

Übungspaket 25 Kommandozeilenargumente

Übungspaket 25 Kommandozeilenargumente Übungspaket 25 Kommandozeilenargumente Übungsziele: Skript: 1. Umgang mit argc/argv 2. argc/argv als Schnittstelle von Programm und Betriebssystem 3. Vereinfachtes Testen mit argc/argv Kapitel: 51 und

Mehr

Tutoraufgabe 1 (Sortieralgorithmus):

Tutoraufgabe 1 (Sortieralgorithmus): Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung 4 (Abgabe 2..2) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Sortieralgorithmus):

Mehr

Zusammenfassung für CS-Prüfung 3 Seite 1. CS-Zusammenfassung für Prüfung 3 vom Im Beispiel gibt es 3 Deadlocks

Zusammenfassung für CS-Prüfung 3 Seite 1. CS-Zusammenfassung für Prüfung 3 vom Im Beispiel gibt es 3 Deadlocks Zusammenfassung für CS-Prüfung 3 Seite 1 CS-Zusammenfassung für Prüfung 3 vom 24. 6. 2002 Deadlock Im Beispiel gibt es 3 Deadlocks Unterschied zwischen Blockieren, Verklemmen und Verhungenrn= -> Band 1

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.04.2014 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I - 4 Heute: Wir bauen eine Datenstruktur Datenstruktur: Konzept,

Mehr

Gegenseitiger Ausschluss 102

Gegenseitiger Ausschluss 102 Gegenseitiger Ausschluss 102 MX = M (P 1... P n ) M = (lock unlock M) P i = (lock begin_critical_region i end_critical_region i unlock private_work i P i ) n Prozesse P 1... P n wollen konkurrierend auf

Mehr

K Ergänzungen zur Einführung in C

K Ergänzungen zur Einführung in C K Ergänzungen zur Einführung in C K Ergänzungen zur Einführung in C K.1 Zeiger, Felder und Zeichenketten Zeichenketten sind Felder von Einzelzeichen (char), die in der internen Darstellung durch ein \0

Mehr

Aufgabe 9: recgrep rekursive, parallele Suche (letzte Aufgabe)

Aufgabe 9: recgrep rekursive, parallele Suche (letzte Aufgabe) U6 6. Übung (Mathematik / Technomathematik) U6 6. Übung (Mathematik / Technomathematik) Besprechung Aufgabe 4 (halde) Besprechung Aufgabe 5 (crawl) Besprechung der Mini-Klausur POSIX-Threads Motivation

Mehr

5. Übungsblatt zu Algorithmen I im SoSe 2016

5. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16

Mehr

Übungen zur Vorlesung Realzeitsysteme

Übungen zur Vorlesung Realzeitsysteme Übungen zur Vorlesung Realzeitsysteme Alle Übungen, die in der Vorlesung behandelt werden und zur Bearbeitung ein Formular benötigen, sind im folgenden aufgelistet: Inhalte - Übung Synchrone Programmierung

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Aufgabe 1: Prozesse und Threads a) Wie verhält sich eine Applikation die aus mehreren Prozessen

Mehr

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden.

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden. 7 Parallelität und Nebenläufigkeit Mehrere Prozessen oder Threads Parallelität Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit

Mehr

Testen nebenläufiger Objekte

Testen nebenläufiger Objekte Testen nebenläufiger Objekte Threads in Java Julian Lambertz Seminar Tests in Informatik und Statistik im SS 2004 Universität Ulm J.L., Juni 2004 1 Themenüberblick Einleitung Begriff der Nebenläufigkeit

Mehr