46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 5 Aufgaben

Größe: px
Ab Seite anzeigen:

Download "46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 5 Aufgaben"

Transkript

1 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 5 ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar sein. Du musst also auch erklären, wie du zu Ergebnissen bzw. Teilergebnissen gelangt bist. Stelle deinen Lösungsweg logisch korrekt und in grammatisch einwandfreien Sätzen dar Setze folgende Zahlenreihen fort, indem du die Zahlen auf den freien Plätzen hinschreibst und angibst, wie du die Zahlen gefunden hast und wie du die nächsten Zahlen finden würdest. a) b) c) d) e) f) Eine meise läuft auf Gitterlinien von nach B. Von einem Gitterpunkt zum nächsten ist es immer ein Meter. Bestimme, wie weit die meise mindestens laufen muss, und wie viele verschiedene Wege mit dieser kürzesten Länge sie zur Verfügung hat. a) Sie läuft auf dem Quadrat in bbildung a. b) Sie läuft auf dem Rechteck in bbildung b. c) Sie läuft auf dem Würfel in bbildung c. B B F B E G D H C bbildung a bbildung b bbildung c

2 In den dargestellten Figuren in bbildung werden Zahlen eingetragen. Man beginnt im linken unteren Halbkreis und vergrößert die Zahlen in den Halbkreisen entgegen dem Uhrzeigersinn jeweils um den gleichen Betrag. In jedes Dreieck kommt die Summe der Nachbarzahlen. In der Mitte steht die Summe der vier Zahlen aus den Dreiecken. a) Ergänze entsprechend der Vorschrift die Zahlen in den leeren Feldern der Figur 1! b) Ergänze entsprechend der Vorschrift die Zahlen in den leeren Feldern der Figur 2! c) Bilde bei den Figuren 1 und 2 die Summe der Zahlen aus den Halbkreisen und vergleiche sie mit der Zahl in der Mitte. Erkennst du einen Zusammenhang? Wenn ja, dann beschreibe ihn! d) Ergänze entsprechend der Vorschrift die Zahlen in den leeren Feldern der Figur 3! Figur 1 Figur 2 60 bbildung Figur Ein Käfer sitzt auf kariertem Papier. Die Linien des karierten Papiers bilden ein Gitter n einem Gitterpunkt fängt er an, auf den Linien zu laufen. Wenn er seine Laufrichtung ändert, biegt er immer links ab. Ganz am nfang läuft er zunächst eine Karolänge (KL) nach links. Dann biegt er ab und läuft wieder eine KL. Dann biegt er ab und läuft 2 KL, biegt wieder ab und läuft wieder 2 KL. Dann biegt er wieder ab und läuft 3 KL, biegt wieder ab und läuft wieder 3 KL und so weiter. ußerdem zählt er immer mit, wie viele KL er seit seinem Start zurückgelegt hat. a) ls er 100 KL zurückgelegt hat, stoppt er erstmals wegen Müdigkeit. Zeichne seinen Weg bis zu diesem Stopp. Wie häufig ist er bisher abgebogen? b) Der Käfer überlegt sich, wie viele KL er laufen müsste, um schnellstmöglich über das Gitter zu seinem usgangspunkt zurückzukehren. Welchen Wert erhält er? c) Der Käfer entscheidet sich, seine ursprüngliche Gangart fortzusetzen. Nach weiteren 100 KL muss er wieder wegen Erschöpfung eine Pause machen. Er stellt aber fest, dass er sich noch nicht an einem bbiegepunkt befindet. Wie weit muss er bis zum nächsten bbiegepunkt noch laufen? d) Der Käfer befindet sich bei seinem Marsch wieder einmal an einem bbiegepunkt. Inzwischen ist er etwas vergesslich geworden: Er weiß nur noch, wie viele KL er seit dem letzten bbiegepunkt gelaufen ist. Kann er daraus eindeutig bestimmen, wie weit es auf dem kürzesten Weg zum usgangspunkt ist?

3 Gegeben ist ein Rechteck mit den Seitenlängen 6 cm und 9 cm (siehe nicht maßstäbliche bbildung ). Jede Seite wurde in sechs gleich große bschnitte eingeteilt. Dadurch entstehen auf jeder Rechtecksseite fünf Punkte. Diese Punkte sind in einer besonderen Weise miteinander verbunden worden. bbildung Innerhalb des Rechtecks kann man nun fünf Parallelogramme finden, deren Eckpunkte auf den Rechteckseiten liegen. Eins dieser Parallelogramme wurde stärker umrandet. a) Zeichne nun dieses Rechteck mit den Parallelogrammen selbst. Umrande jedes dieser Parallelogramme mit einer anderen Farbe. b) Jede farbige Linie gibt jeweils den Umfang eines Parallelogramms an. Vergleiche die Umfänge der fünf Parallelogramme miteinander. Was stellst du fest? c) Innerhalb des Linienzuges einer Farbe liegt der Flächeninhalt des Parallelogramms. Vergleiche den Flächeninhalt der fünf Parallelogramme! Die sieben Zwerge kommen zu Schneewittchen. Ich habe dir Pilze mitgebracht, sagt der erste Zwerg. Oh ja, ich auch, und ich habe dir sogar zwei Pilze mehr mitgebracht, sagt der zweite Zwerg. Der dritte Zwerg hat drei Pilze mehr mitgebracht als der zweite, der vierte vier Pilze mehr als der dritte, der fünfte fünf mehr als der vierte, der sechste sechs mehr als der fünfte. Der siebente Zwerg bringt Schneewittchen eine blaue Blume, keine Pilze. Das macht nichts, sagen die Zwerge. Wenn wir alle unsere Pilze zusammen tun und dann gleichmäßig auf uns sieben Zwerge verteilen, dann kannst du Schneewittchen auch 26 Pilze geben. Wie viele Pilze hatte der erste Zwerg gesammelt?

4 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 6 ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar sein. Du musst also auch erklären, wie du zu Ergebnissen bzw. Teilergebnissen gelangt bist. Stelle deinen Lösungsweg logisch korrekt und in grammatisch einwandfreien Sätzen dar Eine meise läuft auf Gitterlinien von nach B. Von einem Gitterpunkt zum nächsten ist es immer ein Meter. Bestimme, wie weit die meise mindestens laufen muss, und wie viele verschiedene Wege mit dieser kürzesten Länge sie zur Verfügung hat. a) Sie läuft auf dem Quadrat in bbildung a. b) Sie läuft auf dem Rechteck in bbildung b. c) Sie läuft auf dem Würfel in bbildung c. B B F B E G H D C bbildung a bbildung b bbildung c Gegeben sind die vier aufeinander folgenden Zahlen 554, 555, 556 und 557. a) Bilde die Summe dieser vier Zahlen (und nenne diese Zahl S 1 )! Bilde alle möglichen Summen aus zwei dieser Zahlen und addiere diese Summen. (Diese Gesamtsumme soll S 2 heißen.) b) Zufall oder nicht? Überprüfe den Zusammenhang zwischen S 1 und S 2. Wähle dir vier andere, aufeinander folgende Zahlen, bilde wieder die Summen S 1 und S 2. Zeigt sich derselbe Zusammenhang? c) Was ändert sich, wenn nicht mehr gefordert wird, dass die vier Zahlen aufeinander folgen, sondern nur noch, dass sie jeweils den gleichen bstand haben (wie z. B. 1002, 1007, 1012 und 1017)? d) Versuche, deine Beobachtungen zu begründen!

5 Gegeben ist ein rechtwinkliges Dreieck BC, wie in der nebenstehender bbildung zu sehen ist. Dieses wird jeweils viermal in Uhrzeigerrichtung um 90 um einen vorgegebenen Punkt gedreht. Die neu entstandenen Punkte werden entgegen dem Uhrzeigersinn fortlaufend bezeichnet. Zuerst wird das Dreieck BC nach der oben genannten Vorschrift B um B gedreht, das neue Dreieck heißt dann BDE. Dieses Dreieck BDE wird nun entsprechend um D gedreht, das neu entstandene bbildung Dreieck heißt DF G. Das Dreieck DF G wird um G gedreht. Das neue entstandene Dreieck heißt CHG, weil ein Eckpunkt dieses Dreiecks auf den Punkt C des ersten Dreiecks abgebildet wird. a) Führe diese Konstruktion für das vorgegebene Dreieck aus. b) Es entsteht ein Streckenzug BEDF GHC. Wie lang ist dieser Streckenzug? c) Wie groß ist der Flächeninhalt der vom Streckenzug eingeschlossenen Fläche? Gib ihn in Einheitsquadraten an! d) Vergleiche den Flächeninhalt der umrandeten Figur mit dem Flächeninhalt des gegebenen Dreiecks BC! C Ein Käfer sitzt auf kariertem Papier. Die Linien des karierten Papiers bilden ein Gitter n einem Gitterpunkt fängt er an, auf den Linien zu laufen. Wenn er seine Laufrichtung ändert, biegt er immer links ab. Ganz am nfang läuft er zunächst eine Karolänge (KL) nach links. Dann biegt er ab und läuft wieder eine KL. Dann biegt er ab und läuft 2 KL, biegt wieder ab und läuft wieder 2 KL. Dann biegt er wieder ab und läuft 3 KL, biegt wieder ab und läuft wieder 3 KL und so weiter. ußerdem zählt er immer mit, wie viele KL er seit seinem Start zurückgelegt hat. a) ls er 100 KL zurückgelegt hat, stoppt er erstmals wegen Müdigkeit. Zeichne seinen Weg bis zu diesem Stopp. Wie häufig ist er bisher abgebogen? b) Der Käfer überlegt sich, wie viele KL er laufen müsste, um schnellstmöglich über das Gitter zu seinem usgangspunkt zurückzukehren. Welchen Wert erhält er? c) Der Käfer entscheidet sich, seine ursprüngliche Gangart fortzusetzen. Nach weiteren 100 KL muss er wieder wegen Erschöpfung eine Pause machen. Er stellt aber fest, dass er sich noch nicht an einem bbiegepunkt befindet. Wie weit muss er bis zum nächsten bbiegepunkt noch laufen? d) Der Käfer befindet sich bei seinem Marsch wieder einmal an einem bbiegepunkt. Inzwischen ist er etwas vergesslich geworden: Er weiß nur noch, wie viele KL er seit dem letzten bbiegepunkt gelaufen ist. Kann er daraus eindeutig bestimmen, wie weit es auf dem kürzesten Weg zum usgangspunkt ist?

6 Im Lande Senturien gibt es nur Münzen zu 5 Sent und zu 7 Sent. Offensichtlich ist der kleinste Preis überhaupt, den man bezahlen kann, ohne Rückgeld zu erhalten, 5 Sent, dann kommen 7 Sent und dann 10 Sent. Wir bleiben bei dieser ufgabe bei der Situation, dass man beim Bezahlen keine Münzen zurückerhält. a) Man kann in Senturien keine Preise von 6 Sent oder von 8 Sent oder 9 Sent bezahlen. Gib für alle Preise bis 36 Sent an, ob man sie bezahlen kann oder nicht. b) Gibt es höhere Preise als 36 Sent, die man nicht bezahlen kann? Begründe deine ntwort. c) Welches ist der kleinste Preis, den man auf zwei rten (also mit zwei verschiedenen Kombinationen von Münzen) mit diesen Münzen bezahlen kann? d) Benachbart zu Senturien ist dein Phantasieland. Hier soll es auch nur zwei Münzarten geben, die zusammen 15 Sent wert sind (aber sinnvoller Weise sollen keine 1-Sent-Münzen dabei sein). Wähle zwei solcher Münzarten aus und beantworte die Fragen a), b) und c) mit diesen neuen Werten. Zu welchen Vermutungen kommst du?

7 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 7 ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar sein. Du musst also auch erklären, wie du zu Ergebnissen bzw. Teilergebnissen gelangt bist. Stelle deinen Lösungsweg logisch korrekt und in grammatisch einwandfreien Sätzen dar Die Fußballmannschaften des Nordgymnasiums und des Südgymnasiums trugen zwei Freundschaftsspiele aus, wobei insgesamt 13 Tore geschossen wurden. Das erste Spiel endete unentschieden. Im zweiten Spiel fielen mehr Tore als im ersten Spiel, und zwar erzielte die Mannschaft des Nordgymnasiums im zweiten Spiel doppelt so viele Tore wie die Mannschaft des Südgymnasiums. a) Wie endeten die beiden Spiele? b) Untersuche, ob diese ufgabe auch dann eindeutig lösbar ist, wenn man nicht weiß, dass im zweiten Spiel mehr Tore als im ersten Spiel fielen Ein Wanderer und ein Radfahrer kommen auf einer Straße einander entgegen. Der Wanderer hat eine mittlere Geschwindigkeit von 4,5 Kilometer in einer Stunde, der Radfahrer ist fünfmal so schnell. Die beiden sind jetzt 2,7 Kilometer voneinander entfernt. Wie viel Zeit vergeht, bis sie wieder 2,7 Kilometer voneinander entfernt sind?

8 Die nebenstehende bbildung ( ) zeigt ein Brett, auf dem neun Nägel in einer quadratischen nordnung angebracht sind. Der bstand zweier benachbarter Nägel betrage sowohl waagerecht als auch senkrecht jeweils 1 cm (die bbildung ist nicht maßstäblich). Im Folgenden sind diese Nägel als Punkte anzusehen. a) Man kann um drei Nägel einen Faden so spannen, dass diese Nägel die Eckpunkte eines Dreiecks bilden und kein anderer Nagel auf einer der Seiten dieses Dreiecks liegt. Gib drei derartige Dreiecke an, die nicht deckungsgleich sind. bbildung b) Man kann um fünf Nägel einen Faden so spannen, dass vier dieser Nägel die Eckpunkte eines Vierecks bilden und der fünfte Nagel auf einer der Seiten dieses Vierecks liegt. Gib zwei derartige Vierecke an, wobei das eine Viereck einen, das andere Viereck keinen Nagel im Inneren enthält. c) Es sei n die nzahl der Nägel, die Ecken eines Vielecks sind oder auf dem Rand dieses Vielecks liegen, wobei außerdem vorausgesetzt wird, dass im Inneren dieses Vielecks jeweils ein Nagel liegen soll und dass dieses Vieleck den linken Punkt der unteren Zeile als Eckpunkt besitzt. Dann gilt offenbar 3 n 8. Zeichne für jedes n ein solches Vieleck. d) Ermittle den Flächeninhalt deiner in Teil c) gezeichneten Vielecke und untersuche den Zusammenhang zwischen n und. Stelle eine Gleichung auf, die diesen Zusammenhang beschreibt Wie viele natürliche Zahlen n mit 1 n 2006 erfüllen die Gleichung [ n ] [ n ] [ n ] + + = n n 3 + n 4? Hinweis: Dabei bedeutet [x] die so genannte Gauß-Klammer von x: [x] ist die größte ganze Zahl kleiner oder gleich x. Beispiele: [7] = 7, [0,99] = 0, [556,01] = 556.

9 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 8 ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar sein. Du musst also auch erklären, wie du zu Ergebnissen bzw. Teilergebnissen gelangt bist. Stelle deinen Lösungsweg logisch korrekt und in grammatisch einwandfreien Sätzen dar Wenn in einen Wasserbehälter in jeder Minute 4 Liter Wasser fließen, so werden nach einer gewissen Zeit noch 60 Liter fehlen, bis der Wasserbehälter voll ist. Wenn dagegen pro Minute 6 Liter hineinfließen, so werden nach derselben Zeit schon 10 Liter übergelaufen sein. Wie viel Liter fasst der Wasserbehälter? Die Oberflächeninhalte zweier Würfel mit ganzzahligen Kantenlängen, von denen der größere eine um 22 cm längere Kante als der kleinere hat, unterscheiden sich um cm 2 voneinander. a) Berechne die Länge der Kanten der beiden Würfel. b) Ermittle alle Lösungen, wenn man die Bedingung weglässt, dass die Differenz der Kantenlängen 22 cm betragen soll Bernd soll große Zahlen in Primfaktoren zerlegen. Er kennt Teilbarkeitsregeln für die Primfaktoren 2, 3, 5 und 11, aber keine für 7. Ich kenne eine, verstehe sie aber nicht, sagt ihm sein Freund Rolf: Nimm an, du hast eine sechsstellige Zahl z aus den Ziffern a, b, c, d, e und f, also z = abcdef. Trenne die vorderen 3 Ziffern abc ab und schreibe sie unter die letzten 3 Ziffern. Subtrahiere die beiden so erhaltenen dreistelligen Zahlen so voneinander, dass eine nicht negative Differenz entsteht (d. h. betrachte den Betrag dieser Differenz). Ist diese Differenz durch 7 teilbar, dann trifft dies auch auf z zu. Natürlich klappt das Verfahren auch für fünf- und für vierstellige Zahlen, wenn man a = 0 bzw. a = 0 und b = 0 setzt. Bernd überlegt: Doch, ich habe eine Erklärung: 1001 ist durch 7 teilbar. a) Überprüfe an drei selbst gewählten Beispielen, ob das Verfahren zum richtigen Ergebnis führt und ob es auch für vierstellige und fünfstellige Zahlen anwendbar ist. b) Beweise, dass jede Zahl der Form abcabc durch 7 teilbar ist. c) Erkläre damit das von Rolf beschriebene Verfahren. d) Gibt es ein ähnliches Verfahren für den Primfaktor 13? Wenn ja, dann gib das Verfahren an.

10 Es sei BCD ein Viereck, das folgende Bedingungen erfüllt: (1) BCD ist ein Drachenviereck (mit der Symmetrieachse C). (2) Die Diagonale C hat eine Länge von 7 cm. (3) Der Winkel <) BD ist 60 groß. (4) Die Summe der Seitenlängen von B und BC beträgt 10 cm. a) Konstruiere ein Viereck BCD, das diese Bedingungen erfüllt. b) Beschreibe deine Konstruktion. Hinweis: Überzeuge dich, dass die ufgabe viel leichter wird, wenn man die Bedingung (4) durch folgende Bedingung (4 ) ersetzt: (4 ) Die Seite B ist 6 cm lang. Die Schwierigkeit unserer ufgabe liegt darin, dass keine der Streckenlängen B oder BC, sondern nur deren Summe gegeben ist. In einem solchen Fall ist es günstig, eine Hilfsstrecke mit dieser Länge einzuführen, die als Seite eines Hilfsdreiecks vorkommt, das sich konstruieren lässt. Zusatzaufgabe für interessierte Schülerinnen und Schüler: Zur vollständigen Lösung einer Konstruktionsaufgabe gehört auch der Beweis der folgenden beiden Sätze: (I) Wenn ein Viereck die gestellten Bedingungen erfüllt, dann lässt es sich wie beschrieben konstruieren (Einzigkeitsnachweis). (II) Wenn ein Viereck wie beschrieben konstruiert wurde, dann erfüllt es die gestellten Bedingungen (Existenznachweis). Beweise diese beiden Sätze.

11 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 9/10 ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweise: 1. Es stehen in der ersten Runde insgesamt sechs ufgaben zur Verfügung, aus denen die Verantwortlichen vor Ort eine geeignete uswahl treffen können. Wenn die erste Runde als Hausaufgabenwettbewerb durchgeführt wird, kann die Wahl von vier der sechs ufgaben auch den Teilnehmenden überlassen werden. 2. Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatisch einwandfreien Sätzen dargestellt werden. Zur Lösungsgewinnung herangezogene ussagen sind zu beweisen. Nur wenn eine so zu verwendende ussage aus dem Schulunterricht oder aus rbeitsgemeinschaften bekannt ist, genügt es ohne Beweisangabe, sie als bekannten Sachverhalt anzuführen a) Zeigen Sie, dass , und Quadratzahlen sind. b) Es sei n eine natürliche Zahl mit n > 0. Des Weiteren seien a = die Zahl, deren Ziffernfolge aus n Einsen besteht, und b = die Zahl, deren Ziffernfolge aus einer Eins, n 1 Nullen und einer Fünf besteht. Beweisen Sie, dass unter diesen Voraussetzungen a b + 1 eine Quadratzahl ist Bernd ist krank und muss Tabletten nehmen. Diese sind in einer mit lufolie verschlossenen Palette enthalten, welche die Form eines Rechteckes aus 5 2 Quadraten hat. In jedem Quadrat befindet sich eine Tablette. ls er von den 10 Tabletten die vierte entnommen hat, überlegt er sich, ob es denn sehr viele Muster aus 6 vorhandenen und 4 fehlenden Tabletten gibt. Dabei sollen zwei Muster gleich sein, wenn sie durch Drehen der Palette um 180 ineinander übergehen. Wie viele Muster gibt es? Im gleichschenkligen Trapez BCD mit B DC, D BC und D = BC sei O der Diagonalenschnittpunkt. Ferner seien <) BC = 60 sowie X, Y, Z die Mittelpunkte der Strecken O, OD bzw. BC. Zeigen Sie, dass dann das Dreieck XY Z gleichseitig ist.

12 Bestimmen Sie alle reellen Lösungen der Gleichung x x 5 x 4 4 x 3 x x + 1 = Es sei BCD ein konvexes Viereck. Der Punkt P sei im Inneren der Strecke B derart gewählt, dass P : P B = D : DC für die zugehörigen Streckenlängen gilt. Weiterhin soll gelten, dass die Geraden P D und BC parallel sind. Beweisen Sie: <) DP = <) P DC. Hinweis: Ein Viereck BCD heißt konvex, falls die Diagonalen C und BD im Inneren des Vierecks BCD liegen Zeigen Sie, dass es nur endlich viele Primzahlen p gibt, für welche die Dezimaldarstellung von 1 periodisch mit einer Periodenlänge 5 ist. p Hinweis: Bei periodischen Dezimalbrüchen wiederholt sich ständig ein Block von Ziffern. Zum Beispiel werden bei 4, Blöcke der Ziffern 51 ständig aneinander gereiht. Man schreibt 4,30751 mit der Periodenlänge 2, weil sich ein Block von zwei Ziffern ständig wiederholt.

13 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse ufgaben c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. lle Rechte vorbehalten. Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatisch einwandfreien Sätzen dargestellt werden. Zur Lösungsgewinnung herangezogene ussagen sind zu beweisen. Nur wenn eine so zu verwendende ussage aus dem Schulunterricht oder aus rbeitsgemeinschaften bekannt ist, genügt es ohne Beweisangabe, sie als bekannten Sachverhalt anzuführen Man ermittle alle positiven ganzen Zahlen n, für die 6n 2 + 5n 4 eine Primzahl ist Malermeister Klecksel hat seinen Pinsel genau auf der halben Höhe der Leiter während der Frühstückspause abgelegt. Die Leiter steht in einer Ecke (siehe bbildung). Klecksels Helfer Tölpel verursacht wie so oft ein Durcheinander. Er stolpert über die Leiter, so dass diese mit dem oberen Ende an der Seitenwand entlang und mit dem unteren Ende auf dem Fußboden abrutscht. Der Pinsel hinterlässt an der Rückwand eine Spur. Welche Form hat diese Spur? Seitenwand Leiter Pinsel Rückwand Boden bbildung Eine Parabel p mit der Gleichung y = ax 2 + bx + c, a > 0, berühre die beiden Parabeln p 1 und p 2 mit den Gleichungen y = x 2 + b 1 x + c 1 bzw. y = x 2 + b 2 x + c 2 in den Punkten bzw. B. Man beweise, dass die gemeinsame Tangente der Parabeln p 1 und p 2 parallel zur Geraden B ist Die 50. Internationale Mathematik-Olympiade wird im Jahr 2009 in Deutschland stattfinden. Die bbildung zeigt den Entwurf eines Logos mit fünf Ringen. Die Zahlen von 1 bis 15 sollen nun so in die entstehenden 15 Gebiete eingetragen werden, dass in jedem Gebiet genau eine Zahl steht und die Summe der Zahlen in jedem der fünf Ringe 38 beträgt. a) Man zeige, dass man die Zahlen der ufgabenstellung entsprechend eintragen kann. b) Man zeige, dass bei jeder derartigen Belegung im Gebiet die Zahl 1 stehen muss. bbildung

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben eolympiadeklass7 57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben c 2017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben 45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen

22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 1 OJM 22. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 30 Mathematik Olympiade 4 Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30 Mathematik-Olympiade 4 Stufe (Bundesrunde) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

19. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1979/1980 Aufgaben und Lösungen

19. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1979/1980 Aufgaben und Lösungen 19. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1979/1980 Aufgaben und Lösungen 1 OJM 19. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1963/1964 ufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben 50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

der beiden Summanden. Um welche beiden Summanden handelt es sich? Mache eine Probe!

der beiden Summanden. Um welche beiden Summanden handelt es sich? Mache eine Probe! ausschuss des Mathematik-Olympiaden ev 44 Mathematik-Olympiade 2 Stufe (Regionalrunde) Klasse 5 in logisch und grammatisch einwandfreien Sätzen dargestellt werden Zur Lösungsgewinnung herangezogene Aussagen

Mehr

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 24. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen 34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen 1 OJM 34. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen 26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg

Mehr

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

23. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1983/1984 Aufgaben und Lösungen

23. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1983/1984 Aufgaben und Lösungen 23. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1983/1984 Aufgaben und Lösungen 1 OJM 23. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

17. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1977/1978 Aufgaben und Lösungen

17. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1977/1978 Aufgaben und Lösungen 17. Mathematik Olympiade. Stufe (Kreisolympiade) Saison 1977/1978 Aufgaben und Lösungen 1 OJM 17. Mathematik-Olympiade. Stufe (Kreisolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

1. Runde der Mathematik-Olympiade 2016 am Lyonel - Feininger - Gymnasium

1. Runde der Mathematik-Olympiade 2016 am Lyonel - Feininger - Gymnasium 1. Runde der Mathematik-Olympiade 2016 am Lyonel - Feininger - Gymnasium Liebe Schülerinnen und Schüler, der Wettbewerb richtet sich an alle Schülerinnen und Schüler der Olympiadeklassen 5 bis 12 unserer

Mehr

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 1 OJM 14. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade Saison 988/989 Aufgaben und Lösungen OJM 28. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Lösungen Klasse 11 A B. Figur 1

Lösungen Klasse 11 A B. Figur 1 Lösungen Klasse 11 Klasse 11 1. Thomas markiert auf der Oberfläche eines Würfels einige Punkte, so dass folgende Bedingung erfüllt ist: Es gibt keine zwei Seitenflächen mit gleich vielen markierten Punkten.

Mehr

27. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1987/1988 Aufgaben und Lösungen

27. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1987/1988 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Schulolympiade) Klasse 6 Saison 987/988 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

32. Essener Mathematikwettbewerb 2016/2017

32. Essener Mathematikwettbewerb 2016/2017 Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen für a) ein

Mehr

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 5 Saison 1994/1995 Aufgaben und Lösungen 4. Mathematik Olympiade. Stufe (Schulrunde) Klasse 5 Saison 994/995 ufgaben und Lösungen OJM 4. Mathematik-Olympiade. Stufe (Schulrunde) Klasse 5 ufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg

Mehr

Qualiaufgaben Konstruktionen

Qualiaufgaben Konstruktionen Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der

Mehr

21. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe . Bestimme die Lösungsmengen. G 4x + x = 0 x - 6x +69 = 0 c) (0 + p) (p - 3) 0 d) 4u - 5 > 0. Kürze soweit wie möglich folgende Bruchterme: xy, 3y 5 x y, ( x y x 6y c), x 9 x 6x 9 3. Ergänze die fehlenden

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 1. Stufe Schulolympiade) Klasse 9 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen 24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 24. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein

1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein 1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein Der Wettbewerb richtet sich an alle Schülerinnen und Schüler unserer Schule. Dabei ist zu beachten, dass die Aufgaben nach dem

Mehr

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018

20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 20. Essener Mathematikwettbewerb für Grundschulen 2017/2018 Aufgaben der zweiten Runde Klasse 3 Hinweis: Lies jede Aufgabe erst gründlich durch, bevor du mit der Bearbeitung beginnst. Der Lösungsweg mit

Mehr

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 ufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 25. Mathematik Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 1 OJM 25. Mathematik-Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

32. Essener Mathematikwettbewerb 2016/2017

32. Essener Mathematikwettbewerb 2016/2017 Klasse 5 Alexandra hat vor sich viele Hölzchen von jeweils 5 cm Länge und viele Knetekugeln, die die Hölzchen an ihrem Ende zusammenhalten können. Sie möchte daraus Dreiecksgitter bauen. In den Abbildungen

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Wie man das Problem des Patensohns von Deutschland löst

Wie man das Problem des Patensohns von Deutschland löst 1. Mathematik Olympiade. Stufe (Regionalrunde) Klasse 5 Saison 1991/199 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 5 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade. Stufe (Kreisolympiade) Klasse 1 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade. Stufe (Kreisolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

8. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1968/1969 Aufgaben und Lösungen

8. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1968/1969 Aufgaben und Lösungen 8. Mathematik Olympiade Saison 1968/1969 Aufgaben und Lösungen 1 OJM 8. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

9. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1969/1970 Aufgaben und Lösungen

9. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1969/1970 Aufgaben und Lösungen 9 Mathematik Olympiade 2 Stufe (Kreisolympiade) Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9 Mathematik-Olympiade 2 Stufe (Kreisolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1994/1995 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 6 Saison 1/1 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Lösungen - 7. Klasse / 7. Schulstufe

Lösungen - 7. Klasse / 7. Schulstufe Lösungen der Aufgaben Lösungen - 7. Klasse / 7. Schulstufe 1. Auf jedem der zehn Felder der nebenstehenden 2 5 Tabelle befindet sich ein Mensch, der entweder ein Ehrlicher oder ein Lügner ist. Die Ehrlichen

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5 5. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 8 Aufgaben c 005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg mit

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1966/1967 Aufgaben und Lösungen 6 Mathematik Olympiade 2 Stufe (Kreisolympiade) Saison 1966/1967 ufgaben und Lösungen 1 OJM 6 Mathematik-Olympiade 2 Stufe (Kreisolympiade) ufgaben Hinweis: Der Lösungsweg mit egründungen und Nebenrechnungen

Mehr

10. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1970/1971 Aufgaben und Lösungen

10. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1970/1971 Aufgaben und Lösungen 10. Mathematik Olympiade Saison 1970/1971 Aufgaben und Lösungen 1 OJM 10. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Aufgaben Klassenstufe 5

Aufgaben Klassenstufe 5 Aufgaben Klassenstufe 5 Oma Streifstrumpf strickt für Peppi neue Socken. Peppi hat drei Lieblingsfarben und zwar rot, gelb und blau, die alle in den drei Streifen vorkommen sollen. a) Die Oma hat Wolle

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

GRUNDWISSENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 WAHLPFLICHTFÄCHERGRUPPE I DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN)

GRUNDWISSENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 WAHLPFLICHTFÄCHERGRUPPE I DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN) GRUNDWISSENTEST 03 IM FH MTHEMTIK FÜR DIE JHRGNGSSTUFE 9 WHLPFLIHTFÄHERGRUPPE I DER RELSHULE (REITSZEIT: 45 MINUTEN) NME: Lösungsmuster KLSSE: 9 PUNKTE: /3 NOTE: a) Gib die Gleichung der Geraden g an (G

Mehr

29. Essener Mathematikwettbewerb 2013/2014

29. Essener Mathematikwettbewerb 2013/2014 Klasse 5 Judith beschäftigt sich mit Primzahlen. a) Sie betrachtet alle Primzahlen, die kleiner als 30 sind; Judith verdoppelt sie jeweils und addiert danach 1. Untersuche, in welchen Fällen das Ergebnis

Mehr