Speicheraufbau des AT89C5131

Größe: px
Ab Seite anzeigen:

Download "Speicheraufbau des AT89C5131"

Transkript

1 Speicheraufbau des AT89C5131 Prinzip: - getrennter Programmspeicher (ROM) und Datenspeicher (RAM) - interner Speicher (auf dem Chip) und externer Speicher (Zusatzbausteine) Das Experimentalsystem hat keinen externen Speicher! AT89C5131 interner Programmspeicher ROM externer Programmspeicher (optional) RAM externer Datenspeicher (optional) interner Datenspeicher Zugriff auf externe Speicher über dedizierte Port-Pins (Daten, Adressen, Steuersignale) ROM = Read Only Memory speichert Maschinenbefehle dauerhaft RAM = Random Access Memory speichert Variablen temporär 1 / 14 MCT_Vorlesung_09_SS2016

2 Programmspeicher External Access Enable Option: entweder interner oder externer Programmspeicher Auswahl über EA-Pin = Prozessoreingangspin, wird mit 0 ( = extern) oder 5 V ( = intern) beschaltet Adresse FFFFH F400H programmierbar: Interner (On-Chip) Programmspeicher Bootloader 3 kbyte FM1 = Flash Memory 1, vorprogrammiert, damit man Programme laden kann 8000H 7FFFH nach Reset startet das Programm bei F400H (bootloader) oder bei 0000H (Nutzerprogramm) im Praktikum: Start bei F400H User space 32 kbyte FM0 = Flash Memory 0, für vom Nutzer ( user ) geschriebene Programme externer Programmspeicher maximal 64 kbyte 0000H Bootloader = ein Programm zum Laden von Programmen ( booten ) Flash Memory = elektrisch löschbar, behält Information auch ohne Spannung 2 / 14 MCT_Vorlesung_09_SS2016

3 Datenspeicher Struktur: Adresse FFFFH für schnellen Zugriff: Scratchpad -RAM und Special Function Register für größere Datenmengen: Extended - oder externes RAM Interner Datenspeicher 03FFH Extended RAM 00FFH 0080H 007FH Special Function Registers 128 Byte SFR Scratchpad RAM (= Notizzettel ) indirekt: 128 Byte direkt: 128 Byte ERAM 1024 Byte (=1 kbyte) externer Datenspeicher maximal 64 kbyte 0000H direkter Zugriff: mov TH1, #0E7H indirekter Zugriff: mov R0, #080H #0E7H direkter Zugriff: mov 55H, #0E7H Auswahl des Speichers erfolgt über die verwendeten Befehle mov DPTR, #0380H #0E7H und zusätzlich Auswahl über das Bit EXTRAM 3 / 14 MCT_Vorlesung_09_SS2016

4 Auswahl des Speichers in C Prinzip: entweder a) bei der Variablendeklaration einen Speichertyp angeben oder: b) Standard-Speichertyp (abhängig vom Speichermodell) nehmen a) Beispiel: char data zeichen; /* 1 Byte im direkt adressierbaren Scratchpad RAM */ = 1 Byte char xdata zeichen; /* 1 Byte im extended oder externen RAM */ b) Beispiel: Speichertyp char zeichen; /* 1 Byte */ falls Speichermodell small 1 Byte im direkt adressierbaren Scratchpad RAM Speichermodell (memory model) wird in der Entwicklungsumgebung eingestellt 4 / 14 MCT_Vorlesung_09_SS2016

5 Speichertyp Verwendung Speichertypen data Variable im Scratchpad-RAM (untere Hälfte, 00H bis 7FH), direkt addressierbar, schnellste Zugriffszeiten bdata Variable im bitadressierbaren Speicherbereich (20H bis 2FH), für gemischten Bit- und Byte-Zugriff idata Variable im Scratchpad-RAM (gesamter Bereich von 00H bis FFH), für indirekte Addressierung pdata Variable im extenden/externen RAM, Zugriff über (256 Byte Adressraum), sog. "paged"-zugriff xdata Variable im extended/externen RAM, Zugriff über (1k bzw. 64 kbyte Adressraum) code Variable im Programmspeicher (64 kbyte Adressraum), Zugriff über (nur lesbar) Speichertypen können explizit angegeben werden 5 / 14 MCT_Vorlesung_09_SS2016

6 Speichermodelle Speichermodell SMALL COMPACT LARGE Verwendung Variablen werden im direkt adressierbaren Bereich des internen RAM abgelegt. Maximal 128 Byte Speicher verfügbar. Speichertyp ist data, falls nicht explizit anders deklariert Variablen werden im externen RAM abgelegt und mit "paged"- Zugriff addressiert. Maximal 256 Byte Speicher verfügbar. Speichertyp ist pdata, falls nicht explizit anders deklariert. Variablen werden im externen RAM abgelegt und mit dem Data- Pointer addressiert. Maximal 64 kbyte Speicher verfügbar. Speichertyp ist xdata, falls nicht explizit anders deklariert. Das Speichermodell ("memory model") wird vom Programmierer gewählt. Damit wird der Standard-Speichertyp festgelegt. 6 / 14 MCT_Vorlesung_09_SS2016

7 Beispiele für Variablen-Deklarationen char data zeichen; /* 1 Byte im internen RAM */ char code text[] = "Hallo"; /* String-Konstante im Programmspeicher */ unsigned int xdata zahlen[1000] /* 2000 Byte im externen RAM */ float idata x,y,z; /* 3 Gleitkomazahlen im internen RAM */ int xdata matrix[3][3]; /* zweidimensionales Array im externen RAM */ sfr P0 = 0x80; /* Port P0 liegt an Adresse 80H im SFR-Bereich*/ char bdata flags; /* 1 Byte im bitadressierbaren Bereich des int. RAM */ sbit flag0 = flags^0; /* 1 Bit des zuvor deklarierten Bytes (Bit 0) */ 7 / 14 MCT_Vorlesung_09_SS2016

8 Beispiel: Timer-Programmierung in C Aufgabe: LEDs blinken lassen, mit 0,1 sec Puls-Dauer (5 Hz) #include <reg5131.h> sbit LED1 = P1^0; /* Bit 0 von Port P1 */ #define TH0_Startwert 0xfc /* (1 msec)*/ #define TL0_Startwert 0x18 /* ergibt fc18 als Startwert */ /* Hauptprogramm */ void main(void) char zaehler; TMOD = 0x01; /* Timer 0 als 16 Bit Timer initialisieren */ TH0 = TH0_Startwert; TL0 = TL0_Startwert; 8 / 14 MCT_Vorlesung_09_SS2016

9 zaehler = 0; /* Zähler für die Schleifendurchläufe */ TF0 = 0; /* Timer 0 Überlauf-Flag löschen */ TR0 = 1; /* Timer 0 Run-Bit setzen (Timer starten) */ while (1) /* Endlosschleife */ if (TF0 == 1) /* d.h.: Timer abgelaufen */ TF0 = 0; TH0 = TH0_Startwert; TL0 = TL0_Startwert; zaehler++; if (zaehler > 100) /* 100 ms */ LED1 = ~LED1; /* LED-Bit invertieren */ zaehler = 0; 9 / 14 MCT_Vorlesung_09_SS2016

10 Interrupt-Programmierung in C Prinzip: Interrupt-Service-Routine (ISR) schreiben = Unterprogramm gekennzeichnet durch Kennwort "interrupt x" x = Nummer des Interrupts Beispiel: Interrupt-Routine für Timer 1 void timer_1_interrupt(void) interrupt 3... Interrupt Nummer entspricht der Anordnung der Interrupt-Vektoren: 0003H Externer Interrupt 0 Interrupt 0 000BH Timer 0 Interrupt Interrupt H Externer Interrupt 1 Interrupt 2 001BH Timer 1 Interrupt Interrupt 3 usw / 14 MCT_Vorlesung_09_SS2016

11 Beispiel: Interrupt-Programmierung Aufgabe: ein Programm, das 1 mal pro Sekunde einen Ton von 100 ms Dauer erzeugt Lösung: 1 Timer für das Einschalten und Ausschalten des Tones 1 Timer für die Ton-Höhe (Lautsprecher ansteuern) #include <reg515.h> sbit Lautsprecher = P3^5; /* Bit 5 von Port P3 */ #define TH0_Startwert 0xfc /* (1 ms)*/ #define TL0_Startwert 0x18 /* ergibt fc18 als Startwert */ #define TH1_Startwert 0xfc /* Ton C 5. Oktave = 523 Hz */ #define TL1_Startwert 0x45 /* ergibt fc45 als Startwert */ int data zaehler; 11 / 14 MCT_Vorlesung_09_SS2016

12 /* Interrupt-Service-Routine für Timer 0 ("Sekunden-Zähler") */ void timer_0_isr(void) interrupt 1 TF0 = 0; TH0 = TH0_Startwert; TL0 = TL0_Startwert; zaehler++; /*Timer0 läuft nach 1 ms ab. Danach wird er neu gestartet und der Zähler um 1 erhöht*/ if (zaehler == 900) /* nach 900 ms */ TF1 = 0; TH1 = TH1_Startwert; TL1 = TL1_Startwert; TR1 = 1; /* Ton-Erzeugung starten */ 12 / 14 MCT_Vorlesung_09_SS2016

13 if (zaehler == 1000) /* nach 1000 ms */ TR1 = 0; /* Ton-Erzeugung beenden */ zaehler = 0; /* Interrupt-Service-Routine für Timer 1 ("Ton-Erzeugung") */ void timer_1_isr(void) interrupt 3 TF1 = 0; TH1 = TH1_Startwert; /* Timer 1 neu starten */ TL1 = TL1_Startwert; Lautsprecher = ~Lautsprecher; /* Lautsprecher-Pin invertieren */ 13 / 14 MCT_Vorlesung_09_SS2016

14 /* Hauptprogramm */ void main(void) TMOD = 0x11; /* Timer 0 und Timer 1 sind 16-Bit Timer */ TR0 = 1; /* Timer 0 starten */ TF0 = 1; /* Timer 0 Flag setzen = Interrupt auslösen */ TR1 = 0; /* Timer 1 nicht starten */ TF1 = 0; /* Timer 0 Flag löschen = Interrupt nicht auslösen */ /* Interrupt Freigabe */ ET0 = 1; /* Timer 0 Interrupt freigeben */ ET1 = 1; /* Timer 1 Interrupt freigeben */ EAL = 1; /* generelle Interrupt-Freigabe */ while (1); /* Endlosschleife */ 14 / 14 MCT_Vorlesung_09_SS2016

8051Speicherorganistaion. SFR u. oberer Datenspeicherbereich teilen sich den SPECIAL FUNCTION REGISTER. gleichen Adreßbereich. indirekt adressierbar

8051Speicherorganistaion. SFR u. oberer Datenspeicherbereich teilen sich den SPECIAL FUNCTION REGISTER. gleichen Adreßbereich. indirekt adressierbar intern (auf CPU) PROGRAMMSPEICHER extern 2K bis 64K ROM 051: 4K max 64K 051:64K 051Speicherorganistaion 13.04.2000 - v3 extern interner XRAM DATENSPEICHER intern (auf CPU) SPECIAL FUNCTION REGISTER SFR

Mehr

Praktikum Mikrorechner 3 (Adressierungsarten)

Praktikum Mikrorechner 3 (Adressierungsarten) G. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/15 Praktikum Mikrorechner 3 (Adressierungsarten) G. Kemnitz Institut für Informatik, Technische Universität Clausthal

Mehr

Dateien, die nicht in das Projekt eingebunden sind, werden ohne Syntax highlight dargestellt. MiCoWi und µvision Seite 1 Uwe Wittenfeld

Dateien, die nicht in das Projekt eingebunden sind, werden ohne Syntax highlight dargestellt. MiCoWi und µvision Seite 1 Uwe Wittenfeld C-Programmierung von MiCoWi mit der Keil-Entwicklungsumgebung µvision4 1. Erstellung eines neuen Projektes Menüpunkt: Project New µvision Project Es wird ein komplett neues Projekt in einem beliebigen

Mehr

EDT-REFERAT Adressierungsarten

EDT-REFERAT Adressierungsarten EDT-Referat BÜLBÜL Erkan 2ANB 95 /96 Seite 1 EDT-REFERAT Adressierungsarten INHALTSVERZEICHNIS 1.Theoretische Grundlagen 1.0 Einführung 1.1 Programm- & Datenspeicheradressierbereiche 2.Adressierungsarten

Mehr

Zähler- und Zeitgeber-Baugruppen

Zähler- und Zeitgeber-Baugruppen Zähler- und Zeitgeber-Baugruppen Sinn: häufig müssen Zeitbedingungen eingehalten werden z.b.: einige ms warten, Häufigkeit von Ereignissen zählen etc... Lösung: 1.) Zeitschleifen = Programm abarbeiten,

Mehr

Praktikum Mikrorechner 11 (Timer 1)

Praktikum Mikrorechner 11 (Timer 1) Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 5. November 2014 1/27 Praktikum Mikrorechner 11 (Timer 1) Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal

Mehr

DHBW Stuttgart Mikrocomputertechnik Labor KEIL Entwicklungsumgebung. Projektstruktur

DHBW Stuttgart Mikrocomputertechnik Labor KEIL Entwicklungsumgebung. Projektstruktur Projektstruktur 25.10.12 K.Kraft D\MCT_Labor_2013\Dokumente\Projektdetails.odt 1 Typischer Aufbau eines 8051 Programms Start Adresse = 0003H External Interrupt 0 ISR Interrupt Service Routinen Start Adresse

Mehr

Komponenten eines Mikrocontrollers

Komponenten eines Mikrocontrollers MC 27.04.2017 Komponenten eines Mikrocontrollers - Zentraleinheit: CPU (Central Processing Unit): 4, 8, 16 oder 32 Bit Datenwortbreite - Arbeitsspeicher: RAM (Random Access Memory = Speicher mit wahlfreiem

Mehr

Hardwareaufbau der Mikrocontroller der 51er -Familie

Hardwareaufbau der Mikrocontroller der 51er -Familie Hardwareaufbau der Mikrocontroller der 51er -Familie Mikrocontroller (51er Familie) Quarz Port Timer A D Serielle Schnittst. CPU ROM RAM Ext. ROM Ext. RAM Programmspeicher (ROM) Datenspeicher (RAM) FFFFh

Mehr

Hardwareaufbau der Mikrocontroller der 51er -Familie

Hardwareaufbau der Mikrocontroller der 51er -Familie Hardwareaufbau der Mikrocontroller der 51er -Familie Mikrocontroller (51er Familie) Quarz Port Timer A D Serielle Schnittst. CPU ROM RAM Ext. ROM Ext. RAM Programmspeicher (ROM) Datenspeicher (RAM) FFFFh

Mehr

Einlesen eines Ports, Interrupt Routinen

Einlesen eines Ports, Interrupt Routinen µc Anwendungsprogrammierung in C Modul 2 / Seite 1 MODUL 2 Einlesen eines Ports, Interrupt Routinen Version 1.1 Dipl.-Ing. Dr. Josef Humer 1997 µc Anwendungsprogrammierung in C Modul 2 / Seite 2 Inhalt

Mehr

MODUL 6 TIMER UND COUNTER

MODUL 6 TIMER UND COUNTER µc Anwendungsprogrammierung in C Modul 6 / Seite 1 MODUL 6 TIMER UND COUNTER V1.1 J. Humer 1997 µc Anwendungsprogrammierung in C Modul 6 / Seite 2 INHALTSVERZEICHNIS MODUL 6 TIMER UND COUNTER Inhalt Seite

Mehr

myavr Programmierung in C

myavr Programmierung in C myavr Programmierung in C Stefan Goebel Februar 2017 Stefan Goebel myavr Programmierung in C Februar 2017 1 / 12 Grundgerüst... braucht man immer! #include // Register- und Konstantendefinitionen

Mehr

4.0 Der Atmel AT89LPx052 Mikrocontroller

4.0 Der Atmel AT89LPx052 Mikrocontroller 4.0 Der Atmel AT89LPx052 Mikrocontroller Die ersten beiden Derivate der Atmel LP Familie sind der AT89LP2052 und der AT89LP4052 in verschiedenen Gehäusevarianten mit 2 Kbytes bzw. 4 KBytes Flash. Gegenüber

Mehr

BMC - Mikrocomputertechnik 2017 Aufgaben & Beispiele

BMC - Mikrocomputertechnik 2017 Aufgaben & Beispiele Programme mit dem Simulator testen start: mov p1,#00001111b mov p1,#11110000b Google sim535 Hernando Vasquez http://hernando-vasquez.software.informer.com/ Seite 1 / 35 Bitmuster auf Port 1 (LED-Zeile)

Mehr

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister)

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/18 Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : Name : Klasse : Punkte : Note : Zeit: 08.00 bis 09.30 Es dürfen alle Unterlagen verwendet werden. Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf

Mehr

Assembler-Unterprogramme

Assembler-Unterprogramme Assembler-Unterprogramme Rolle des Stack Prinzipieller Ablauf Prinzipieller Aufbau Unterprogramme void main(void) int sub(int i) { { int i,k; return i*2; i = sub(13); } k = sub(14); } Wie macht man das

Mehr

Befehlssatz der Mikrocontroller der 51er -Familie

Befehlssatz der Mikrocontroller der 51er -Familie Befehlssatz der Mikrocontroller der 51er -Familie Abkürzungen: Mikrocontrollerfamilie 8051 Befehlssatz A : Akkumulator Rn : Register R0..R7 Ri : R0 oder R1 dadr : direkte Byte-Adresse im int. Speicher

Mehr

Befehlssatz der Mikrocontroller der 51er -Familie

Befehlssatz der Mikrocontroller der 51er -Familie Befehlssatz der Mikrocontroller der 51er -Familie Abkürzungen: Mikrocontrollerfamilie 8051 Befehlssatz A : Akkumulator Rn : Register R0..R7 Ri : R0 oder R1 dadr : direkte Byte-Adresse im int. Speicher

Mehr

MikroController der 8051-Familie

MikroController der 8051-Familie i Dipl.-Ing. Roland Dilsch MikroController der 8051-Familie Aufbau, Funktion, Einsatz Vogel Buchverlag Inhaltsverzeichnis Vorwort 5 1 Was ist ein MikrocontroUer? 13 1.1 Aufbau eines Computers 13 1.2 Entstehung

Mehr

EXF2 TF2 IEX6 IEX5 IEX4 IEX3 IEX2 IADC 0C0H T2PS I3FR I2FR T2R1 T2R0 T2CM T2I1 T2I0 0C8H. AFH AEH ADH ACH ABH AAH A9H A8H Bitdresse

EXF2 TF2 IEX6 IEX5 IEX4 IEX3 IEX2 IADC 0C0H T2PS I3FR I2FR T2R1 T2R0 T2CM T2I1 T2I0 0C8H. AFH AEH ADH ACH ABH AAH A9H A8H Bitdresse Siemens-C515C Special-Function-Register (Subset) MSB 7 6 5 4 3 2 1 LSB 0 COCH3 COCL3 COCH2 COCL2 COCH1 COCL1 COCH0 COCL0 Bit 0C1H CCEN EXF2 TF2 IEX6 IEX5 IEX4 IEX3 IEX2 IADC 0C0H IRCON C7H C6H C5H C4H

Mehr

PIC16 Programmierung in HITECH-C

PIC16 Programmierung in HITECH-C PIC16 Programmierung in HITECH-C Operatoren: Arithmetische Operatoren - binäre Operatoren + Addition - Subtraktion * Multiplikation / Division % Modulo + - * / sind auf ganzzahlige und reelle Operanden

Mehr

Modul 1 C-Programmierung der Familie 8051 Einführung. µc Anwendungsprogrammierung in C Modul 1 / Seite 1. Version 1.0 Dipl. Ing. Dr.

Modul 1 C-Programmierung der Familie 8051 Einführung. µc Anwendungsprogrammierung in C Modul 1 / Seite 1. Version 1.0 Dipl. Ing. Dr. µc Anwendungsprogrammierung in C Modul 1 / Seite 1 Modul 1 C-Programmierung der Familie 8051 Version 1.0 Dipl. Ing. Dr. Josef Humer µc Anwendungsprogrammierung in C Modul 1 / Seite 2 INHALTSVERZEICHNIS

Mehr

Mini- Mikroprozessor-Experimentier-System. Version 1.0b vom :21. mit einem 8051-Mikrocontroller

Mini- Mikroprozessor-Experimentier-System. Version 1.0b vom :21. mit einem 8051-Mikrocontroller Mini- Mikroprozessor-Experimentier-System mit einem 8051-Mikrocontroller Version 1.0b vom 04.10.2004 14:21 Inhalt 1 Einleitung...3 2 Hardware...4 2.1 Übersicht...4 2.2 Mikrocontroller AT89C51RB2...5 2.3

Mehr

Praktikum Mikrorechner 5 (Bitadressen, Sprünge und Schleifen)

Praktikum Mikrorechner 5 (Bitadressen, Sprünge und Schleifen) rof. Kemnitz Institut für Informatik, Technische Universität Clausthal 5. November 2014 1/18 Praktikum Mikrorechner 5 (Bitadressen, Sprünge und Schleifen) Prof. Kemnitz Institut für Informatik, Technische

Mehr

Mikroprozessortechnik Grundlagen 1

Mikroprozessortechnik Grundlagen 1 Grundlagen - Grundbegriffe, Aufbau, Rechnerarchitekturen, Bus, Speicher - Maschinencode, Zahlendarstellung, Datentypen - ATMELmega28 Progammierung in C - Vergleich C und C++ - Anatomie eines µc-programmes

Mehr

Mikrocontrollerplatine vorbereiten

Mikrocontrollerplatine vorbereiten Mikrocontrollerplatine vorbereiten Aufgabe B1 Verbinden Sie einen Tastschalter mit dem Anschluss PD2 und eine Leuchtdiode mit dem Anschluss PD6 (Vorwiderstand nicht vergessen!). Teil B Timer 1 Mikrocontrollerplatine

Mehr

Einführung in die Programmiersprache C und in den C166-Compiler

Einführung in die Programmiersprache C und in den C166-Compiler Einführung in die Programmiersprache C und in den C166-Compiler Die vorliegenden Unterlagen sollen einen kurzen Überblick über die Software-Entwicklung in C geben. Diese Unterlagen erheben keinen Anspruch

Mehr

Vorwort 3 Inhaltsverzeichnis 5 1 Zu diesem Buch Beschreibungskonventionen Glossar 16

Vorwort 3 Inhaltsverzeichnis 5 1 Zu diesem Buch Beschreibungskonventionen Glossar 16 Inhaltsverzeichnis 5 Inhaltsverzeichnis Vorwort 3 Inhaltsverzeichnis 5 1 Zu diesem Buch 14 1.1 Beschreibungskonventionen 15 1.2 Glossar 16 2 Einführung 20 2.1 Aufbau eines Programms 20 H-File (Header-File)

Mehr

Da der Mikrocontroller mit den internen Timern sehr genau Zeiten messen kann, entschieden wir uns für die Zeitmessung.

Da der Mikrocontroller mit den internen Timern sehr genau Zeiten messen kann, entschieden wir uns für die Zeitmessung. Stufe 1: Das Projekt Fahrradcomputer wurde in der Stufe 1 zunächst auf die Messung der Geschwindigkeit gerichtet. Dabei soll der Mikrocontroller die Impulse auswerten, die von einem Sensor an der Fahrradgabel

Mehr

Arithmetische und Logische Einheit (ALU)

Arithmetische und Logische Einheit (ALU) Arithmetische und Logische Einheit (ALU) Enthält Blöcke für logische und arithmetische Operationen. n Bit Worte werden mit n hintereinander geschalteten 1 Bit ALUs bearbeitet. Steuerleitungen bestimmen

Mehr

C.1 Serielle Schnittstelle, erstes Testprogramm (a)

C.1 Serielle Schnittstelle, erstes Testprogramm (a) C.1 Serielle Schnittstelle, erstes Testprogramm (a) Verbinden Sie die Mikrocontrollerplatine mit dem USB-Anschluss Ihres Rechners und laden Sie das abgebildete Testprogramm auf den Mikrocontroller. Es

Mehr

E Mikrocontroller-Programmierung

E Mikrocontroller-Programmierung E Mikrocontroller-Programmierung E Mikrocontroller-Programmierung E.1 Überblick Mikrocontroller-Umgebung Prozessor am Beispiel AVR-Mikrocontroller Speicher Peripherie Programmausführung Programm laden

Mehr

AVR-Mikrocontroller in BASCOM programmieren, Teil 2

AVR-Mikrocontroller in BASCOM programmieren, Teil 2 jean-claude.feltes@education.lu 1 AVR-Mikrocontroller in BASCOM programmieren, Teil 2 13. Interrupts 13.1 Externe Interrupts durch Taster Wenn Taster mittels Polling abgefragt werden, wie in Teil 1 beschrieben,

Mehr

Name: ES2 Klausur Thema: ARM Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 75 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

MOP: Befehlsliste für den Mikrocontroller 8051

MOP: Befehlsliste für den Mikrocontroller 8051 Beuth Hochschule Berlin FB VI, Labor für Digitaltechnik MOP: Befehlsliste für den Mikrocontroller 8051 Erläuterung der Operanden Operand A addr11 addr16 bit /bit C #data #data16 direct DPTR PC Ri Rn rel

Mehr

Programmieren in C. Speicher anfordern, Unions und Bitfelder. Prof. Dr. Nikolaus Wulff

Programmieren in C. Speicher anfordern, Unions und Bitfelder. Prof. Dr. Nikolaus Wulff Programmieren in C Speicher anfordern, Unions und Bitfelder Prof. Dr. Nikolaus Wulff Vergleich: Felder und Strukturen Felder müssen Elemente vom selben Typ enthalten. Strukturen können Elemente unterschiedlichen

Mehr

Tag 2 Eingabe und Interrupts

Tag 2 Eingabe und Interrupts Tag 2 Eingabe und Interrupts 08/30/10 Fachbereich Physik Institut für Kernphysik Bastian Löher, Martin Konrad 1 Taster Direkt an Portpin angeschlossen (etwa PINB0, PIND3) Pull-Up-Widerstände einschalten!

Mehr

Lösung 8051er. Bussysteme IIC - Bus. Klasse:... Datum:...

Lösung 8051er. Bussysteme IIC - Bus. Klasse:... Datum:... /******************************************************************************** CLASS: P8051er Compiler: KeiluV3 PROGRAM: Blinc_C.c AUTHOR: Gerhard Neumaier DATE: 15.Okt 2010 DESCRIPTION: LEDs am Port1

Mehr

Besprechung des 7. Übungsblattes Speicheraufbau Speichertypen DRAM Speicherbelegung

Besprechung des 7. Übungsblattes Speicheraufbau Speichertypen DRAM Speicherbelegung Themen heute Besprechung des 7. Übungsblattes Speicheraufbau Speichertypen DRAM Speicherbelegung Besprechung des 7. Übungsblattes Aufgabe 4a Der eigentliche Sprung erfolgt in der MEM-Phase (4. Pipeline-Stufe),

Mehr

Mikrocontrollertechnik

Mikrocontrollertechnik Aufgaben: Impulse zählen (Zählerfunktion) Zeitintervalle erzeugen (Zeitgeberfunktion) Prinzipschaltbild: Die Programmierung erfolgt mit den Registern TMOD und TCON: timer.doc TSC Seite 1/8 timer.doc TSC

Mehr

Fachhochschule Kaiserslautern Fachbereich Angewandte Ingenieurwissenschaften WS2010/11. Zeitpunkt der Prüfung: 18.01.2011 Beginn: 10.

Fachhochschule Kaiserslautern Fachbereich Angewandte Ingenieurwissenschaften WS2010/11. Zeitpunkt der Prüfung: 18.01.2011 Beginn: 10. Lehrprozessor: Coldfire MCF-5272 Zeitpunkt der Prüfung: 18.01.2011 Beginn: 10.45 Uhr Raum: Aula Bearbeitungszeit: 180 Minuten Erlaubte Hilfsmittel: Gedrucktes Vorlesungsskript von Prof. Neuschwander mit

Mehr

Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, Maschinenorientierte Programmierung

Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, Maschinenorientierte Programmierung Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, 07.05.2018 Maschinenorientierte Programmierung Seite 2 Assemblersyntax des 8051 Maschinenorientierte

Mehr

Gegenüberstellung von Assembler- und C-Programmierung

Gegenüberstellung von Assembler- und C-Programmierung Gegenüberstellung von Assembler- und C-Programmierung Assembler-Version C-Version org 8000h #pragma code=0x8000 #pragma xdata=0x2000 INPUT equ 0e081h OUTPUT equ 0e082h neu: mov dptr,#input movx a,@dptr

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 10 AM 01./02.07.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Interrupts. Funktionsprinzip. Funktionsprinzip. Beispiel in C

Interrupts. Funktionsprinzip. Funktionsprinzip. Beispiel in C Interrupts Funktionsprinzip Interrupts bei ATmega128 Beispiel in C Funktionsprinzip 1 Was ist ein Interrupt? C muss auf Ereignisse reagieren können, z.b.: - jemand drückt eine Taste - USART hat Daten empfangen

Mehr

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c 1 Transportbefehle 1.1 Verwendung nur Akku und Register (R0, R1,... R7) 1.1.1 Kopieren Sie den Wert aus Register1 nach

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Microcontroller Praktikum SS2010 Dipl. Ing. R. Reisch

Microcontroller Praktikum SS2010 Dipl. Ing. R. Reisch Microcontroller Praktikum SS2010 Dipl. Ing. R. Reisch Die wichtigsten Unterlagen/Tools Für das Praktikum Unterlagen/Kenntnisse/Tools wichtig: Datenblatt des AT80USB1287 µc Schaltplan des im Praktikum verwendeten

Mehr

Praktikum Mikrorechner 9 (serielle Schnittstelle)

Praktikum Mikrorechner 9 (serielle Schnittstelle) Prof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 5. November 2014 1/13 Praktikum Mikrorechner 9 (serielle Schnittstelle) Prof. G. Kemnitz Institut für Informatik, Technische Universität

Mehr

Serielle Schnittstelle, erstes Testprogramm (a)

Serielle Schnittstelle, erstes Testprogramm (a) Serielle Schnittstelle, erstes Testprogramm (a) Aufgabe C1 Verbinden Sie die Mikrocontrollerplatine mit dem USB-Anschluss Ihres Rechners und laden Sie das abgebildete Testprogramm auf den Mikrocontroller.

Mehr

Lehrfach: Mikrorechentechnik Versuch: Zeitmessung

Lehrfach: Mikrorechentechnik Versuch: Zeitmessung ZM P_51_004_NEU. doc Lehrfach: Mikrorechentechnik Versuch: Zeitmessung Oc Hochschule Zittau/Görlitz; Fachbereich Elektro- und Informationstechnik Prof. Dr.-Ing. Kühne April 2005 Bearb.:Dipl.-Ing. Sbieschni

Mehr

$NOMOD51 $INCLUDE (reg515.inc) ; Ein Zeichen auf Tastendruck S1 senden...

$NOMOD51 $INCLUDE (reg515.inc) ; Ein Zeichen auf Tastendruck S1 senden... MC SS2016 - Aufgabenblatt 11a - Übung 4 Serielle Schnittstelle - Zeichen sen & empfangen In diesem Versuch lernen Sie die serielle Schnittstelle des AT89C5131 Mikrocontrollers kennen. Im ersten Versuchsteil

Mehr

8. Beschreibung des Prozessors MSP 430

8. Beschreibung des Prozessors MSP 430 8. Beschreibung des Prozessors MSP 430 8.1 Die Eigenschaften des MSP 430 8.2 Die Register des MSP 430 8.3 Der Aufbau des Speichers 8.4 Interrupts 8.5 Der Watchdog Programmierkurs II Wolfgang Effelsberg

Mehr

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 95 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

PicAxe M2 - Das Speicherkompendium. Ausgabe Matthias Heuschele / SSE

PicAxe M2 - Das Speicherkompendium. Ausgabe Matthias Heuschele / SSE PicAxe M2 - Das Speicherkompendium Alles über RAM, Eeprom & Lookup-Table der PicAxe M2 Typen Ausgabe 03-2017 Matthias Heuschele / SSE Das Speicherkompendium zur PicAxe M2 Inhaltsverzeichnis Der PicAxe

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Speicherverwaltung und Parameterübergabe Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/fischer Gültigkeitsbereich von

Mehr

C und C++ für Embedded Systems

C und C++ für Embedded Systems C und C++ für Embedded Systems von Friedrich Bollow, Matthias Homann, Klaus-Peter Köhn Neuausgabe C und C++ für Embedded Systems Bollow / Homann / Köhn schnell und portofrei erhältlich bei beck-shop.de

Mehr

Übersicht. Speichertypen. Speicherverwaltung und -nutzung. Programmieren in C

Übersicht. Speichertypen. Speicherverwaltung und -nutzung. Programmieren in C Übersicht Speichertypen Speicherverwaltung und -nutzung Speichertypen Beim Laden eines Programms in den Speicher (Programmausführung) kommen 3 verschiedene Speicherbereiche zum Einsatz: Text Segment (Code

Mehr

8. Massenspeicher und Dateisysteme

8. Massenspeicher und Dateisysteme Abb. 8.1: Größenverhältnisse bei einer Festplatte Abb. 8.2: Festplattencontroller und Laufwerk Abb. 8.3: FM- und MFM-Format des Bytes 01101001 Datenbit RLL 2,7-Code 000 00100 10 0100 010 100100 0010 00100100

Mehr

IR NEC Empfänger mit 4x7 LED Anzeige (ATtiny2313)

IR NEC Empfänger mit 4x7 LED Anzeige (ATtiny2313) // Include C Libriaries #include #define F_CPU 4000000UL #include #include #include #include // Definition der Segmente #define SEG_O

Mehr

Name : Klasse : Punkte : Note :

Name : Klasse : Punkte : Note : ESI Semesterendprüfung 15.6.2009 Name : Klasse : Punkte : Note : Zeit: 12.50 bis 13.35 Die Aufgaben sind möglichst direkt auf den Blättern zu lösen (Antworten bitte in ganzen Sätzen!), bei Bedarf die Rückseite

Mehr

Aufbau eines Assembler-Programms

Aufbau eines Assembler-Programms Aufbau eines Assembler-Programms. Assembler-Anweisungen (Direktiven) Einbindung von include-files Definition von Konstanten, Reservierung von Speicherplatz im RAM, 2. Was tun, wenn C Reset-Signal erhält

Mehr

Laborprotokoll Informationstechnologien

Laborprotokoll Informationstechnologien Laborprotokoll Informationstechnologien Mikrocontroller-Programmierung (C 51) TKS 2004, Sommersemester 2004/05 Klaus Roleff Andreas Unterweger Klaus Roleff, Andreas Unterweger ITLB2 Seite 1 von 18 Übung

Mehr

Dynamische Speicherverwaltung

Dynamische Speicherverwaltung Dynamische Speicherverwaltung 1/ 23 Dynamische Speicherverwaltung Tim Dobert 17.05.2013 Dynamische Speicherverwaltung 2/ 23 Gliederung 1 Allgemeines zur Speichernutzung 2 Ziele und Nutzen 3 Anwendung in

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik Themenübersicht Rechnertechnik und IT Sicherheit Grundlagen der Rechnertechnik Prozessorarchitekturen

Mehr

Programmierkurs C++ Variablen und Datentypen

Programmierkurs C++ Variablen und Datentypen Programmierkurs C++ Variablen und Datentypen Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/fischer #2 Überblick Welche Datentypen gibt es in

Mehr

4 Formelsammlung C/C++

4 Formelsammlung C/C++ 4 Formelsammlung C/C++ 4.1 Datentypen Datentyp stdint.h type Bits Sign Wertebereich (unsigned) char uint8_t 8 Unsigned 0.. 255 signed char int8_t 8 Signed -128.. 127 unsigned short uint16_t 16 Unsigned

Mehr

GI Vektoren

GI Vektoren Vektoren Problem: Beispiel: viele Variablen vom gleichen Typ abspeichern Text ( = viele char-variablen), Ergebnisse einer Meßreihe ( = viele int-variablen) hierfür: Vektoren ( = Arrays = Feld ) = Ansammlung

Mehr

WS 2016/17 Viel Erfolg!!

WS 2016/17 Viel Erfolg!! Hochschule München FK03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Komponenten & Programmierung von Automatisierungssystemen Matr.-Nr.: Name, Vorname: Hörsaal: Unterschrift: Seite 1 von 11 Prof.

Mehr

Atmega Interrupts. Rachid Abdallah Gruppe 3 Betreuer : Benjamin Bös

Atmega Interrupts. Rachid Abdallah Gruppe 3 Betreuer : Benjamin Bös Atmega Interrupts Rachid Abdallah Gruppe 3 Betreuer : Benjamin Bös Inhaltsverzeichnis Vorbereitung Was Sind Interrupts Interruptvektoren Software Interrupts Hardware Interrupts Quellen 2 Vorbereitung Rechner

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 2 AM 06./07.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Bernd-Dieter Schaaf Mikrocomputertechnik Mit MikroControllern der Familie 8051 unter Mitarbeit von Stephan Böcker 5., aktualisierte Auflage mit zahlreichen Bildern, Beispielen und Übungen HANSER 1 Der

Mehr

Maschinenorientierte Programmierung

Maschinenorientierte Programmierung Prof. Dr. Sven-Hendrik Voß Wintersemester 2015 Technische Informatik (Bachelor), Semester 2 Termin 10, 08.12.2015 Maschinenorientierte Programmierung Seite 2 Timer- und Counter-Programmierung Maschinenorientierte

Mehr

Professionelle Softwareentwicklung für Mikrocontroller Inbetriebnahme des C167CR Starter Kits I. DAvE - Digitaler Applikationsingenieur

Professionelle Softwareentwicklung für Mikrocontroller Inbetriebnahme des C167CR Starter Kits I. DAvE - Digitaler Applikationsingenieur Professionelle Softwareentwicklung für Mikrocontroller DAvE - Digitaler Applikationsingenieur Inbetriebnahme des C167CR Starter Kits Wilhelm Brezovits Dieser Artikel soll zu einem Erfolgserlebnis beitragen.

Mehr

Grundlagen der Informatik 11. Zeiger

Grundlagen der Informatik 11. Zeiger 11. Zeiger Motivation Zeiger und Adressen Zeiger und Funktionen Zeiger und Arrays Dynamische Objekte Grundlagen der Informatik (Alex Rempel) 1 Motivation Dynamische Speicherverwaltung Oft müssen große

Mehr

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur 0. Assembler-Programmierung Datenstrukturen des ATMega32 Literatur mikrocontroller.net avr-asm-tutorial.net asm Alles über AVR AVR-Assembler-Einführung Assembler AVR-Aufbau, Register, Befehle 2008: ouravr.com/attachment/microschematic/index.swf

Mehr

8051-Mikrocontroller-Familie

8051-Mikrocontroller-Familie 8051-Mikrocontroller-Familie 8051-Komponenten und -Eigenschaften Prof. Dr.-Ing. Alfred Rożek MC65-Teil1.doc 1/17 Prof. Dr.-Ing. Alfred Rożek MC65-Teil1.doc 2/17 Prof. Dr.-Ing. Alfred Rożek MC65-Teil1.doc

Mehr

11: Echtzeitbetriebssystem ucos-ii

11: Echtzeitbetriebssystem ucos-ii 11: Echtzeitbetriebssystem ucos-ii Sie lernen anhand aufeinander aufbauender Übungen, welche Möglichkeiten ein Echtzeitbetriebssystem wie das ucosii bietet und wie sich damit MC-Applikationen realisieren

Mehr

verzeichnis Bernd-Dieter Schaaf, Peter Wissemann, Stephan Böcker Mikrocomputertechnik

verzeichnis Bernd-Dieter Schaaf, Peter Wissemann, Stephan Böcker Mikrocomputertechnik verzeichnis Bernd-Dieter Schaaf, Peter Wissemann, Stephan Böcker Mikrocomputertechnik Aktuelle Controller 8051: Funktionsweise, äußere Beschaltung und Programmierung ISBN (Buch): 978-3-446-43078-5 ISBN

Mehr

Prinzipieller Grundaufbau eines einfachen C-Programmes

Prinzipieller Grundaufbau eines einfachen C-Programmes Prinzipieller Grundaufbau eines einfachen C-Programmes C unterscheidet zwischen Groß- und Kleinschreibung! Siehe zu den folgenden Erklärungen auch das Programm am Ende der nächsten Seite. Am Anfang aller

Mehr

Architektur der Intel 8051 Familie und Grundlegende Programmierung Reto Gurtner 2005

Architektur der Intel 8051 Familie und Grundlegende Programmierung Reto Gurtner 2005 Architektur der Intel 8051 Familie und Grundlegende Programmierung Reto Gurtner 2005 1 1. DIE GESCHICHTE DER 8051-MIKROCONTROLLERFAMILE 4 2. GRUNDLEGENDE HARDWARESTRUKTUR UND FUNKTIONSMODELL 5 2.1 HARDWARESTRUKTUR

Mehr

UART und Interrupts. Versuch Nr. 7

UART und Interrupts. Versuch Nr. 7 Universität Koblenz Landau Name:..... Institut für Physik Vorname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... UART und Interrupts Versuch Nr. 7 Vorkenntnisse: Aufbau und Arbeitsweise einer

Mehr

U5-2 Register beim AVR-µC

U5-2 Register beim AVR-µC U5 4. Übungsaufgabe U5 4. Übungsaufgabe U5-2 Register beim AVR-µC U5-2 Register beim AVR-mC Grundlegendes zur Übung mit dem AVR-µC 1 Überblick Register Beim AVR µc sind die Register: I/O Ports Interrupts

Mehr

2

2 TINF Interrupts EDT-Referat Jürgen Schwarzbauer 2ANB 1995/96 Inhalt : Was ist ein Interrupt? Zweck von Interrupts Maskierbare und nicht maskierbare Interrupts Aufruf eines Interrupts Anwendung von Interrupts

Mehr

Programmierübungen in Assembler

Programmierübungen in Assembler Programmierübungen in Assembler 1. LED Ein-/Ausschalten Verwendet: Ports An Portpin P3.0 ist eine LED angeschlossen. An Portpin P1.0 ist ein Taster angeschlossen. a) Schreiben Sie ein Programm, welches

Mehr

C++ Teil 7. Sven Groß. 30. Nov Sven Groß (IGPM, RWTH Aachen) C++ Teil Nov / 13

C++ Teil 7. Sven Groß. 30. Nov Sven Groß (IGPM, RWTH Aachen) C++ Teil Nov / 13 C++ Teil 7 Sven Groß 30. Nov 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 7 30. Nov 2015 1 / 13 Themen der letzten Vorlesung Zeiger, Felder (Wdh.) dynamische Speicherverwaltung Sven Groß (IGPM, RWTH Aachen)

Mehr

Ram/Rom/EPRom WIRTSCHAFTSINGENIEURSWESEN. Ausbildungsschwerpunkte: BETRIEBSMANAGEMENT LOGISTIK. Xaver Schweitzer. Jahr: 2011/12

Ram/Rom/EPRom WIRTSCHAFTSINGENIEURSWESEN. Ausbildungsschwerpunkte: BETRIEBSMANAGEMENT LOGISTIK. Xaver Schweitzer. Jahr: 2011/12 Name: Klasse: Xaver Schweitzer 1BHWI Jahr: 2011/12 Ram/Rom/EPRom Abb. 1 Abb. 2 Abb. 3 Ram Rom EPRom 22.09.2011 1 von 10 Inhaltsverzeichnis INHALTSVERZEICHNIS... 2 EINLEITUNG... 3 RAM... 4 SRAM - Static

Mehr

Displaysteuerung: ATmega32u4. HTL St.Pölten. EL Autor: Kuran. Displaysteuerung Fachspezifische Softwaretechnik 2

Displaysteuerung: ATmega32u4. HTL St.Pölten. EL Autor: Kuran. Displaysteuerung Fachspezifische Softwaretechnik 2 isplaysteuerung Fachspezifische Softwaretechnik 2 Skriptum 208 HTL St.ölten Elektronik und Technische Informatik EL Autor: Kuran isplaysteuerung: Für einen µc des Typs ATmega32u4, an dem ein isplay (Hitachi

Mehr

µversion 2 Einführung

µversion 2 Einführung µversion 2 Einführung V1.0 F. Wolf Graz, September 2002 Inhaltsverzeichnis 1 Keil Mikroprozessor-Entwicklungsumgebung 1 2 Menübeschreibung 1 2.1 Hauptmenü 2 2.2 Compilermenü 2 2.3 Debugermenü 2 3 Projekt

Mehr

8. SPS Komponenten: Beschreibung der Hardware-Komponenten einer SPS samt deren Eigenschaften

8. SPS Komponenten: Beschreibung der Hardware-Komponenten einer SPS samt deren Eigenschaften 8. SPS Komponenten: Beschreibung der Hardware-Komponenten einer SPS samt deren Eigenschaften Automatisierungsgerät: Zentralbaugruppe mit Prozessor Kommunikationsbaugruppe (Feldbusanschaltung) Bussysteme

Mehr

Microcontroller Kurs Programmieren. 09.10.11 Microcontroller Kurs/Johannes Fuchs 1

Microcontroller Kurs Programmieren. 09.10.11 Microcontroller Kurs/Johannes Fuchs 1 Microcontroller Kurs Programmieren 9.1.11 Microcontroller Kurs/Johannes Fuchs 1 General Purpose Input Output (GPIO) Jeder der Pins der vier I/O Ports kann als Eingabe- oder Ausgabe-leitung benutzt werden.

Mehr

Einführung in das Mikrocontroller-System 80(C)515/80(C)535

Einführung in das Mikrocontroller-System 80(C)515/80(C)535 Seite 2 von 228 Inhalt Seite 1 Einführung... 7 2 Grundzüge der Architektur... 10 2.1 Die CPU... 10 2.2 Die Speicherorganisation... 10 2.3 Die externe Buserweiterung... 10 2.4 Die integrierten Peripheriekomponenten...

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Mikrocomputertechnik Mit Mikrocontrollern der Familie 8051 von Bernd-Dieter Schaaf 5., aktualisierte Auflage Hanser München 2010 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 41761 8 Zu Leseprobe

Mehr

Viel Erfolg bei der Bearbeitung der Aufgaben!

Viel Erfolg bei der Bearbeitung der Aufgaben! Musterlösung Name:... 1 2 3 4 5 Gesamt Note 12 8 10 15 11 56 Bitte tragen Sie auf dem Deckblatt Ihr Namen und Ihre Matrikelnummer ein und auf allen weiteren Seiten nur noch Ihre Matrikelnummer. Lösungen

Mehr

Studiengang Maschinenbau, Schwerpunkt Mechatronik (früher: Automatisierungstechnik) Seite 1 von 8

Studiengang Maschinenbau, Schwerpunkt Mechatronik (früher: Automatisierungstechnik) Seite 1 von 8 Studiengang Maschinenbau, Schwerpunkt Mechatronik (früher: Automatisierungstechnik) Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Viel Erfolg!! Komponenten

Mehr

Grundlagen der Objektorientierung :

Grundlagen der Objektorientierung : Grundlagen der Objektorientierung : Objektorientierung ermöglicht (unter anderem), daß man Software, die von einem selbst, meist aber von Anderen geschrieben ist, komfortabel nochmal verwenden kann. Diese

Mehr