Algorithmen und Datenstrukturen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmen und Datenstrukturen"

Transkript

1 Algorithmen und Datenstrukturen Wintersemester 2012/ Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I

2 Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen auf, die Ihnen bei der Vorbereitung in den Kopf kommen! Nutzen Sie die Übungen zum Fragen. Kommen Sie nach der Vorlesung zu mir. Nutzen Sie meine Sprechstunde (Mi, Uhr)

3 Entwurfstechniken Inkrementell Rekursiv Teile und Herrsche Augmentieren (von Datenstrukturen) neu: Dynamisches Programmieren meint hier das Arbeiten mit einer Tabelle, nicht das Schreiben eines Computerprogramms.

4 Vergleich Teile und Herrsche zerlegt Instanz rekursiv in disjunkte Teilinstanzen top-down eher für Entscheidungsoder Berechnungsprobleme Dynamisches Programmieren zerlegt Instanz in überlappende Teilinstanzen, d.h. Teilinstanzen haben z.t. dieselben Teilteilinstanzen. Lösungen von Teilinstanzen werden zwischengespeichert, nicht neu berechnet. meist bottom-up meist für Optimierungsprobleme

5 Fahrplan 1. Struktur einer optimalen Lösung charakterisieren 2. Wert einer optimalen Lösung rekursiv definieren 3. Wert einer optimalen Lösung berechnen (meist bottom-up) 4. Optimale Lösung aus berechneter Information konstruieren

6 Ein Beispiel Zerlegungsproblem Wir haben einen Stab der Länge n und kennen die Preise p 1, p 2,..., p n für Stäbe der Längen 1, 2,..., n. Durch welche Zerlegung unseres Stabs können wir unseren Ertrag maximieren? 9 e 7 e 9 e 10 e 7 e 7 e Länge i Preis p i [in e] e 4 e

7 Ein erster Versuch Wir haben einen Stab der Länge n und kennen die Preise p 1, p 2,..., p n für Stäbe der Längen 1, 2,..., n. Welche Stabzerlegung maximiert den Ertrag? Beispiel: Länge i Preis p i [in e] Ein ADSler schlägt vor: Berechne für i = 1,..., n den Preis pro Meter q i = p i /i. Zerlege Stab in möglichst viele Stücke der Länge i mit q i max. Streiche alle Stablängen i aus der Tabelle und wiederhole den Prozess mit dem Stabrest (falls > 0). Funktioniert dieser Greedy-Algorithmus? Ja? Beweisen! Nein? Gegenbeispiel!

8 Rohe Gewalt Frage: Wieviele Möglichkeiten gibt es einen Stab der Länge n zu zerlegen? n Antw.: Können n 1 mal entscheiden: schneiden oder nicht. 2 n 1 verschiedene Zerlegungen Also können wir es uns nicht leisten alle Zerlegungen durchzugehen und für jede ihren Ertrag zu berechnen.

9 1. Struktur einer optimalen Lösung charakterisieren Def. Beob. Für i = 1,..., n sei e i der maximale Ertrag für einen Stab der Länge i. i }{{}}{{} Ertrag e i n i Ertrag e n i Phänomen der optimalen Teilstruktur! Ein Schnitt zerlegt das Problem in unabh. Teilprobleme. 2. Wert einer optimalen Lösung rekursiv definieren Wissen nicht, welcher Schnitt in einer opt. Lösung vorkommt. Also probieren wir einfach alle möglichen Schnitte aus: e n = max{ p n, e 1 + e n 1, e 2 + e n 2,..., e n 1 + e 1 }

10 2. Wert einer optimalen Lösung rekursiv definieren e n = max{ p n, e 1 + e n 1, e 2 + e n 2,..., e n 1 + e 1 } Kleine Verbesserung: Verbiete weitere Schnitte im linken Teilstück! i n i }{{}}{{} Ertrag e i = p i Ertrag e n i Also gilt: e n = max{ p n, p 1 + e n 1, p 2 + e n 2,..., p n 1 + e 1 } = max 1 i n {p i + e n i }, wobei e 0 := 0. Vorteil: Wert einer opt. Lösung ist Summe aus einer Zahl der Eingabe und einem Wert einer opt. Teillösung.

11 3. Wert einer optimalen Lösung berechnen: top-down Wir wissen: e n = max 1 i n {p i + e n i }, wobei e 0 := 0. StangenZerlegung(int[ ] p, int n = p.length) if n == 0 then return 0 q = for i = 1 to n do q = max{q, p[i] + StangenZerlegung(p, n i)} return q Laufzeit: Sei A(n) die Gesamtzahl von Aufrufen von StangenZerlegung(p, ) beim Ausführen von StangenZerlegung(p, n) A(0) = 1 und A(n) = 1 + n A(n i) = 1 + n 1 A(j) = 2 n Beweis?! i=1 j=0

12 3. Wert einer optimalen Lösung berechnen: mit Tabelle Zeit-Speicher-Tausch (engl. time-memory trade-off ) MemoStangenZerlegung(int[ ] p, int n = p.length) e = new int[0..n] for i = 1 to n do e[i] = return HauptStangenZerlegung(p, n, e) HauptStangenZerlegung(int[ ] p, int n, int[ ] e) if e[n] 0 then return e[n] if n == 0 then e[0] = 0; return 0 q = for i = 1 to n do Laufzeit? Wie Stangenzerlegung (letzte Folie)? Asymptotisch schneller? q = max{q, p[i] + HauptStangenZerlegung(p, n i, e)} e[n] = q; return q

13 3. Wert einer optimalen Lösung berechnen: bottom-up BottomUpStangenZerlegung(int[ ] p, int n) 4 e = new int[0..n] e[0] = 0 3 Neu: kein for j = 1 to n do rekursiver q = 2 Aufruf! for i = 1 to j do q = max{q, p[i] + e[ j i] } 1 e[ j] = q return q Kante (i, j) bedeutet: Teilproblem i benützt Wert einer opt. Lösung von Teilproblem j. 0 Graph der Teilprobleme Beob. Größe des Graphen (d.h. in erster Linie Anz. Kanten) ist proportional zur Laufzeit des DP (Anz. Additionen). Satz. BottUpSZerl() und MemoSZerl() laufen in O ( n ) 2 Zeit.

14 4. Optimale Lösung aus berechneter Info. konstruieren GibZerlegungAus(int[ ] p, int n) l = new int[0..n]; e = new int[0..n] ErweiterteBottomUpZerlegung(p, e, l, n) while n > 0 do print l[n]; n = n l[n] ErweiterteBottomUpZerlegung(int[ ] p, int[ ] e, int[ ] l, int n) e[0] = 0 for j = 1 to n do q = for i = 1 to j do if q < p[i] + e[ j i] then q = p[i] + e[ j i] l[ j] = i e[ j] = q // merken, welche Länge neu dazu kommt

15 Längste Wege Gegeben: Gesucht: ungewichteter gerichteter Graph G = (V, E) mit s, t V, s t und t von s erreichbar. ein längster einfacher s-t-weg, d.h. eine Folge s = v 0, v 1,..., v k = t mit v 0 v 1,..., v k 1 v k E, v i v j (für i j) und k maximal. Fahrplan s u v t s, u, t ist ein längster einfacher s-t-weg. Aber: s,v,t,u ist ein längster einfacher s-u-weg. u,s,v,t ist ein längster einfacher u-t-weg. s,v,t,u,s,v,t ist kein einfacher s-t-weg. 1. Struktur einer optimalen Lösung charakterisieren 2. Wert einer optimalen Lösung rekursiv definieren 3. Wert einer optimalen Lösung berechnen (meist bottom-up) ) Geg. (G, s, t, k), ist es NP-schwer zu entscheiden, ob G einen s-t-weg der Länge k enthält. (Vgl. Hamilton-Weg!)

16 Längste Wege in azyklischen Graphen Gegeben: Gesucht: Beob 1 Beob 2 gewichteter gerichteter kreisfreier Graph G =(V, E; w) mit s, t V, s t und t von s erreichbar. ein längster s-t-weg. In kreisfreien Graphen sind alle Wege einfach. Dieses Problem hat optimale Teilstruktur, denn: Ein längster s-t-weg π gehe durch u, d.h. π π = s su π u ut t. Dann gilt: π su ist längster s-u-weg; π ut ist längster u-t-weg sonst wäre π kein längster s-t-weg. Außerdem gilt V (π su ) V (π ut ) = {u}; sonst gäbe es einen Kreis!

17 Algorithmus nach Fahrplan 1. Struktur einer optimalen Lösung charakterisieren 2. Wert einer optimalen Lösung rekursiv definieren d v = max d u + w(u, v) so! uv E 3. Wert einer optimalen Lösung berechnen (hier bottom-up) G topologisch sortieren d-werte initialisieren: d s = 0 und d v = für alle v s for-schleife durch Knoten v.l.n.r. d-werte berechnen Übrigens: kürzeste Wege in kreisfreien Graphen gehen analog (mit min statt max und + statt )

18 Und jetzt? Im Buch [CLRS] werden weitere, praxisrelevante Probleme mit dynamischem Programmieren gelöst: Ketten von Matrixmultiplikationen Längste gemeinsame Teilfolge (in Zeichenketten) Optimale binäre Suchbäume Lesen Sie Kapitel !!!

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 17. Vorlesung Nächstes Paar Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Problem: Gegeben: Menge P von n Punkten in der Ebene, jeder Punkt

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Algorithmen und Komplexität

Algorithmen und Komplexität Algorithmen und Komplexität Dynamische Programmierung Markus Ullrich Norbert Baum Fachbereich Informatik - IIb07 Hochschule Zittau/Görlitz 28. Mai 2009 1 / 29 Wie sieht es mit langen Ketten aus? A 1 A

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

Algorithmen I. Tutorium Sitzung. Dennis Felsing

Algorithmen I. Tutorium Sitzung. Dennis Felsing Algorithmen I Tutorium 1-12. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-07-04 Überblick 1 Dynamische Programmierung Idee Längste gemeinsame Teilfolge

Mehr

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Übersicht Greedy Algorithmen Einführung Aktivitäten-Auswahl-Problem Huffman Codierung Matthias Zwicker Universität Bern Frühling 2009 2 Greedy Algorithmen Entwurfsstrategie

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2017/18 20. Vorlesung Tiefensuche und topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Themen für den 3. Kurztest (Do, 25.01.18)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Wozu kürzeste Wege? 2 3-8 Modellierung

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Ergebnisse des 1. Kurztests 14 12 10

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

19. Dynamic Programming I

19. Dynamic Programming I 495 19. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy

Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 2.2 Entwurfsparadigmen Top-down Bottom-up Divide & Conquer Dynamisches Programmieren Caching (Memoization) Branch-and-Bound Greedy 1 Top-Down Zerlege das gegebene Problem in Teilschritte Zerlege Teilschritte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,..., a n 2, 1, 3 Sortieralg. Für festes n ist ein vergleichsbasierter Sortieralg. charakterisiert

2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,..., a n 2, 1, 3 Sortieralg. Für festes n ist ein vergleichsbasierter Sortieralg. charakterisiert 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 9. Vorlesung Sortieren in Linearzeit Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,...,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Inhaltsverzeichnis Ein Zufallsexperiment InsertionSort: erwartete bzw.

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 013/14 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Ein Experiment Ein Franke und ein Münchner gehen (unabhängig voneinander)

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Teile-und-Herrsche-Algorithmen: Bäume und serienparallele Graphen 3. Vorlesung Sommersemester 2013 (basierend auf Folien von Martin Nöllenburg und Robert Görke, KIT) 2 Ankündigung

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8

Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 ETH Zürich Institut für Theoretische Informatik Prof. Dr. Angelika Steger Florian Meier, Ralph Keusch HS 2017 Algorithmen und Komplexität Lösungsvorschlag zu Übungsblatt 8 Lösungsvorschlag zu Aufgabe 1

Mehr

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung

Kapitel 5: Paradigmen des Algorithmenentwurfs. Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 4 Reguläre Ausdrücke Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

Lineare Programmierung

Lineare Programmierung Übung Algorithmische Geometrie Lineare Programmierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 14.05.2014 Übersicht Übungsblatt 4 Lineares

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 30. Mai 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Dynamisches Programmieren - Problemstruktur

Dynamisches Programmieren - Problemstruktur Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 3

Algorithmen und Datenstrukturen 1 Kapitel 3 Algorithmen und Datenstrukturen 1 Kapitel 3 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 3.6 Dynamische Programmierung Die rekursive Problemzerlegung kann

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Kürzeste Wege in Graphen

Kürzeste Wege in Graphen Kürzeste Wege in Graphen Algorithmische Paradigmen In diesem Abschnitt wollen wir nicht nur neue Algorithmen vorstellen, sondern auch den Blick auf Gemeinsamkeiten und prinzipielle Unterschiede zwischen

Mehr

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt.

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt. Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

19. Dynamic Programming I

19. Dynamic Programming I Fibonacci Zahlen 9. Dynamic Programming I Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixettenmultipliation, Matrixmultipliation nach Strassen [Ottman/Widmayer,

Mehr

12.4 Traveling Salesman Problem

12.4 Traveling Salesman Problem 96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Suchen in Texten Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Textsuche Gegeben ist ein Zeichensatz (Alphabet) Σ. Für einen Text T Σ n und

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

20. Dynamic Programming II

20. Dynamic Programming II Aufgabe 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 6. Vorlesung Martin Middendorf / Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Merge-Sort Anwendbar für

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Musterlösung Datenstrukturen und Algorithmen

Musterlösung Datenstrukturen und Algorithmen Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Claudia Gerhold 9.5.6 Claudia Gerhold Dynamische Programmierung 9.5.6 / 4 Agenda Einführung Dynamische Programmierung Top-Down Ansatz mit Memoization Bottom-Up Ansatz 3 Anwendungsbeispiele

Mehr

20. Dynamic Programming II

20. Dynamic Programming II 536 20. Dynamic Programming II Subset Sum Problem, Rucksackproblem, Greedy Algorithmus, Lösungen mit dynamischer Programmierung, FPTAS, Optimaler Suchbaum [Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Viertes Übungsblatt WS 05/06 Musterlösung Konstantin Clemens Johanna Ploog Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Viertes

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

2. Hausübung Algorithmen und Datenstrukturen

2. Hausübung Algorithmen und Datenstrukturen Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Wintersemester 2004/ Februar 2005

Wintersemester 2004/ Februar 2005 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr