A Topical/Local Classifier for Word Sense Idendification (TLC) Anne Schwartz

Größe: px
Ab Seite anzeigen:

Download "A Topical/Local Classifier for Word Sense Idendification (TLC) Anne Schwartz"

Transkript

1 A Topical/Local Classifier for Word Sense Idendification (TLC) Anne Schwartz

2 A Topical/Local Classifier for Word Sense Idendification (TLC) entwickelt von: - Martin Chodorow (Dep. of Psychology, Hunter College of CUNY, New York) - Claudia Leacock (Dep. of Cognitive and Instructional Science, Educational Testing Service, Princeton) - George A. Miller (Cognitive Science Laboratory, Princeton University) Evaluation im Rahmen des 1. SENSEVAL-Workshops

3 Was ist SENSEVAL? erster offener, community-based Evaluations- Workshop für WSD-Programme fand zum ersten Mal im Sommer 1998 statt Evaluationen für Englisch, Französisch und Italienisch Teilnehmer: 23 Forschungsgruppen Ziel: Objektive Evaluationsmaßstäbe, die Vergleich verschiedener Systeme ermöglichen

4 Einordnung von TLC Supervised (-> Korpus) benutzt Bayes sches statistisches Modell und Kontext-Features: - topical context (thematische Hinweise/cues) - local context (Wörter in schmalem Fenster um Zielwort) - Kombination der beiden

5 Wie arbeitet TLC [1]? 3 Phasen: Korpus vorverarbeiten, den Classifier trainieren und testen 1) Aufbereitung des Korpus: - PoS-Tagging durch den Brill-Tagger - flektierte open-class-wörter werden durch ihr Lemma ersetzt 2) Training: - Zählen der Häufigkeiten der verschiedenen Kontext- Features für die jeweilige Wortbedeutung

6 3) Testen: Wie arbeitet TLC [2]? - Satz von Bayes, um die wahrscheinlichste Wortbedeutung s i zu berechnen, gegeben die cues c j, die sich in einem Kontextfenster von -k bis k um das zu disambiguierende Wort befinden Folgende Wahrscheinlichkeitsberechnung für jedes s i : p(s i c -k,...,c k ) = p(c -k,...,c k s i ) p(s i ) p(c -k,...,c k )

7 Wie arbeitet TLC [3]? - Konsequenzen des Sparse Data -Problem: 1) Annahme, dass die Vorkommen der Kontext-Wörter unabhängig voneinander sind -> Naive Bayes: k p(c -k,...,c k s i ) = Π p(c j=-k j s i ) 2) Smoothing der Werte von p(c j s i ): Good-Turing-Formel, um Wahrscheinlichkeiten für ungesehene Ereignisse bereit zu stellen

8 TLCs 4 Feature-Typen 1) Topical cues bestehend aus Wörtern offener Wortklassen (Nomen, Verben, Adjektive und Adverbien) 2) lokale Wörter offener Wortklassen, die innerhalb eines engen Fensters um das Zielwort herum vorkommen 3) lokale Wörter geschlossener Wortklassen (bspw. Präpositionen, Artikel, Pronomen) 4) lokale PoS-Tags

9 Wahrscheinlichkeiten p(c j s i ) [1] 1) Zählen der topical cue -Wörter ohne Miteinbeziehen ihrer Position: bag of words -Methode (ganzer Satz als Kontextfenster) 2) - für open-class-wörter, die in den drei Positionen links vom Zielwort vorkommen (j = -3, -2, -1): p(c j s i ) = Wahrscheinlichkeit, dass Wort c j in irgendeiner dieser drei Positionen erscheint - gleiches Verfahren für drei Positionen rechts vom Zielwort

10 Wahrscheinlichkeiten p(c j s i ) [2] 3) - für closed-class-wörter, die an den Positionen j = -2, -1, 1, 2 vorkommen: p(c j s i ) = Wahrscheinlichkeit, dass Wort c j genau an Stelle j vorkommt - Die globalen Wahrscheinlichkeiten, bspw. p(the -1 ), basieren auf Zählungen der closed-class-wörter, die an der jeweiligen Position relativ zu den Nomen im Korpus vorkommen. 4) - PoS-Tags an den Stellen j = -2, -1, 0, 1, 2 - Wahrscheinlichkeiten für diese Tags werden genau wie in 3) für die spezifische Position berechnet

11 Mögliche Konfigurationen von TLC 1) Feature-Typ 1 allein benutzen, um sich nur auf topical cues zu stützen 2) Feature-Typen 2, 3 und 4 für lokale Informationen benutzen 3) Kombination aus allen vier Feature-Typen Beste Konfiguration in 36 Testbeispielen: - kombinierte Konfiguration für 24 Wörter - lokale Konfiguration für 10 Wörter - topical cues für 2 Wörter

12 Multiword Expressions Da Mehrwortausdrücke normalerweise nicht polysem sind, sollen diese bereits im Vorfeld herausgefiltert werden. Filterverfahren für Senseval: Kommt ein Mehrwortausdruck im Hector-Lexikon vor, so wird automatisch ein regulärer Ausdruck erzeugt, der morphologische und andere Varianten matcht. Anfrage /rubber band[s]?/ bspw., um Instanzen von rubber band zu finden -> Jedem Treffer wird die rubber band -Bedeutung von band zugewiesen.

13 Eigennamen Keine Berücksichtigung von Eigennamen durch TLC, da diese auch nicht polysem Arbeitsannahme: Ein separater Eigennamen-Filter soll vor TLC auf den Text angewandt werden Da TLC in der Textaufbereitungsphase keinen solchen Filter benutzt, wurden Eigennamen in Senseval als separate Bedeutungen behandelt und trainiert

14 Ergebnisse Part of speech TLC Precision Recall Best S System Precision Recall Mean of S Systems Precision Recall Alle.756 (.755).771 (.771).733 (.657) Nomen.806 (.806).850 (.850).789 (.787) Verben.709 (.709).709 (.709).687 (.686) Adjektive.744 (.743).761 (.761).724 (.723) Multiwords.785 (.704).907 (.906).757 (.682) Eigennamen.811 (.360).937 (.937).758 (.480)

15 Verbesserungen des Systems 1) auf Modell-Seite: Falsche Annahme der Unabhängigkeit der Kontextwörter voneinander mit TLCs Bayes schen Modell Andere Modelle, die dies nicht annehmen, wie Maximum Entropy und TiMBL 2) auf Feature-Seite: Ersetzen des verwendeten Tagsets der Penn Treebank durch angereicherte Tags, die gerade entwickelt werden und auch konfigurationelle Informationen enthalten, wie bspw. Supertags

16 Eine mögliche Anwendung von Bedeutungs-Tagging [1] Erstellung eines von Hand getaggten Korpus (durch Miller, et al.) für mehrere hundert gebräuchliche Wörter des Englischen als Hilfsquelle für die zukünftige Entwicklung statistischer WSD-Systeme sehr zeitaufwändig und arbeitsintensiv, zum Teil da viele Wörter sekundäre Bedeutungen haben, die extrem selten vorkommen Bsp. bank : von 100 Vorkommen haben 78 die Bedeutung Geldinstitution ; 22 repräsentieren die weiteren 8 Bedeutungen (wie Anhöhe, Böschung, Ufer, Damm etc.)

17 Eine mögliche Anwendung von Bedeutungs-Tagging [2] Aufgabe von TLC: Vor-Überprüfen des Textes, indem er die vielen mit primärer Bedeutung vorkommenden Wörter kennzeichnet Experiment: - 8 Wörter, die jeweils eine hervorstechende Bedeutung haben - Training von TLC: primäre Bedeutung oder Vereinigung aller anderen Bedeutungen - TLC soll in neuen Beispielen also bewerten, ob es sich bei der Wortbedeutung eher um primary oder other handelt

18 Eine mögliche Anwendung von Bedeutungs-Tagging [3] Ergebnis: sehr wenige Fehlklassifikationen bei Beispielen, die mit hoher Wahrscheinlichkeit als primary und mit niedriger Wahrscheinlichkeit als other klassifiziert wurden. Beschleunigung des Tagging-Verfahrens, da menschliche Tagger sich auf die Sätze konzentrieren können, in denen eher eine nicht-primäre Bedeutung vorliegt Durch Assistieren beim manuellen Tagging von Trainingskorpora soll TLC zur zukünftigen Entwicklung aller supervised training -Systeme beitragen, einschließlich der seines eigenen!

19 Danke für die Aufmerksamkeit!

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Verfahren in der lexikalischen Semantik WS 2/22 Manfred Pinkal Beispiel: Adjektive im Wahrig-Korpus Frequenzen in einem kleinen Teilkorpus: n groß - -

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Verfahren in der lexikalischen Semantik Evaluation Annotation eines Goldstandard : Testkorpus mit der relevanten Zielinformation (z.b. Wortart) Automatische

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Mehrdeutigkeit der Wortart Einführung in die Computerlinguistik Statistische Modellierung und Evaluation WS 2008/2009 Manfred Pinkal Sie haben in Moskau liebe genossen Sie haben in Moskau liebe Genossen

Mehr

Word Sense Disambiguation: Ein einfaches Beispielsystem. Katrin Erk

Word Sense Disambiguation: Ein einfaches Beispielsystem. Katrin Erk Word Sene Diambiguation: Ein einfache Beipielytem Katrin Erk Da Sytem im Überblick Frame-Zuweiung für Zielwörter im Sala-Korpu Naive Baye Feature: Kontextwörter Verwendet Korpu im JS-Textformat Im Zweifelfall

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging

Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging HUMBOLDT-UNIVERSITÄT ZU BERLIN Institut für Informatik Lehrstuhl Wissensmanagement Maschinelle Sprachverarbeitung: Part-of-Speech-Tagging Tobias Scheffer Ulf Brefeld POS-Tagging Zuordnung der Wortart von

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Part of Speech Tagging. Linguistische Sicht. Carolin Deck

Part of Speech Tagging. Linguistische Sicht. Carolin Deck Part of Speech Tagging Linguistische Sicht Carolin Deck Gliederung 1. Begriffsklärung 2. Vorstellung zwei wichtiger Tagsets (STTS & PTTS) 3. Bedeutung des POS-Tagging für die Sprachwissenschaft 4. Tagzuweisung

Mehr

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong Part-of-Speech Tagging Friedrich-Alexander-Universität Professur für Computerlinguistik Nguyen Ai Huong 15.12.2011 Part-of-speech tagging Bestimmung von Wortform (part of speech) für jedes Wort in einem

Mehr

Annotation des Wittgenstein-Korpus mit Wortart-Information

Annotation des Wittgenstein-Korpus mit Wortart-Information Annotation des Wittgenstein-Korpus mit Wortart-Information Institut für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München schmid@cis.uni-muenchen.de Überblick Was ist Wortart-Tagging?

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen

Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Automatische Rekonstruktion und Spezifizierung von Attributnamen in Webtabellen Mark Reinke Bachelorarbeit TU Dresden 17. Februar 2014 Webtabellen Warum sind Webtabellen von Bedeutung? Sie können relationale

Mehr

Proseminar Linguistische Annotation

Proseminar Linguistische Annotation Proseminar Linguistische Annotation Ines Rehbein und Josef Ruppenhofer SS 2010 Ines Rehbein und Josef Ruppenhofer (SS10) Linguistische Annotation April 2010 1 / 22 Seminarplan I. Linguistische Annotation

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung I WS 2010/2011 Manfred Pinkal Wortartinformation Wortartinformation ist eine wichtige Voraussetzung für die syntaktische Analyse. Woher kommt

Mehr

Probabilistische kontextfreie Grammatiken

Probabilistische kontextfreie Grammatiken Mathematische Grundlagen III Probabilistische kontextfreie Grammatiken 14 Juni 2011 1/26 Ambiguität beim Parsing Wörter können verschiedene Bedeutungen haben und mehr als einer Wortkategorien angehören

Mehr

Tagger for German. Online BRILL-Tagger für das Deutsche

Tagger for German. Online BRILL-Tagger für das Deutsche Tagger for German Online BRILL-Tagger für das Deutsche Morphologie V/Ü, Anke Holler Uni Heidelberg, SS2007 Nataliya Mytyay Éva Mújdricza 19.07.2007 Designed by: Dóra Dobos Tagger for German Eric Brill

Mehr

Stefan Engelberg (IDS Mannheim), Workshop Corpora in Lexical Research, Bucharest, Nov. 2008 [Folie 1] DWDS-Kernkorpus / DWDS corpus analysis

Stefan Engelberg (IDS Mannheim), Workshop Corpora in Lexical Research, Bucharest, Nov. 2008 [Folie 1] DWDS-Kernkorpus / DWDS corpus analysis Content 1. Empirical linguistics 2. Text corpora and corpus linguistics 3. Concordances 4. Application I: The German progressive 5. Part-of-speech tagging 6. Fequency analysis 7. Application II: Compounds

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung WS 2011/2012 Manfred Pinkal Wortartinformation Wortartinformation ist eine wichtige Voraussetzung für die syntaktische Analyse. Woher kommt

Mehr

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten

Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten Bachelorarbeit Erkennung von Fließtext in PDF-Dokumenten 16.08.2016 David Spisla Albert Ludwigs Universität Freiburg Technische Fakultät Institut für Informatik Gliederung Motivation Schwierigkeiten bei

Mehr

Semi-automatische Ontologieerstellung mittels TextToOnto

Semi-automatische Ontologieerstellung mittels TextToOnto Semi-automatische Ontologieerstellung mittels TextToOnto Mark Hall SE Computational Linguistics 14. Juni 2004 Zusammenfassung Das Erstellen von Ontologien ist ein komplexer und langwieriger Prozess. Um

Mehr

Dialogsysteme. Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme. 12. Januar 2006, Susanne O'Shaughnessy

Dialogsysteme. Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme. 12. Januar 2006, Susanne O'Shaughnessy Dialogsysteme Vortrag zum Thema n-gramm-modelle 2. Teil: Lösungsansätze für Ausfall-N-Gramme 12. Januar 2006, Susanne O'Shaughnessy Smoothing - Glättung Problem bei Standard- n-gramm-modellen: - kein Trainingskorpus

Mehr

Blockseminar Einführung in die Korpuslinguistik Seminarleitung: Yvonne Krämer, M.A. Das Korpus. und seine Aufbereitung

Blockseminar Einführung in die Korpuslinguistik Seminarleitung: Yvonne Krämer, M.A. Das Korpus. und seine Aufbereitung Blockseminar Einführung in die Korpuslinguistik Seminarleitung: Yvonne Krämer, M.A. Das Korpus und seine Aufbereitung Bestandteile eines Korpus sind i.d.r.: Primärdaten Metadaten Annotationen Annotationen

Mehr

Was ist ein Korpus. Zitat aus: Carstensen et al. Computerlinguistik und Sprachtechnologie: Eine Einführung. Kap. 4.2, Textkorpora

Was ist ein Korpus. Zitat aus: Carstensen et al. Computerlinguistik und Sprachtechnologie: Eine Einführung. Kap. 4.2, Textkorpora Was ist ein Korpus Korpora sind Sammlungen linguistisch aufbereitete(r) Texte in geschriebener oder gesprochener Sprache, die elektronisch gespeichert vorliegen. Zitat aus: Carstensen et al. Computerlinguistik

Mehr

NLP Eigenschaften von Text

NLP Eigenschaften von Text NLP Eigenschaften von Text Dr. Andreas Hotho Dominik Benz Beate Krause Sommersemester 2008 Folie: 1 Übersicht Einführung Eigenschaften von Text Words I: Satzgrenzenerkennung, Tokenization, Kollokationen

Mehr

Korpus. Was ist ein Korpus?

Korpus. Was ist ein Korpus? Was ist ein Korpus? Korpus Endliche Menge von konkreten sprachlichen Äußerungen, die als empirische Grundlage für sprachwiss. Untersuchungen dienen. Stellenwert und Beschaffenheit des Korpus hängen weitgehend

Mehr

Bachelorarbeit im Fach Computerlinguistik Centrum für Informations- und Sprachverarbeitung LMU München Betreuerin: Dr.

Bachelorarbeit im Fach Computerlinguistik Centrum für Informations- und Sprachverarbeitung LMU München Betreuerin: Dr. München, 05.05.2014 Arnold Schlegel Bachelorarbeit im Fach Computerlinguistik Centrum für Informations- und Sprachverarbeitung LMU München Betreuerin: Dr. Desislava Zhekova 1 Inhaltsüberblick Hintergrund

Mehr

Lexikalisch-semantische Disambiguierung mit WordNet

Lexikalisch-semantische Disambiguierung mit WordNet Lexikalische Semantik Lexikalisch-semantische Disambiguierung mit WordNet Conrad Steffens Paper: Rada Mihalcea & Dan I. Moldovan: A Method for Word Sense Disambiguation of Unrestricted Text Lexikalisch-semantische

Mehr

TnT - Statistischer Part-of- Speech Tagger

TnT - Statistischer Part-of- Speech Tagger TnT - Statistischer Part-of- Speech Tagger 2. Teil der Präsentation des TnT Taggers von Thorsten Brants Präsentation von Berenike Loos Gliederung 1. Installation und Beschreibung des Programms 2. Erläuterungen

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Statistische Modellierung Fragebogenaktion Bachelor-StudentInnen http://www.coli.uni-saarland.de/bsc/page.php?id=fragebogen WS 2013/2014 Andrea Horbach mit Folien von

Mehr

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung

Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Elementare Begriffe der Wahrscheinlichkeitstheorie für die Sprachverarbeitung Kursfolien Karin Haenelt 1 Übersicht Wahrscheinlichkeitsfunktion P Wahrscheinlichkeit und bedingte Wahrscheinlichkeit Bayes-Formeln

Mehr

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz Mit KI gegen SPAM Proseminar Künstliche Intelligenz SS 2006 Florian Laib Ausblick Was ist SPAM? Warum SPAM-Filter? Naive Bayes-Verfahren Fallbasiertes Schließen Fallbasierte Filter TiMBL Vergleich der

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25

Mathe III. Garance PARIS. Mathematische Grundlagen III. Evaluation. 16. Juli /25 Mathematische Grundlagen III Evaluation 16 Juli 2011 1/25 Training Set und Test Set Ein fairer Test gibt an, wie gut das Modell im Einsatz ist Resubstitution: Evaluation auf den Trainingsdaten Resubstitution

Mehr

3. Grundbegriffe der Wahrscheinlichkeitstheorie

3. Grundbegriffe der Wahrscheinlichkeitstheorie 03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische

Mehr

Make your world simpler

Make your world simpler Automatische Vervollständigung von Wikipedia-Listen Make your world simpler Universität Freiburg Lehrstuhl für Algorithmen und Datenstrukturen Universität Freiburg Simon Skilevic, Robin Schirrmeister 26.4.2012

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Ausbildung - graduated from...

Ausbildung - graduated from... Ausbildung - graduated from... Im Rahmen des Hauptseminars Informationsextraktion aus biographischen Kontexten Dozenten: Prof Dr. Franz Guenthner Michaela Geierhos Gehalten von Doris Peter am 3.12.2009

Mehr

Aufgabe. Erstellen eines kleinen Lernerkorpus exemplarisches Aufzeigen, wie Fehler sinnvoll klassifiziert und annotiert werden könnten

Aufgabe. Erstellen eines kleinen Lernerkorpus exemplarisches Aufzeigen, wie Fehler sinnvoll klassifiziert und annotiert werden könnten Aufgabe Erstellen eines kleinen Lernerkorpus exemplarisches Aufzeigen, wie Fehler sinnvoll klassifiziert und annotiert werden könnten Mitstreiterinnen: Elena Briskina, Julia Hantschel, Jenny Krüger, Stéphanie

Mehr

Der Viterbi Algorithmus

Der Viterbi Algorithmus M. 23.Juli.2007 Gliederung 1 2 3 Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes entwickelt Auf Basis von entwickelt Erfinder Andrew J. Viterbi 1967 zur Dekodierung von Faltungscodes

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Crocker/Demberg/Staudte Sommersemester 2014 17.07.2014 1. Sie haben 90 Minuten Zeit zur Bearbeitung der Aufgaben.

Mehr

, Data Mining, 2 VO Sommersemester 2008

, Data Mining, 2 VO Sommersemester 2008 Evaluation 188.646, Data Mining, 2 VO Sommersemester 2008 Dieter Merkl e-commerce Arbeitsgruppe Institut für Softwaretechnik und Interaktive Systeme Technische Universität Wien www.ec.tuwien.ac.at/~dieter/

Mehr

Hidden Markov Models in Anwendungen

Hidden Markov Models in Anwendungen Hidden Markov Models in Anwendungen Dr. Vera Demberg Universität des Saarlandes 31. Mai 2012 Vera Demberg (UdS) HMM Anwendungen 31. Mai 2012 1 / 26 Hidden Markov Modelle in der Computerlinguistik Table

Mehr

Korrekturprogramme. Von Emine Senol & Gihan S. El Hosami

Korrekturprogramme. Von Emine Senol & Gihan S. El Hosami Korrekturprogramme Von Emine Senol & Gihan S. El Hosami Einleitung Millionen von Texten werden mit dem Computern täglich erfasst Fehler schleichen sich ein Korrekturprogramme helfen diese zu finden zu

Mehr

Finite-State-Morphologie in XLE. Grammatikentwicklung, SS 2010

Finite-State-Morphologie in XLE. Grammatikentwicklung, SS 2010 Finite-State-Morphologie in XLE Grammatikentwicklung, SS 2010 1 / 20 Worum es heute geht: Nutzen von Finite-State-Morphologien... und wie man sie in XLE einbaut 2 / 20 Lexikon in XLE Bis jetzt: so genanntes

Mehr

Part-of-Speech-Tagging mit Transduktoren

Part-of-Speech-Tagging mit Transduktoren Ruprecht-Karls Universität Heidelberg Hauptseminar Computerlinguistik Endliche Automaten für die Sprachverarbeitung PD Dr. Karin Haenelt Sommersemester 2005 Part-of-Speech-Tagging mit Transduktoren Maria

Mehr

Part-of-Speech-Tagging mit Transduktoren

Part-of-Speech-Tagging mit Transduktoren Ruprecht-Karls Universität Heidelberg Hauptseminar Computerlinguistik Endliche Automaten für die Sprachverarbeitung PD Dr Karin Haenelt Sommersemester 2005 Part-of-Speech-Tagging mit Transduktoren Maria

Mehr

Universität Ulm Abteilung Künstliche Intelligenz. ExtrAns. Verarbeitung natürlicher, schriftlicher Sprache. C. Bohnacker

Universität Ulm Abteilung Künstliche Intelligenz. ExtrAns. Verarbeitung natürlicher, schriftlicher Sprache. C. Bohnacker UNIVERSITÄT ULM SCIENDO DOCENDO CURANDO Universität Ulm Abteilung Künstliche Intelligenz ExtrAns Verarbeitung natürlicher, schriftlicher Sprache C. Bohnacker Überblick Motivation Einleitung Eigenschaften

Mehr

Swantje Westpfahl & Thomas Schmidt POS für(s) FOLK

Swantje Westpfahl & Thomas Schmidt POS für(s) FOLK Swantje Westpfahl & Thomas Schmidt POS für(s) FOLK Problemanalyse des POS- Taggings für spontansprachliche Daten anhand des Forschungsund Lehrkorpus Gesprochenes Deutsch 2 FOLK Forschungs- und Lehrkorpus

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

(Bamberg)

(Bamberg) Konzeption eines Frameworks für die Evaluation von Tag-Suggestion-Algorithmen Martin Garbe Steffen Oldenburg Lukas Zielinski Prof. Dr. Clemens Cap (Universität Rostock) 08.05.2008 (Bamberg) Übersicht Tags

Mehr

Tagging mit Hidden Markov Models und Viterbi-Algorithmus

Tagging mit Hidden Markov Models und Viterbi-Algorithmus Tagging mit Hidden Markov Models und Viterbi-Algorithmus Annelen Brunner, Stephanie Schuldes, Nicola Kaiser, Olga Mordvinova HS Parsing SoSe 2003 PD Dr. Karin Haenelt Inhalt Ziel des Seminarprojekts Theorie:

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

TUD Computer Poker Challenge

TUD Computer Poker Challenge TUD Computer Poker Challenge The Challenge of Poker Björn Heidenreich 31. März 2008 The Challenge of Poker Björn Heidenreich 1 Anforderungen an einen guten Poker-Spieler Hand Strength Hand Potential Bluffing

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik HMM POS-Tagging Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 POS Tags (1) Jurafsky and Martin (2009) POS = part-of-speech Tags sind morphosyntaktische

Mehr

ANNIS Quickstart

ANNIS Quickstart Suche in ANNIS Bevor man suchen kann, muss das gewünschte Korpus in der Korpusliste ausgewählt werden (z.b. das Teilkorpus mo (monoethnisches Ergänzungskorpus) oder KiDKo mu (multiethnisches Korpus). Danach

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013 Orientierungshilfe zum 8. Hausaufgabenblatt 25. Januar 203 Abbildung : Skizze eines Baumdiagramms zur Veranschaulichung Aufgabe 44 Zunächst ist es von Vorteil sich die Problemstellung anhand eines Baumdiagramms

Mehr

Machine Learning Tutorial

Machine Learning Tutorial Machine Learning Tutorial a very fast WEKA Introduction busche@ismll.uni-hildesheim.de 05.01.09 1 Hauptbestandteile von WEKA: Instances Instance Attribute FastVector Classifier Evaluation (Filter) http://weka.wiki.sourceforge.net/

Mehr

Automatische Textzusammenfasung

Automatische Textzusammenfasung Automatische Textzusammenfasung Katja Diederichs Francisco Mondaca Simon Ritter PS Computerlinguistische Grundlagen I - Jürgen Hermes - WS 09/10 Uni Köln Gliederung 1) Einleitung & Überblick 2) Ansätze

Mehr

in deutschsprachigen Romanen

in deutschsprachigen Romanen Automatische Erkennung von Figuren in deutschsprachigen Romanen F. Jannidis, M. Krug, I. Reger, M. Toepfer, L. Weimer, F. Puppe (Universität Würzburg) Kontext Korpusbasierte Geschichte des deutschsprachigen

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Einführung in die Computerlinguistik POS-Tagging

Einführung in die Computerlinguistik POS-Tagging Einführung in die Computerlinguistik POS-Tagging Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2013 POS Tags (1) POS = part-of-speech Tags sind morphosyntaktische Kategorien von Wortformen.

Mehr

Part-of-Speech- Tagging

Part-of-Speech- Tagging Part-of-Speech- Tagging In: Einführung in die Computerlinguistik Institut für Computerlinguistik Heinrich-Heine-Universität Düsseldorf WS 2004/05 Dozentin: Wiebke Petersen Tagging Was ist das? Tag (engl.):

Mehr

Evaluierung und Retrievalmaße. Seminar experimentelle Evaluierung In Information Retrieval WS05/06

Evaluierung und Retrievalmaße. Seminar experimentelle Evaluierung In Information Retrieval WS05/06 Evaluierung und Retrievalmaße Seminar experimentelle Evaluierung In Information Retrieval WS05/06 Einleitung - Evaluierung Wichtig für IR Zusammenhang zwischen einer Suchanfrage und den zurückgegebenen

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Maschinelle Sprachverarbeitung: N-Gramm-Modelle

Maschinelle Sprachverarbeitung: N-Gramm-Modelle HUMBOLD-UNIVERSIÄ ZU BERLIN Institut für Informatik Lehrstuhl Wissensmanagement Maschinelle Sprachverarbeitung: N-Gramm-Modelle obias Scheffer, Ulf Brefeld Statistische Sprachmodelle Welche Sätze sind

Mehr

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Klausurnummer Name: Vorname: Matr.Nummer: Bachelor: Master: Aufgabe 1 2 3 4 5 6 7 8 max. Punkte 10 5 6 7 5 10 9 8 tats. Punkte

Mehr

Linguistische Grundlagen. Warum Tagging? Klassische Wortartenlehre Tagsets Annotation höherer Ebenen Design von Tagsets

Linguistische Grundlagen. Warum Tagging? Klassische Wortartenlehre Tagsets Annotation höherer Ebenen Design von Tagsets Linguistische Grundlagen Warum Tagging? Klassische Wortartenlehre Tagsets Annotation höherer Ebenen Design von Tagsets Warum Tagging? Abfragbarkeit linguistischer Information Generalisierbarkeit von Abfragen

Mehr

eine eye-tracking Studie

eine eye-tracking Studie Transfereffekte und wortartenabhängige Verbesserung von fremdsprachlichem Textverständnis eine eye-tracking Studie Manuel Neurauter, Marco R. Furtner, Pierre Sachse Übersicht Theoretischer Hintergrund

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

COSMAS II Corpus Search Management and Analysis System

COSMAS II Corpus Search Management and Analysis System COSMAS II Corpus Search Management and Analysis System http://www.ids-mannheim.de/cosmas2/ 13. November 2012, Jeanette Isele Seminar: Korpuslinguistik Übersicht Theoretischer Teil Was ist COSMAS II? Die

Mehr

Dokument Klassifikation. Thomas Uhrig: Data-Mining SS10

Dokument Klassifikation. Thomas Uhrig: Data-Mining SS10 Agenda: 1: Klassifizierung allgemein 2: der naive Bayes-Klassifizierer 3: Beispiel 4: Probleme 5: Fazit 6: Quellen 1: Klassifizierung allgemein: 1: Klassifizierung allgemein: - Einordnung von Objekten

Mehr

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining Clustering Ausarbeitung von Michael Speckner Proseminar Data Mining Einleitung Das Clustering wird verwendet, wenn man keine Klassen vorhersagen kann, aber die Instanzen in natürliche Gruppen einteilen

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 9 Aufgabe 1 Probabilistische Inferenz (30 Punkte) In einer medizinischen Studie wurden die Auswirkungen von Metastasen bildenden Karzinomen untersucht. Dabei wurde folgendes festgestellt: Bei

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Paul Prasse Michael Großhans

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Paul Prasse Michael Großhans Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Paul Prasse Michael Großhans NLP- (Natural Language Processing-) Pipeline Folge von Verarbeitungsschritten

Mehr

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014

Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014 idden Markov Models Vorlesung omputerlinguistische Techniken Alexander Koller 8. Dezember 04 n-gramm-modelle Ein n-gramm ist ein n-tupel von Wörtern. -Gramme heißen auch Unigramme; -Gramme Bigramme; -Gramme

Mehr

Semantische Annotation. Hauptseminar: Einführung in die Korpuslinguistik. Lesartenannotation - Beispiel. Lesartenannotation

Semantische Annotation. Hauptseminar: Einführung in die Korpuslinguistik. Lesartenannotation - Beispiel. Lesartenannotation Hauptseminar: Einführung in die Korpuslinguistik Anke Lüdeling anke.luedeling@rz.hu-berlin.de Wintersemester 2002/2003 Semantische Annotation Lesarten annotieren (sense tagging) ein bisschen was zu Lesarten

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Volkswagen Data Lab Connected Car Fahrererkennung mit MATLAB

Volkswagen Data Lab Connected Car Fahrererkennung mit MATLAB Volkswagen Data Lab Connected Car Fahrererkennung mit MATLAB K-SI/LD1 Julia Fumbarev München, 27.06.2017 Mega-Trend: Fahrzeugvernetzung Herausforderungen für die OEMs: 4Synchronisierung unterschiedlicher

Mehr

Lemmatisierung und Stemming in Suchmaschinen

Lemmatisierung und Stemming in Suchmaschinen Lemmatisierung und Stemming in Suchmaschinen Hauptseminar Suchmaschinen Computerlinguistik Sommersemester 2016 Stefan Langer stefan.langer@cis.uni-muenchen.de Trefferquote (Recall) und Genauigkeit (Precision)

Mehr

Lemmatisierung und Stemming in Suchmaschinen

Lemmatisierung und Stemming in Suchmaschinen Lemmatisierung und Stemming in Suchmaschinen Hauptseminar Suchmaschinen Computerlinguistik Sommersemester 2014 Stefan Langer stefan.langer@cis.uni-muenchen.de Trefferquote (Recall) und Genauigkeit (Precision)

Mehr

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme Kapitel IR:II II. Grundlagen des Information Retrieval Retrieval-Evaluierung Indexterme IR:II-1 Basics STEIN 2005-2010 Batch-Mode-Retrieval einmaliges Absetzen einer Anfrage; nur eine Antwort wird geliefert

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Info zum Junk-Mail-Filter in Thunderbird:

Info zum Junk-Mail-Filter in Thunderbird: Datenverarbeitungszentrale Datenverarbeitungszentrale dvz@fh-muenster.de www.fh-muenster.de/dvz Info zum Junk-Mail-Filter in Thunderbird: Der Grossteil der Benutzer verwendet zusätzlich zum zentralen Mail-Filter

Mehr

Finalsätze: damit um... zu

Finalsätze: damit um... zu Finalsätze: damit um... zu erst - nur - schon Das Verb werden Finalsätze: damit um... zu Mit der Frage warum? wieso? weshalb? wozu? fragt man nach dem Zweck, der Absicht oder dem Ziel. Warum schickst du

Mehr

Wortarten und Korpus

Wortarten und Korpus Linguistik Computerlinguistik Petra Steiner Wortarten und Korpus Automatische Wortartenklassifikation durch distributionelle und quantitative Verfahren. Shaker Verlag Aachen 2004 Bibliografische Information

Mehr

Centrum für Informations- und Sprachverarbeitung. Dr. M. Hadersbeck, Digitale Editionen, BAdW München

Centrum für Informations- und Sprachverarbeitung. Dr. M. Hadersbeck, Digitale Editionen, BAdW München # 1 Digitale Editionen und Auszeichnungssprachen Computerlinguistische FinderApps mit Facsimile-Reader Wittgenstein s Nachlass: WiTTFind Goethe s Faust: GoetheFind Hadersbeck M. et. al. Centrum für Informations-

Mehr

Viterbi. Hidden Markov Models und POS Tagging mit dem Viterbi-Algorithmus. von Arndt Faulhaber und Benjamin Schlebes

Viterbi. Hidden Markov Models und POS Tagging mit dem Viterbi-Algorithmus. von Arndt Faulhaber und Benjamin Schlebes Viterbi Hidden Markov Models und POS Tagging mit dem Viterbi-Algorithmus von Arndt Faulhaber und Benjamin Schlebes Seminar: Endliche Automaten für die Sprachverarbeitung SS 2005 PD Dr. K. Haenelt 1/28

Mehr

6. Probabilistische Retrievalmodelle. Norbert Fuhr

6. Probabilistische Retrievalmodelle. Norbert Fuhr 6. Probabilistische Retrievalmodelle Norbert Fuhr Notationen Q α Q Q β Q Q D R rel. judg. D α D D β D D D ρ IR q Q Anfrage d D Dokument q k Q: d m D: Anfragerepräsentation Dokumentrepräsentation qk D QD

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Informatik 8 (KI) Prof. Dr. H. Stoyan KI-Kolloquium am 23.10.2006 Part-of-Speech-Tagging für Deutsch Referent: Stefan Bienk Übersicht Aufgabenstellung

Mehr

Interaktive Wörterbücher. Kurt Eberle Lingenio GmbH Hebelstr. 14 D-69115 Heidelberg k.eberle@lingenio.de 11.Juli 2007

Interaktive Wörterbücher. Kurt Eberle Lingenio GmbH Hebelstr. 14 D-69115 Heidelberg k.eberle@lingenio.de 11.Juli 2007 Interaktive Wörterbücher Lingenio GmbH Hebelstr. 14 D-69115 Heidelberg k.eberle@lingenio.de 11.Juli 2007 Es geht...... nicht um das Habilitationsthema nicht um (computer-)linguistische Theorie um ein praktisches

Mehr

Named Entity Recognition auf Basis von Wortlisten

Named Entity Recognition auf Basis von Wortlisten Named Entity Recognition auf Basis von Wortlisten EDM SS 2017 Lukas Abegg & Tom Schilling Named Entity Recognition auf Basis von Wortlisten Lukas Abegg - Humboldt Universität zu Berlin Tom Schilling -

Mehr

Wissensrepräsentation

Wissensrepräsentation Wissensrepräsentation Vorlesung Sommersemester 2008 8. Sitzung Dozent Nino Simunic M.A. Computerlinguistik, Campus DU (Fortsetzung LC-/Chart-Parsing) Statistische Verfahren in der KI Impliziert Maschinelles

Mehr

WSD using Decision Lists. Sabrina Wolter 02. Juni 2004

WSD using Decision Lists. Sabrina Wolter 02. Juni 2004 WSD using Decision Lists Sabrina Wolter 2. Juni 24 Overview 1. (Flat) Decision Lists 2. Hierarchical Decision Lists (Flat) Decision Lists - Overview Informal Description of formal model Algorithmus zur

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr