1,&5HSHDWHU+XE%ULGJH6ZLWFK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1,&5HSHDWHU+XE%ULGJH6ZLWFK"

Transkript

1 1,&5HSHDWHU+XE%ULGJH6ZLWFK 1,& (Network Interface Card) Netzwerkadapter. Die Netzwerkkarte, die dem Rechner überhaupt erst den Zugriff auf das LAN ermöglicht, ist im OSI-Modell ein Gerät des Layers 1. Nach IEEE 802 ist die MAC-Schicht (Media Access Control) dafür zuständig, das Interface zwischen LLC (Logoc Link Control) und dem NIC herzustellen. 5HSHDWHU als Gerät des OSI - Layers 1 ist Repeater im LAN völlig WUDQVSDUHQW (weder angeschlossene Rechner noch Software wissen von dem eingebundenen Gerät). Auf der anderen Seite bedeutet dies auch, dass auf beiden Seiten des Repeaters alle anderen Ebenen identisch sein müssen mit einem Repeater lassen sich unterschiedliche Netzwerke (etwa Token Ring und Ethernet) nicht koppeln. Außerdem müssen alle Adressen in den verbundenen Segmenten eindeutig sein. empfängt Signale, verstärkt sie und gibt sie weiter. In einem LAN dient der dazu, die maximale Reichweite eines Signals (und damit die maximale Kabellänge) zu erhöhen. verbindet also mehrere Netzwerk-Segmente miteinander, allerdings ohne die verfügbare Bandbreite in jedem einzelnem Segment zu erhöhen. Ein lokaler Repeater verbindet zwei Segmente, die maximal 100 m Abstand haben dürfen, er ist mit je einem Transceiver an jedes Segment angeschlossen vereinfacht die Fehlersuche bei der Bus-Topologie, da bei vermuteten Kabelproblemen Segmente einfach abgekoppelt werden können, ohne die Funktionsweise der anderen Segmente zu beeinträchtigen. ist immer bidirektional. Das bedeutet auch, dass man einen Repeater im Strang entweder nach der Zusammengehörigkeit der Workstations in einem Segment positioniert oder, wenn die Kabellänge an beiden Anschlüssen des Repeaters zum Problem wird, so, dass beide Kabel die gleiche Länge aufweisen. nach IEEE sind im Ethernet maximal 4 Geräte pro Netzwerk zulässig. zählt als ein Node im Netzwerk, so dass er bei der maximalen zulässigen Anzahl der Nodes pro Segment (30 bei 10Base2) zu berücksichtigen ist. ist keine zusätzliche Last im Netzwerk, seine Bandbreite ist immer so groß wie die des angeschlossenen LANs.

2 Ein Remote-Repeater ist ein Repeater-Paar, das durch einen max m langen Lichtwellenleiter verbunden ist. In jedem Netz dürfen höchstens vier Repeater vorhanden sein, so dass man eine Gesamtlänge von 2500 m erreicht. Ein Remote Repeater-Paar zählt dabei wie ein lokaler Repeater. An den Lichtwellenleiter können keine Ethernet-Stationen angeschlossen werden. Der Repeater ist als reines Verstärkerelement in der untersten Schicht des OSI-Modells angesiedelt. 0XOWLSRUW5HSHDWHU Der Multiport-Repeater bietet die Möglichkeit, mehrere (typischerweise bis zu 8) Cheapernet- Segmente zusammenzuführen und über einen Transceiveranschluß mit dem Standard- Ethernet zu verbinden. Bei zwei oder mehr anzuschließenden Cheapernet-Segmenten ist die Lösung kostengünstiger als der Einsatz von Standard-Repeatern.

3 +XE als Gerät des OSI-Layer 1 ist Hub für das Netzwerk vollständig WUDQVSDUHQW. die Funktion eines Hub besteht darin, mehrere Twisted-Pair-Kabelsegmente über einen Transceiveranschluß mit dem Ethernet zu verbinden. Der Begriff "Hub" steht für fast alle Verstärkerkomponenten, die eine sternförmige Vernetzung ermöglichen. Hubs haben immer mehrere Ports zum Anschluss von mehreren Rechnern. Bei Twisted-Pair-Verkabelung ist meinst einer der Ports als "Uplink" schaltbar, d. h. es werden die Leitungen gekreuzt (Cross-Over-Kabel). Auf diese Weise lassen sich die Hubs kaskadieren. Typisch sind Hubs mit 4, 8, 12, 16, 24 und 32 Ports. bietet den angeschlossenen Workstaionen die volle Bandbreite des LANs bis zum Hub-Port in modernen Hubs wird eine Backplane (interne Verbindung zwischen den Ports des Hubs) mit größerer Bandbreite eingesetzt, um keinen Engpass in der Kommunikation zwischen den Ports enstehen zu lassen. Trotzdem bleibt ein Segment, das über Hubs gebildet wird, ein shared Medium alle Stationen teilen sich die Gesamtbandbreite des LANs, nur die Verbindung von Rechner zu Hub ist dediziert. alle Ports eines Hubs bilden ein einzelnes Segment die Verbindung mehrerer Hubs miteinander lässt die Anzahl der möglichen Stationen erhöhen bietet meistens noch Management-Funktionen ist Port gerade nicht verfügbar, lassen sich die Daten Pakete zwischenspeichern

4 Manche Repeater / Hubs lassen sich über spezielle Busports und in der Regel sehr kurze Buskabel verbinden. Vorteil dieser herstellerspezifischen Kaskadierung ist, dass alle so verbundenen Repeater/Hubs als ein Repeater bezüglich der Repeaterregel zählen.

5 5HSHDWHUUHJHO die Anzahl der hintereinanderschaltbaren Repeater bei 10Base5 und 10Base2 ist limitiert (Addition von Laufzeiten, Phasenverschiebungen, usw.). ein Remote-Repeater-Paar (10Base5, 10Base2) mit einer Punkt-zu-Punkt-Verbindung zwischen beiden Hälften wird als ein Repeater betrachtet. es dürfen nicht mehr als fünf (5) Kabelsegmente verbunden werden. zur Verbindung werden vier (4) Repeater benötigt und nur drei (3) der Segmente dürfen Rechner angeschlossen haben. bei Ethernet (10Base5) können so 5 Segmente zu je 500 m verbunden werden, das gesamte Netz darf damit eine Ausdehnung von 2,5 km haben. Man kann diese Regel auch auf Twisted-Pair-Hubs anwenden - auch hier kann man nicht beliebig viele Hubs kaskadieren. Hier ist die Leitungslänge sogar auf ca. 100 m je Segment begrenzt. Eine Erweiterung ist durch aktive Elemente möglich (Switch, Router).

6 %ULGJH als Gerät des OSI-Layers 2 kann eine Bridge LANs mit verschiedenen physikalischen Schichten verbinden (Netzwerke auf Koax- und UTP-Basis). darüber liegende Schichten (2 7) müssen identisch sein. der Inhalt der Pakete wird nicht interpretiert. die Bridge ist durch IEEE 802.1D spezifiziert. die Bridge trennt zwei Ethernet-LANs physikalisch, Störungen wie z. B. Kollisionen und fehlerhafte Pakete gelangen nicht über die Bridge hinaus. die Bridge ist SURWRNROOWUDQVSDUHQW, d. h. sie überträgt alle auf dem Ethernet laufenden Protokolle. Die beiden beteiligten Netze erscheinen also für eine Station wie ein einziges Netz. Durch den Einsatz einer Bridge können die Längenbeschränkungen des Ethernets überwunden werden. die Bridge arbeitet mit derselben Übertragungsrate, wie die beteiligten Netze. die Anzahl der hintereinandergeschalteten Bridges ist auf 7 begrenzt (IEEE 802.1). Normalerweise wird man aber nicht mehr als vier Bridges hintereinanderschalten. mittels Bridges lassen sich LANs praktisch unbegrenzt ausdehnen. LANs, die durch Bridges verbunden werden, stellen sich nach außen als ein großes Gesamtnetz dar, alle Pakete werden grundsätzlich an alle Stationen in den Teilnetzen gesandt. Daher müssen auch hier die Adressen eindeutig sein Bridges verringern die Gesamtbandbreite des LANs, weil sie paketweise operieren. Eingehende Pakete werden zwischengespeichert und aufbereitet. Bridges fügen der Versandzeit eine Verzögerung hinzu (Filter verringern diesen Effekt). bei transparenten Bridges ist zusätzlich der 6SDQQLQJ7UHH$OJRULWKP implementiert, der dafür sorgt, dass keine im Netz kreisende Pakete auftauchen. durch Austausch von Informationen zwischen den Bridges eines Gesamtnetzes sind sie in der Lage, nur einen der möglichen Wege zur Zielstation zu benutzen. weitere Variante sind 6RXUFH5RXWLQJ%ULGJHV, die manchmal schon zu den Routern gezählt werden. Eine solche Bridge kann nur eingeschränkte Routing-Funktionen übernehmen (alle Informationen über den Pfad müssen schon im Datenpaket vermerkt sein-daher der Begriff Source Routing). Die Bridge entscheidet dann anhand dieser Informationen, ob sie das Paket weiterleiten oder ignorieren soll.

7 Jede lokale Bridge ist über Transceiver an zwei Ethernet-LANs angeschlossen (Es gibt auch Bridges, die mehrere LANs verbinden können). Die Bridge erstellt für jedes LAN eine Tabelle der Adressen aller Stationen, die Datenpakete aussenden. Ist die Zieladresse eines Paketes in dem LAN, in dem es von der Bridge empfangen wurde, wird es ignoriert. Ist es nicht darin, wird es in das andere LAN gesendet. Es werden somit nur solche Pakete übertragen, die an die jeweils andere Seite adressiert sind. Broadcast und Multicasts werden immer übertragen. Je nach Typ der Bridge können auch extra Filter gesetzt werden, um etwa den Zugang mancher Stationen zu verhindern oder nur bestimmte Protokolle zuzulassen. Eine Bridge arbeitet auf der Ebene 2 des OSI- Schichtenmodells. Die Bridge empfängt von beiden Netzsegmenten, mit denen sie wie jede normale Station verbunden ist, alle Blöcke und analysiert die Absender- und Empfängeradressen. Steht die Absenderadresse nicht in der brückeninternen Adresstabelle, so wird sie vermerkt. Die Bridge lernt und speichert so die Information, auf welcher Seite der Bridge der Rechner mit dieser Adresse angeschlossen ist. Ist die Empfängeradresse bekannt und der Empfänger auf derselben Seite wie der Absender, so verwirft die Bridge das Paket (filtert es). Ist der Empfänger auf der anderen Seite oder nicht in der Tabelle, wird das Paket weitergeschickt. Die intelligente Bridge lernt so selbständig, welche Pakete weitergeschickt werden müssen und welche nicht. Bei managebaren Bridges können zusätzliche Adress- Filter gesetzt werden, die regeln an welche Adressen die Bridge Informationen immer weiterschicken muss oder nie weiterschicken darf. Bridges können Ethernet-Segmente auch über synchrone Standleitungen, Satellitenverbindungen, Funkverbindungen, öffentliche Paketvermittlungsnetze und schnelle Lichtleiternetze (z.b. FDDI) verbinden. In der Regel müssen solche Bridges immer paarweise eingesetzt werden.

8 Bridges sind komplette, relativ leistungsfähige Rechner mit Speicher und mindestens zwei Netzwerkanschlüssen. Sie sind unabhängig von höheren Protokollen (funktionieren also z.b. mit TCP/IP, DECnet, IPX, LAT, MOP etc. gleichzeitig) und erfordern bei normalem Einsatz keine zusätzliche Software oder Programmierung. Nach Außen bildet ein mittels Bridge erweitertes LAN weiterhin eine Einheit, welches eine eindeutige Adressierung bedingt. Eine Bridge interpretiert die Mac-Adressen der Datenpackete. Weitere Features einer Bridge sind: Ausfallsicherheit Störungen gelangen von der einen Seite einer Bridge nicht auf die andere Seite. Sie werden auch in diesem Sinne zum Trennen von sog. Kollisions-Domänen eingesetzt. Datensicherheit Informationen, die zwischen Knoten auf einer Seite der Bridge ausgetauscht werden, können nicht auf der anderen Seite der Bridge abgehört werden. Durchsatzsteigerung In den durch Bridges getrennten Netzsegmenten können jeweils unterschiedliche Daten-Blöcke gleichzeitig transferiert werden. Hierdurch wird die Netzperformance erhöht. Allerdings erzeugen Brücken dadurch, dass sie die Blöcke zwischenspeichern eine zusätzliche Verzögerung und können deswegen bei kaum ausgelasteten Netzen die Performance sogar verschlechtern. Vermeidung von Netzwerkschleifen Eine Bridge unterstützt den sog. "Spanning-Tree-Algorithmus", wodurch es möglich ist, auch Schleifen- oder Ring-Konfigurationen (= redundante Verbindungen) im Netz zu erlauben. Die Bridges im Netz kommunizieren miteinander, im Gegensatz zu "dummen" Repeatern oder Hubs, und stellen über den Algorithmus sicher, dass bei mehreren redundanten Verbindungen immer nur eine gerade aktiv ist. Weitere Kenndaten einer Bridge sind die Größe der Adresstabelle, die Filterrate, und die Transferrate. Die Größe der Adresstabelle gibt an, wie viele Adressen (Knoten) insgesamt in der Bridge gespeichert werden können. Die Filterrate gibt an, wie viele Pakete pro Sekunde (packets per second, pps) eine Bridge maximal empfangen kann. Bei voller Last und minimaler Paketlänge können in einem Ethernet-Segment theoretisch bis zu Pakete pro Sekunde auftreten. Auf beiden Ports hat eine 2-Port-Bridge also insgesamt maximal Pakete pro Sekunde zu filtern. Alle modernen Bridges erreichen diese theoretisch möglichen Maximalwerte. Die Transferrate gibt an, wie viel Pakete pro Sekunde die Bridge auf die andere Seite weiterleiten kann. Der Maximalwert ist hier pps, da bei dieser Transferrate beide Segmente voll ausgelastet sind.

9 6ZLWFK Switch ist wie die Bridge ein Gerät des OSI-Layers 2, d. h. er kann LANs mit verschiedenen physikalischen Eigenschaften verbinden, z. B. Koax- und Twisted-Pair-Netzwerke. allerdings müssen, ebenso wie bei der Bridge, alle Protokolle höherer Ebenen 3 bis 7 identisch sein!. Ein Switch ist somit SURWRNROOWUDQVSDUHQW. Er wird oft auch als Multi- Port-Bridge bezeichnet, da dieser ähnliche Eigenschaften wie eine Bridge aufweist. jeder Port eines Switch bildet ein eigenes Netzsegment. Jedem dieser Segmente steht die gesamte Netzwerk-Bandbreite zu Verfügung. Dadurch erhöht ein Switch nicht nur - wie die Bridge - die Netzwerk-Performance im Gesamtnetz, sondern auch in jedem einzelnen Segment. Switch untersucht jedes durchlaufende Paket auf die Mac-Adresse des Zielsegmentes und kann es direkt dorthin weiterleiten. Vorteil eines Switches liegt nun in der Fähigkeit seine Ports direkt miteinander verschalten zu können, d. h. dedizierte Verbindungen aufzubauen. die Bandbreite der Backplane (Verbindung der Ports) ist bei Switches um ein Vielfaches Höher als die Bandbreite aller Ports zusammengenommen. Modelle einzelner Hersteller erreichen hier 1Gbit pro Sekunde und mehr. Was ist nun der Unterschied zwischen einem Switch und einer Multiport-Bridge? Bei den Produkten der meisten Hersteller gibt es keinen. Switch klingt nach Tempo und Leistung, deswegen haben viele Hersteller ihre Multiport Bridges Switches genannt. Der Begriff Switch für Multiport Bridges wurde von der Firma Kalpana (inzwischen von Cisco aufgekauft) kreiert, da deren Produkte nicht der IEEE-Spezifikation einer Bridge entsprachen, konnte Kalpana die Produkte nicht Bridges nennen und hat den Namen Switch gewählt. Kalpana war nun sehr erfolgreich mit dem Marketing ihrer Switches. Deswegen haben andere Hersteller ihre Bridges auch Switch, Switch mit Bridge-Eigenschaften oder Bridging Switch genannt. Switches brechen die Ethernet-Busstruktur in eine Bus-/Sternstruktur auf. Teilsegmente mit Busstruktur werden sternförmig über je einen Port des Switch gekoppelt. Zwischen den einzelnen Ports können Pakete mit maximaler Ethernet-Geschwindigkeit übertragen werden. Wesentlich ist die Fähigkeit von Switches, mehrere Übertragungen zwischen unterschiedlichen Segmenten gleichzeitig durchzuführen. Dadurch erhöht sich die Bandbreite des gesamten Netzes entsprechend. Die volle Leistungsfähigkeit von Switches kann nur dann genutzt werden, wenn eine geeignete Netzwerktopologie vorhanden ist bzw. geschaffen werden kann. Die Datenlast sollte nach Möglichkeit gleichmäßig über die Ports verteilt werden. Systeme, die viele Daten übertragen, müssen unter Umständen an einen eigenen Switch Port angeschlossen werden. Dies bezeichnet man dann als 3ULYDWH(WKHUQHW. Außerdem sollte man versuchen, Systeme die viel miteinander kommunizieren, an einen gemeinsamen Port des Switches anzuschließen, um so die Datenmengen, die mehr als ein Segment durchlaufen müssen, zu reduzieren.

10 Allgemein haben sich in der Switch-Technologie zwei Gruppen herauskristallisiert: &XW7KURXJK bzw. 2Q7KH)O\ Der Ethernet Switch wartet im Gegensatz zu normalen Bridges nicht, bis er das vollständige Paket gelesen hat, sondern er überträgt das ankommende Paket nach Empfang der 6-Byte-Destination-Adresse. Da nicht das gesamte Paket bearbeitet werden muss, tritt eine Zeitverzögerung von nur etwa 40 Mikrosekunden ein. Sollte das Zielsegment bei der Übertragung gerade belegt sein, speichert der Ethernet Switch das Paket entsprechend zwischen. Bei den Switches werden, im Gegensatz zu Bridges, mit Ausnahme von short frames (Pakete, die kleiner als die minimal zulässigen 64 Bytes sind), fehlerhafte Pakete auch auf das andere Segment übertragen. Grund hierfür ist, dass die CRC-Prüfung (Cyclic Redundancy Check) erst bei vollständig gelesenem Paket durchgeführt werden kann. Solange der Prozentsatz von fehlerhaften Paketen im Netz gering ist, entstehen keine Probleme. Sobald aber (z.b. aufgrund eines Konfigurationsfehlers, fehlerhafter Hardware oder extrem hoher Netzlast bei gleichzeitig langen Segmenten mit mehreren Repeatern) der Prozentsatz der Kollisionen steigt, können Switches auch dazu führen, dass die Leistung des Gesamtnetzes deutlich sinkt. Cut-Through-Switching bietet dann einen Vorteil, wenn man sehr geringe Verzögerungen bei der Übertragung zwischen einzelnen Knoten benötigt. Diese Technologie sollte also eingesetzt werden, wenn es darum geht, in relativ kleinen Netzen eine große Anzahl Daten zwischen wenigen Knoten zu übertragen. 6WRUHDQG)RUZDUG Die Switches dieser Kategorie untersuchen im Gegensatz zu den vorher erwähnten das gesamte Datenpaket. Dazu werden die Pakete kurz zwischengespeichert, auf ihre Korrektheit und Gültigkeit überprüft und anschließend verworfen oder weitergeleitet. Einerseits hat dies den Nachteil der größeren Verzögerung beim Weiterschicken des Paketes, andererseits werden keinerlei fehlerhafte Pakete auf das andere Segment übertragen. Diese Lösung ist bei größeren Netzen mit vielen Knoten und Kommunikationsbeziehungen besser, weil nicht einzelne fehlerhafte Segmente durch Kollisionen das ganze Netz belasten können. Bei diesen Anwendungen ist die Gesamttransferrate entscheidend, die Verzögerung wirkt sich hier kaum aus.

11 Inzwischen sind Switching-Produkte (z.b. von 3Com, Cisco oder Allied Telesyn) am Markt, die beide Technologien unterstützen. Dies geschieht entweder per Konfiguration (Software) oder automatisch anhand der CRC-Fehler-Häufigkeit. Wird eine vorgegebene Anzahl von fehlerhaften Paketen überschritten, schaltet der Switch automatisch von "Cut Through" auf "Store and Forward" um. Die Performance eines Netzes kann man auf Basis vorhandener Standalone-Switches erhöhen, indem zusätzliche Switches über die Ethernetports kaskadiert werden. Alle Switches erlauben die Kaskadierung über einen einzelnen Ethernet-Port mit einer maximalen Transferrate von 10 Mbit/s (bzw. 100 Mbit/s bei Fast Ethernet Switches). Kann man das Netz in Teilnetze unterteilen, zwischen denen diese Transferrate ausreicht, ist dies eine sinnvolle Lösung. Doch meistens ist das nicht der Fall. Die nächste und wohl beste Möglichkeit der Kopplung von Switches ist der Einsatz von Produkten, die den Anschluss an einen High Speed Backbone erlauben. Im Gegensatz zu kaskadierten Standalone-Switches können weitere Geräte an den Backbone gehängt werden, ohne dass Ports für die Switch-zu-Switch-Verbindung verloren gehen. Eine Backbone-Lösung ist nicht nur schneller und flexibler sondern für große Netze auch kostengünstiger. Man muss unterscheiden zwischen Lösungen, die eine herstellereigene Verbindung benutzen (Proprietär) und solchen, die auf einen Standard wie Fast Ethernet, Gigabit Ethernet, FDDI oder ATM setzen.

12 8QWHUVFKLHGH+XE6ZLWFK +XE Es kann immer nur ein Datenpaket nach dem anderen den Hub passieren Geschwindigkeit 10 oder 10/100 Mbps bei Dual Speed Hubs Hubs wissen nicht, an welchem Port welche Station angeschlossen ist, sie können es auch nicht lernen. Hubs müssen nicht konfiguriert werden. preisgünstiger als Switches 6ZLWFK Mehrere Datenpakete können den Switch gleichzeitig passieren Die Gesamtbandbreite (der Datendurchsatz) ist wesentlich höher als bei einem Hub Switches lernen nach und nach, welche Stationen mit welchen Ports verbunden sind, somit werden bei weiteren Datenübertragungen keine anderen Ports unnötig belastet, sondern nur der Port, an dem die Zielstation angeschlossen ist Geschwindigkeiten sind heute 10, 10/100 oder 1000 MBit/s (Gigabit Ethernet) Switches müssen nicht konfiguriert werden

13 /D\HU6ZLWFKLQJ Layer-3-Switching ist eine neue Technologie. Sie kombiniert leistungsfähiges Switching (Layer 2) mit skalierbarem Routing (Layer 3). Herkömmliche Switches verwenden die Mac-Adresse der Ethernet-Frames zur Entscheidung, wohin die Frames transportiert werden sollen, während Router Datenpakete anhand von Routingtabellen und Accesslisten auf Layer-3-weitervermitteln. Router sind in vielen Installationen als reine LAN-to-LAN-Router im Einsatz, um Subnetze zu verbinden und die Nebeneffekte von rein geswitchten Netzen, wie z. B. Broadcast-Stürme, fehlendes Subnetting etc. zu verhindern. Router, die auf der Transportebene arbeiten, müssen jedes IP-Paket aus den Ethernet-Frames zusammenbauen und vielfältige Operationen an IP-Paketen durchführen. Dies führt zu einer Verzögerungszeit und, im Vergleich zu Switches, geringerem Datendurchsatz. In reinen IP-Netzen kann das Layer-3-Switching, auch "Fast IP" genannt, diese LAN-to-LAN-Router ersetzen. Der Layer-3-Switch liest beim ersten IP-Paket sämtliche Frames dieses Paketes, analysiert die Absender- und Empfänger-IP-Adressen und leitet das IP-Paket weiter. Alle nachfolgenden Frames dieses Stationspaars können daraufhin anhand der Mac-Adresse weitergeleitet werden. Der Layer-3-Switch behandelt IP-Pakete beim ersten Mal wie ein Router, nachfolgende Daten können auf Frame-Ebene geswitcht werden. Nicht-IP-Daten, wie z. B. IPX-Pakete, werden vom Layer-3-Switch auf Layer 2 geswitcht. Das Konzept des Layer-3-Switching bedingt eine Erweiterung des Ethernet-Frameformats und ist bisher nur Proprietär implementiert. Die Erweiterung des Layer-3-Switching auf andere Layer-3-Protokolle wie z.b. IPX ist geplant. Es ist anzunehmen, dass die herstellerspezifischen Implementationen in einen gemeinsamen Standard münden.

14 5RXWHU als Gerät der OSI-Schicht 3 kann Netzwerke mit unterschiedlichen Topologien der Layer 1 und 2 verbinden. Alle über einen Router verbundene Netzwerke müssen dieselben Adressierungsmechanismen verwenden. um Pakete weiterleiten zu können, interpretiert ein Router im Gegensatz zu Bridge die Adressangaben in ihnen. Router arbeitet nicht mit Adressen des MAC-Layers. In über den Router gekoppelten Netzwerken muss die Ausgangsstation nicht die MAC-Adresse der Zielstation wissen. Die Adresse aus der Protokoll-Ebene (IP-Adresse) genügt. Damit lassen sich, unabhängig von der Topologie der angeschlossenen Netze, Pakete gezielt von einem Netzsegment in ein anderes weiterleiten. Router ermöglicht ein /RDG%DODQFLQJ, indem alternative Wege zur Zieladresse verwandt werden, wenn ein Engpass auftritt oder eiene Route ausfällt. durch die Notwendigkeit, die Adresse der Ebene 3 aus dem Paketen auszulesen, ist die Verzögerung entsprechend größer als bei Bridges. Router müssen die entsprechenden Netzwerkprotokolle verstehen und interpretieren können Anzahl der unterstützten Protokolle ist ein wichtiges Kriterium bei der Anschaffung eines Routers. moderne Router übernehmen auch Bridging-Funktionen, wenn sie ein Paket nicht interpretieren können. Wie bei einer Bridge wird das Paket über die MAC-Adresse zugestellt. neben der Vorteilen, die das dynamische Routing dieser Gerät bietet, ermöglichen die Filterfunktionen auf Protokoll-Ebene eine erhöhte Netzwerksicherheit. Router lassen sich sehr einfach zu sogenannten Firewalls konfigurieren, indem beispielsweise der Zugriff auf ein Teil-LAN nur bestimmten IP-Adressen erlaubt wird.

Unterschiede zwischen Hub und Switch:

Unterschiede zwischen Hub und Switch: Unterschiede zwischen Hub und Switch: Der Unterschied zischen einem Hub und einem Switch: Beiden gemeinsam ist, das sie in Twisted - Pair Netzwerken die Verteilerrolle übernehmen also der zentrale Anlaufpunkt

Mehr

Chapter 8 Ethernet-Switching. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von

Chapter 8 Ethernet-Switching. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Chapter 8 Ethernet-Switching CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/

Mehr

Ethernet Applikation Guide

Ethernet Applikation Guide Ethernet Applikation Guide Derzeit sind drei Arten von Ethernet gängig, jede mit Ihren eigenen Regeln. Standard Ethernet mit einer Geschwindigkeit von 10 Mbit/s, Fast Ethernet mit Datenraten bis zu 100

Mehr

BRÜCKENTYPEN FUNKTION UND AUFGABE

BRÜCKENTYPEN FUNKTION UND AUFGABE Arbeitet auf der OSI-Schicht 2 Verbindet angeschlossene Collision-Domains mit verwandten Protokollen In jeder Collision-Domain kann gleichzeitig Kommunikation stattfinden Nur eine Verbindung über eine

Mehr

Ethernet Switching und VLAN s mit Cisco. Markus Keil IBH Prof. Dr. Horn GmbH Gostritzer Str. 61-63 01217 Dresden http://www.ibh.de/ info@ibh.

Ethernet Switching und VLAN s mit Cisco. Markus Keil IBH Prof. Dr. Horn GmbH Gostritzer Str. 61-63 01217 Dresden http://www.ibh.de/ info@ibh. Ethernet Switching und VLAN s mit Cisco Markus Keil IBH Prof. Dr. Horn GmbH Gostritzer Str. 61-63 01217 Dresden http://www.ibh.de/ info@ibh.de Der klassische Switch Aufgaben: Segmentierung belasteter Netzwerke

Mehr

Idee des Paket-Filters

Idee des Paket-Filters Idee des Paket-Filters Informationen (Pakete) nur zum Empfänger übertragen und nicht überallhin Filtern größere Effizienz Netzwerk größer ausbaubar Filtern ist die Voraussetzung für Effizienz und Ausbaubarkeit

Mehr

Internetworking. Motivation für Internetworking. Übersicht. Situation: viele heterogene Netzwerke

Internetworking. Motivation für Internetworking. Übersicht. Situation: viele heterogene Netzwerke Internetworking Motivation für Internetworking Übersicht Repeater Bridge (Brücke) Verbindung zwischen zwei gleichen LANs Verbindung zwischen zwei LANs nach IEEE 802.x Verbindung zwischen mehreren LANs

Mehr

Einführung in die. Netzwerktecknik

Einführung in die. Netzwerktecknik Netzwerktecknik 2 Inhalt ARP-Prozeß Bridging Routing Switching L3 Switching VLAN Firewall 3 Datenaustausch zwischen 2 Rechnern 0003BF447A01 Rechner A 01B765A933EE Rechner B Daten Daten 0003BF447A01 Quelle

Mehr

Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch

Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch Bechtle Systemhaus Mannheim 03.03.2003 Netzwerkkomponenten Folie 1 Ulrike Müller, Fabian Simon, Sabine Moldaschl, Andreas Peter Präsentation Zusammenfassung: OSI-Schichtenmodell, Hub, Switch Bechtle Systemhaus

Mehr

(LANs) NET 4 Teil 1.4 - Local Area Networks 1

(LANs) NET 4 Teil 1.4 - Local Area Networks 1 Teil 1.4 Local Area Networks (LANs) NET 4 Teil 1.4 - Local Area Networks 1 Klassifikation Netzwerke Primär nach Ausdehnung: Local Area Network (LAN) Metropolitan Area Netzwork (MAN) Wide Area Network (WAN)

Mehr

Switches. Switch P133 P550 P400 P450

Switches. Switch P133 P550 P400 P450 Switches Hier ist zunächst die Bridge zu erwähnen. Die Bridge (Brücke) verbindet zwei Segmente (zwei Kollisionsdomänen) analog einer Brücke, die zwei Ufer eines Flusses verbindet. Jeder Port einer Brücke

Mehr

Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1. Kennwort:

Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1. Kennwort: Klausur Rechnernetze 1.3 ws99/00 Name: Matr.Nr.: 1 Teil 1 ohne Unterlagen Aufgabe 1-3 Aufgabe max. Pkt. err. Pkt. 1 22 2 10 3 8 Summe 1 40 4 12 5 6 6 12 7 6 Summe 2 36 *40/36 Summe 80 Falls Sie ein Kennwort

Mehr

Verbindungslose Netzwerk-Protokolle

Verbindungslose Netzwerk-Protokolle Adressierung Lokales Netz jede Station kennt jede Pakete können direkt zugestellt werden Hierarchisches Netz jede Station kennt jede im lokalen Bereich Pakete können lokal direkt zugestellt werden Pakete

Mehr

Vorlesung "Verteilte Systeme" Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk

Vorlesung Verteilte Systeme Wintersemester 2000/2001. Verteilte Systeme. Empfänger Kommunikationssystem. Netzwerk Verteilte Systeme 1. Netzwerke Grundstruktur Sender Empfänger Kommunikationssystem Empfänger Systemsoftware Systemsoftware Hardware Hardware Netzwerk Verteilte Systeme, Wintersemester 2000/2001 Folie 1.2

Mehr

a) Weshalb darf die Framelänge bei Ethernet einen bestimmten Wert nicht unterschreiten? Wie groß ist dieser bei IEEE 802.3?

a) Weshalb darf die Framelänge bei Ethernet einen bestimmten Wert nicht unterschreiten? Wie groß ist dieser bei IEEE 802.3? Aufgabe 1: Ethernet 1. Ethernet a) Weshalb darf die Framelänge bei Ethernet einen bestimmten Wert nicht unterschreiten? Wie groß ist dieser bei IEEE 802.3? b) Die Beziehung zwischen der Signalausbereitungsgeschwindigkeit

Mehr

1. Erläutern Sie den Begriff Strukturierte Verkabelung

1. Erläutern Sie den Begriff Strukturierte Verkabelung Datenübertragung SS 09 1. Erläutern Sie den Begriff Strukturierte Verkabelung Stellt einen einheitlichen Aufbauplan für Verkabelungen für unterschiedliche Dienste (Sprache oder Daten dar). Eine Strukturierte

Mehr

3 Layer II, die Sicherungsschicht

3 Layer II, die Sicherungsschicht 44 3 Layer II, die Sicherungsschicht 3 Layer II, die Sicherungsschicht Obwohl heute die Sternverkabelung die gängige ist, wissen wir nun, dass innerhalb des Konzentrators wieder die Bustopologie realisiert

Mehr

Seminararbeit zur Vorlesung Netzwerke 1 bei Prof. Dr. Marke im SS2007

Seminararbeit zur Vorlesung Netzwerke 1 bei Prof. Dr. Marke im SS2007 Seminararbeit zur Vorlesung Netzwerke 1 bei Prof. Dr. Marke im SS2007 Thema: Bridge and Spanning Tree Ausarbeitung erfolgt durch Herr/Frau: Jakob Külzer Herr/Frau: Inhalt 1 Vorwort...3 2 Bridge...3 2.1

Mehr

Netzwerktechnik Modul 129 Netzwerktechnik

Netzwerktechnik Modul 129 Netzwerktechnik Netzwerktechnik Technische Berufsschule Zürich IT Seite 1 A. Netzverkabelung Die verschiedenen Ethernet-Varianten Die Ethernetvarianten unterscheiden sich hauptsächlich durch die verwendeten Medien wie

Mehr

Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5.

Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5. Inhalt: 1. Layer 1 (Physikalische Schicht) 2. Layer 2 (Sicherungsschicht) 3. Layer 3 (Vermittlungsschicht) 4. Layer 4 (Transportschicht) 5. Ethernet 6. Token Ring 7. FDDI Darstellung des OSI-Modell (Quelle:

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 9. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

Kap. 4. Sicherungs-Schicht ( Data Link Schicht)

Kap. 4. Sicherungs-Schicht ( Data Link Schicht) Kap. 4 Sicherungs-Schicht ( Data Link Schicht) Sicherungs-Schicht (Data-Link-Schicht) Rolle: Beförderung eines Datagramms von einem Knoten zum anderen via einer einzigen Kommunikationsleitung. 4-2 Dienste

Mehr

SelfLinux-0.12.3. Lokale Netze

SelfLinux-0.12.3. Lokale Netze Lokale Netze Autor: Guido EhlertMatthias Kleine (guido@ge-soft.dekleine_matthias@gmx.de) Formatierung: Frank Börner (frank@frank-boerner.de) Lizenz: GPL Lokale Netze Seite 2 Inhaltsverzeichnis 1 Einleitung

Mehr

Modul 6 LAN-Komponenten (Repeater, Bridge, Switch)

Modul 6 LAN-Komponenten (Repeater, Bridge, Switch) Lernziele: Nach der Lehrveranstaltung zu Modul 6 sollen Sie in der Lage sein, Modul 6 LAN-Komponenten (, Bridge, Switch) (a) die Grundfunktion eines s darzustellen, (b) die Anforderung, Notwendigkeit,

Mehr

BNC-, RJ45-, und Glasfaser- Netzwerkkarten

BNC-, RJ45-, und Glasfaser- Netzwerkkarten Andreas Siebold Seite 1 01.09.2003 BNC-, RJ45-, und Glasfaser- Netzwerkkarten Eine Netzwerkkarte (Netzwerkadapter) stellt die Verbindung des Computers mit dem Netzwerk her. Die Hauptaufgaben von Netzwerkkarten

Mehr

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit 1 Hochverfügbarkeit Lernziele: Network Load Balancing (NLB) Failover-Servercluster Verwalten der Failover Cluster Rolle Arbeiten mit virtuellen Maschinen Prüfungsanforderungen von Microsoft: Configure

Mehr

Netz 2 WAN. Netz 3 R3

Netz 2 WAN. Netz 3 R3 Router Ein Router verbindet Subnetze gemäß Ebene 3 des OSI-Referenzmodells. Dies beinhaltet insbesondere die Wegewahlfunktionalität als zentrale Funktion der Ebene 3. Da die Ebene 3 für alle aktuell etablierten

Mehr

IT-Systemelektroniker Arbeitskunde

IT-Systemelektroniker Arbeitskunde CBT-Arbeitsheft Lehrer-Version Seite 1 ÜBERSICHTSSEITE Titel Themen Einleitung Netzwerk - Topologien Zeit / Unterrichtsraum 2 Unterrichtsstunden / Klassenraum Einführung Ziel der Übung erklären. Lernziele

Mehr

Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 06

Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 06 Vorlesung: Netzwerke (TK) WS 2011/12 Kapitel 2 Direktverbindungsnetzwerke Session 06 Prof. Dr. Michael Massoth [Stand: 02.11.2011] 6-1 6-2 Kapitel 2: Direktverbindungsnetzwerke Hosts physikalisch miteinander

Mehr

Rechnernetze I. Rechnernetze I. 4 LAN Switching SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 4 LAN Switching SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 3. Juli 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

Cisco erweitert Gigabit-Ethernet-Portfolio

Cisco erweitert Gigabit-Ethernet-Portfolio Seite 1/6 Kleine und mittelständische Unternehmen Neue 1000BaseT-Produkte erleichtern die Migration zur Gigabit-Ethernet- Technologie WIEN. Cisco Systems stellt eine Lösung vor, die mittelständischen Unternehmen

Mehr

Hochverfügbares Ethernet MRP - Media Redundancy Protocol

Hochverfügbares Ethernet MRP - Media Redundancy Protocol Hochverfügbares Ethernet MRP - Media Redundancy Protocol Hirschmann Automation and Control GmbH Dipl.- Ing. Dirk Mohl 1 25.01.07 - ITG Automation Übersicht Netzwerke und Redundanztypen Rapid Spanning Tree

Mehr

Netzwerktechnologie 2 Sommersemester 2004

Netzwerktechnologie 2 Sommersemester 2004 Netzwerktechnologie 2 Sommersemester 2004 FH-Prof. Dipl.-Ing. Dr. Gerhard Jahn Gerhard.Jahn@fh-hagenberg.at Fachhochschulstudiengänge Software Engineering Software Engineering für Medizin Software Engineering

Mehr

LAN Konzept Bruno Santschi. LAN Konzept. Version 1.0 März 2001. LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch

LAN Konzept Bruno Santschi. LAN Konzept. Version 1.0 März 2001. LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch LAN Konzept Version 1.0 März 2001 LAN Konzept.doc Seite 1 von 10 hehe@hehe.ch Inhaltsverzeichnis 1 Einleitung... 3 1.1 Ausgangslage... 3 1.2 Rahmenbedingungen... 3 1.3 Auftrag... 3 1.4 Projektorganisation...

Mehr

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976

Rechnernetze. Ethernet. (c) Peter Sturm, Uni Trier. Robert M. Metcalfe, 1976 Rechnernetze Ethernet Robert M. Metcalfe, 1976 1 Historisches Mai 1973 Bob Metcalfe Xerox PARC, Kalifornien Baut auf Aloha Network, Universität Hawaii auf Radio- Netzwerk zur Verbindung der einzelnen Inseln

Mehr

IP Adressen & Subnetzmasken

IP Adressen & Subnetzmasken IP Adressen & Subnetzmasken Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät Stand der Veranstaltung 13. April 2005 Unix-Umgebung 20. April 2005 Unix-Umgebung 27. April

Mehr

Switch: - nicht konfigurierbare (unmanaged) - konfigurierbare (managed)

Switch: - nicht konfigurierbare (unmanaged) - konfigurierbare (managed) Switch: - nicht konfigurierbare (unmanaged) - konfigurierbare (managed) a) unmanaged: Autosensing: stellt sich automatisch auf 10/100/1000 Mbit ein. Autonegotiation: verhandelt mit seinem Gegenüber über

Mehr

TU Chemnitz, Fakultät Informatik

TU Chemnitz, Fakultät Informatik TU Chemnitz, Fakultät Informatik Professur Rechnerarchitektur und Mikroprogrammierung Proseminar IBM-PC Sommersemester 2001 bei Prof. Dr.-Ing. W. Rehm Gruppe Kabelgebundene Kommunikation PC - Notebook

Mehr

Gigabit Ethernet. Technische Daten: Standart 802.3z. Aspekte für Gigabit Ethernet

Gigabit Ethernet. Technische Daten: Standart 802.3z. Aspekte für Gigabit Ethernet Standart 802.3z Gigabit Ethernet Aspekte für Gigabit Ethernet 80% aller Installationen im LAN-Bereich sind Ethernet-Installationen hohe Zuverlässigkeit entscheidet im Unternehmenseinsatz alle vorhandenen

Mehr

[Netzwerke unter Windows] Grundlagen. M. Polat mpolat@dplanet.ch

[Netzwerke unter Windows] Grundlagen. M. Polat mpolat@dplanet.ch [Netzwerke unter Windows] Grundlagen M. Polat mpolat@dplanet.ch Agenda! Einleitung! Standards! Topologien! Netzwerkkarten! Thinnet! Twisted Pair! Hubs / Switches! Netzwerktypen! IP-Adressen! Konfiguration!

Mehr

Thema: VLAN. Virtual Local Area Network

Thema: VLAN. Virtual Local Area Network Thema: VLAN Virtual Local Area Network Überblick Wie kam man auf VLAN? Wozu VLAN? Ansätze zu VLAN Wie funktioniert VLAN Wie setzt man VLAN ein Wie kam man auf VLAN? Ursprünglich: flaches Netz ein Switch

Mehr

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de

Vorlesung 11: Netze. Sommersemester 2001. Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vorlesung 11: Netze Sommersemester 2001 Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Vielen Dank an Andrew Tanenbaum der Vrije Universiteit Amsterdam für die Bilder Andrew Tanenbaum, Computer Networks,

Mehr

University of Applied Sciences. Hochschule Merseburg (FH) Anwendung Rechnernetze. Layer 3 Switching. Frank Richter. 7. Semester

University of Applied Sciences. Hochschule Merseburg (FH) Anwendung Rechnernetze. Layer 3 Switching. Frank Richter. 7. Semester University of Applied Sciences Hochschule Merseburg (FH) Anwendung netze Layer 3 Switching Frank Richter 7. Semester Fachbereich: Informatik Matrikel: 2INF03 Kennnummer: 10760 1. Inhaltsverzeichnis: 1.

Mehr

CSMA/CD: - keine Fehlerkorrektur, nur Fehlererkennung - Fehlererkennung durch CRC, (Jabber) Oversized/Undersized

CSMA/CD: - keine Fehlerkorrektur, nur Fehlererkennung - Fehlererkennung durch CRC, (Jabber) Oversized/Undersized 1.1.: MAC-Adressen für CSMA/CD und TokenRing bestehen jeweils aus 48 Bits (6 Bytes). Warum betrachtet man diese Adressräume als ausreichend? (im Gegensatz zu IP) - größer als IP-Adressen (48 Bits 32 Bits)

Mehr

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer Einführung in IP, ARP, Routing Wap WS02/03 Ploner, Zaunbauer - 1 - Netzwerkkomponenten o Layer 3 o Router o Layer 2 o Bridge, Switch o Layer1 o Repeater o Hub - 2 - Layer 3 Adressierung Anforderungen o

Mehr

Ingentive Fall Studie. LAN Netzwerkdesign eines mittelständischen Unternehmens mit HP ProCurve. Februar 2009. ingentive.networks

Ingentive Fall Studie. LAN Netzwerkdesign eines mittelständischen Unternehmens mit HP ProCurve. Februar 2009. ingentive.networks Ingentive Fall Studie LAN Netzwerkdesign eines mittelständischen Unternehmens mit HP ProCurve Februar 2009 Kundenprofil - Mittelständisches Beratungsunternehmen - Schwerpunkt in der betriebswirtschaftlichen

Mehr

Wie organisiert ihr Euer menschliches «Netzwerk» für folgende Aufgaben? an alle an ein bestimmtes an ein bestimmtes an alle an ein bestimmtes

Wie organisiert ihr Euer menschliches «Netzwerk» für folgende Aufgaben? an alle an ein bestimmtes an ein bestimmtes an alle an ein bestimmtes Computernetzwerke Praxis - Welche Geräte braucht man für ein Computernetzwerk und wie funktionieren sie? - Protokolle? - Wie baue/organisiere ich ein eigenes Netzwerk? - Hacking und rechtliche Aspekte.

Mehr

netzwerke TECHNISCHE KAUFLEUTE UND HWD

netzwerke TECHNISCHE KAUFLEUTE UND HWD netzwerke TECHNISCHE KAUFLEUTE UND HWD Was ist ein Netzwerk? Zweck? N. stellen innerbetriebliche, zwischenbetriebliche und überbetriebliche Datenverbindungen zwischen mehreren IT- Systemen her. Es werden

Mehr

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur Probeklausur Aufgabe 1 (Allgemeine Verständnisfragen): 1. Wie nennt man die Gruppe von Dokumenten, in welchen technische und organisatorische Aspekte (bzw. Standards) rund um das Internet und TCP/IP spezifiziert

Mehr

Netzwerke für den Einsatz mit dem BIM-Server

Netzwerke für den Einsatz mit dem BIM-Server Netzwerke für den Einsatz mit dem BIM-Server Kurzerklärungen...2 LAN - Local Area Network (Lokales Netzwerk)...4 LAN-Beispiele...4 Beispiel 1: LAN mit zwei Computern ohne weitere Netzwerkgeräte...4 Beispiel

Mehr

Netzwerkgrundlagen. by www.abyter.de (Martin Monshausen) 1

Netzwerkgrundlagen. by www.abyter.de (Martin Monshausen) 1 Netzwerkgrundlagen Einführung In diesem Workshop möchte ich dir die Netzwerk-Grundlagen und die Netzwerktechnik näher bringen, denn laut Umfragen haben viele Haushalte mehr als einen Computer, was liegt

Mehr

Kommunikation mehrerer PCs über Hubs

Kommunikation mehrerer PCs über Hubs Kommunikation mehrerer PCs über Hubs Hub Sollen mehr als zwei Rechner zu einem Netz verbunden werden, können wir dazu einen Hub verwenden, s. Abbildung 3-1. Ein Hub hat je nach Ausführung von vier bis

Mehr

Repeater-Regel Die maximale Anzahl von Repeatern in einem Kollisionsbereich (Collision Domain, Shared Ethernet) ist begrenzt.

Repeater-Regel Die maximale Anzahl von Repeatern in einem Kollisionsbereich (Collision Domain, Shared Ethernet) ist begrenzt. Netzwerke SNMP Simple Network Management Protocol SNMP definiert einen Standard für das Management von Geräten durch den Austausch von Kommandos zwischen einer Management-Plattform und dem Management-Agent

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr

Token Ring - Historie, Standards und Anschluss. Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks

Token Ring - Historie, Standards und Anschluss. Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks Token Ring - Historie, Standards und Anschluss Prof. Dr. W. Riggert mit überarbeiteten Abbildungen von Madge Networks Inhalt Das Tutorial ist in drei Abschnitte gegliedert. Abschnitt 1 gibt einen historischen

Mehr

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht

Themen. MAC Teilschicht. Ethernet. Stefan Szalowski Rechnernetze MAC Teilschicht Themen MAC Teilschicht Ethernet Medium Access Control (MAC) Untere Teilschicht der Sicherungsschicht Verwendung für Broadcast-Netze Mehrere Benutzer (Stationen) verwenden einen Übertragungskanal z.b. LANs

Mehr

Der ideale Netzwerk - Server:

Der ideale Netzwerk - Server: Der ideale Netzwerk - Server: AMD Athlon bzw. Pentium III - Prozessor >= 800 MHz evtl. Multiprozessor 256 MB Ram mit ECC mehrere SCSI - Festplatten (mind. 20 Gbyte) 17 Zoll - Monitor Fast-Ethernet-Netzwerkkarte

Mehr

OSI-Referenzmodell. Protokollkopf C2 MAC-6

OSI-Referenzmodell. Protokollkopf C2 MAC-6 3. Network-Layer: auch Netzwerkschicht OSI-Referenzmodell Schicht 3-Paket: Protokollkopf logische Zieladresse logische Quelladresse Nutzdaten Schicht 2-Paket: MAC Zieladresse MAC Quelladresse Nutzdaten

Mehr

Das Ethernet. Geschichtlicher Hintergrund und Entwicklung des Ethernet

Das Ethernet. Geschichtlicher Hintergrund und Entwicklung des Ethernet Das Ethernet Definition Ethernet Ethernet ist eine herstellerunabhängige und sehr weit verbreitete Netzwerktechnologie zur Datenübertragung in lokalen Netzwerken (LANs). Die Grundlage für das Ethernet

Mehr

Vorwort 8. 1 Netzwerktechnik Einführung 9. 2 Direkte Kommunikation zwischen 2 PCs 10

Vorwort 8. 1 Netzwerktechnik Einführung 9. 2 Direkte Kommunikation zwischen 2 PCs 10 Inhalt Vorwort 8 1 Netzwerktechnik Einführung 9 2 Direkte Kommunikation zwischen 2 PCs 10 2.1 TCP/IP allgemein 14 2.2 Einrichten von TCP/IP unter Windows 15 2.2.1 Einrichten von TCP/IP unter Windows 95/98

Mehr

Einführung zu Bridging, Routing, Spanning Trees, Cisco IOS

Einführung zu Bridging, Routing, Spanning Trees, Cisco IOS Einführung zu Bridging, Routing, Spanning Trees, Cisco IOS Diese Folien orientieren sich an den Lecture-Slides von Panwar, Mao, Ryoo und Li (http://catt.poly.edu/catt/tcpipessentials.html) Jörn Stuphorn

Mehr

Prof. Dr. R. Sethmann Übungen: Datum: 30.06.2005 Rechnernetze und Telekommunikation

Prof. Dr. R. Sethmann Übungen: Datum: 30.06.2005 Rechnernetze und Telekommunikation Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Σ Punkte 10 10 10 10 10 50 20 10 20 10 20 20 200 erreichte Pkt. Name: Semester: Matrikel-Nr.: Bitte beachten Sie: Schreiben Sie Ihren Namen, Semester und Matrikel-Nr.

Mehr

Grundlagen der Rechnernetze. Internetworking

Grundlagen der Rechnernetze. Internetworking Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012

Mehr

Netzwerke für Einsteiger

Netzwerke für Einsteiger Grundlagen der Datenkommunikation Netzwerkverteiler Namen und Adressen Kontakt: frank.hofmann@efho.de 5. November 2006 Grundlagen der Datenkommunikation Netzwerkverteiler Namen und Adressen Zielsetzung

Mehr

Rechnernetze: Technische Grundlagen

Rechnernetze: Technische Grundlagen Rechnernetze: Technische Grundlagen LAN-Technik (Ethernet, Fast Ethernet, Gigabit Ethernet, FDDI) 28. Oktober 1999 WS 1999/2000 Veranstaltungsnummer 260161 Guido Wessendorf Zentrum für Informationsverarbeitung

Mehr

Netzwerke. Grundlagen. Martin Dausch. 8. Ausgabe, 1. Aktualisierung, Juli 2013

Netzwerke. Grundlagen. Martin Dausch. 8. Ausgabe, 1. Aktualisierung, Juli 2013 Netzwerke Martin Dausch 8. Ausgabe, 1. Aktualisierung, Juli 2013 Grundlagen NW 3 Netzwerke - Grundlagen 3 Topologien In diesem Kapitel erfahren Sie den Unterschied zwischen physikalischer und logischer

Mehr

Netzwerkperformance 2.0

Netzwerkperformance 2.0 Netzwerkperformance 2.0 Die KPI`s als Schlüsselfaktoren der Netzwerke Andreas Dobesch, Product Manager DataCenter Forum 2014, Trafo Baden ISATEL Electronic AG Hinterbergstrasse 9 CH 6330 Cham Tel. 041

Mehr

TCP/IP-Protokollfamilie

TCP/IP-Protokollfamilie TCP/IP-Protokollfamilie Internet-Protokolle Mit den Internet-Protokollen kann man via LAN- oder WAN kommunizieren. Die bekanntesten Internet-Protokolle sind das Transmission Control Protokoll (TCP) und

Mehr

UMRnet. Hans-Meerwein-Straße 35032 Marburg 25.06.97. Hochschulrechenzentrum der Philipps-Universität Marburg. Backbones (ab März 1995)

UMRnet. Hans-Meerwein-Straße 35032 Marburg 25.06.97. Hochschulrechenzentrum der Philipps-Universität Marburg. Backbones (ab März 1995) Hochschulrechenzentrum (HRZ) der Philipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg 25.06.97 UMRnet Das (Daten-) Kommunikationsnetz der Universität Marburg trägt die Bezeichnung UMRnet; für

Mehr

Netzwerke. Autor: Roland Bauch. Grundlagen. Überarbeitete Ausgabe vom 22. Januar 2008. HERDT-Verlag für Bildungsmedien GmbH, Bodenheim

Netzwerke. Autor: Roland Bauch. Grundlagen. Überarbeitete Ausgabe vom 22. Januar 2008. HERDT-Verlag für Bildungsmedien GmbH, Bodenheim Netzwerke NW Autor: Roland Bauch Grundlagen Überarbeitete Ausgabe vom 22. Januar 2008 HERDT-Verlag für Bildungsmedien GmbH, Bodenheim Internet: www.herdt.com NW Alle Rechte vorbehalten. Kein Teil des Werkes

Mehr

Grundlagen TCP/IP. C3D2 Chaostreff Dresden. Sven Klemm sven@elektro-klemm.de

Grundlagen TCP/IP. C3D2 Chaostreff Dresden. Sven Klemm sven@elektro-klemm.de Grundlagen TCP/IP C3D2 Chaostreff Dresden Sven Klemm sven@elektro-klemm.de Gliederung TCP/IP Schichtenmodell / Kapselung ARP Spoofing Relaying IP ICMP Redirection UDP TCP Schichtenmodell Protokolle der

Mehr

Internetprotokoll TCP / IP

Internetprotokoll TCP / IP Internetprotokoll TCP / IP Inhaltsverzeichnis TCP / IP - ALLGEMEIN... 2 TRANSPORTPROTOKOLLE IM VERGLEICH... 2 TCP / IP EIGENSCHAFTEN... 2 DARPA MODELL... 3 DIE AUFGABEN DER EINZELNEN DIENSTE / PROTOKOLLE...

Mehr

Rechnernetze Übung 8 15/06/2011. Schicht 7 Schicht 6 Schicht 5 Schicht 4 Schicht 3 Schicht 2 Schicht 1. Switch. Repeater

Rechnernetze Übung 8 15/06/2011. Schicht 7 Schicht 6 Schicht 5 Schicht 4 Schicht 3 Schicht 2 Schicht 1. Switch. Repeater Rechnernetze Übung 8 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011 Schicht 7 Schicht 6 Schicht 5 Schicht 4 Schicht 3 Schicht 2 Schicht 1 Repeater Switch 1 Keine Adressen 6Byte

Mehr

Hauptdiplomklausur Informatik Januar 2007: Computer Networks

Hauptdiplomklausur Informatik Januar 2007: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Januar 2007: Computer Networks Name: Matrikel-Nr.:

Mehr

Relevante Daten zum richtigen Zeitpunkt

Relevante Daten zum richtigen Zeitpunkt Netzwerkadministratoren analysieren Netze aus zahlreichen Blickwinkeln. Einmal steht die Netzwerksicherheit im Vordergrund, dann eine bestimmte Anwendung oder das Compliance-Management. Für alles gibt

Mehr

Schichtenmodell der Internet Architektur

Schichtenmodell der Internet Architektur Schichtenmodell der Internet Architektur Applikation TCP UDP.... IP.... Netzwerk 76 Verbindungsmedien Verbindungskabel Material Durchsatzrate Kürzel Twisted Pair Cat 5 Kupfer - Mbps T/Tx 5 Coax (Thin Net)

Mehr

Lokale Rechnernetze. Rechnernetze. Vordergründiger Zweck: Verbindung von autonomen Rechnern (zum Zweck des Informationsaustauschs)

Lokale Rechnernetze. Rechnernetze. Vordergründiger Zweck: Verbindung von autonomen Rechnern (zum Zweck des Informationsaustauschs) Rechnernetze Vordergründiger Zweck: Verbindung von autonomen Rechnern (zum Zweck des Informationsaustauschs) Lokale Rechnernetze Client Server - Verbindung von PCs - gemeinsame Nutzung von Druckern und

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik I USB Universal serial bus (USB) Serielle Datenübertragung Punkt-zu-Punkt Verbindungen Daten und

Mehr

KNX EtherGate Eine universelle Plattform für KNX/IP Interfaces

KNX EtherGate Eine universelle Plattform für KNX/IP Interfaces WEINZIERL ENGINEERING GMBH F. Heiny, Dr. Th. Weinzierl Bahnhofstr. 6 84558 Tyrlaching Tel. +49 (0) 8623 / 987 98-03 Fax +49 (0) 8623 / 987 98-09 E-Mail info@weinzierl.de KNX EtherGate Eine universelle

Mehr

Chapter 7 Ethernet-Technologien. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von

Chapter 7 Ethernet-Technologien. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Chapter 7 Ethernet-Technologien CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/

Mehr

Netzwerkanalyse Seite 1 von 6. Einführung in die Netzwerkanalyse

Netzwerkanalyse Seite 1 von 6. Einführung in die Netzwerkanalyse Netzwerkanalyse Seite 1 von 6 Einführung in die Netzwerkanalyse Unter Netzwerkanalyse versteht man einen Prozess, bei dem der Netzwerk-Traffic abgegriffen und genau untersucht wird, um festzustellen, was

Mehr

Carsten Harnisch. Der bhv Co@ch Netzwerktechnik

Carsten Harnisch. Der bhv Co@ch Netzwerktechnik Carsten Harnisch Der bhv Co@ch Netzwerktechnik Inhaltsverzeichnis Einleitung 11 Über dieses Produkt 11 Zielgruppe 11 Aufbau 11 Modul 1 Einführung in die Netzwerktechnik 13 1.1 Der Netzverbund 13 1.2 Die

Mehr

Sniffer. Electronic Commerce und Digitale Unterschriften. Proseminar Leiter: Dr. Ulrich Tamm Vortragender: Stefan Raue Datum: 29.06.2004.

Sniffer. Electronic Commerce und Digitale Unterschriften. Proseminar Leiter: Dr. Ulrich Tamm Vortragender: Stefan Raue Datum: 29.06.2004. Sniffer Proseminar: Electronic Commerce und Digitale Unterschriften Proseminar Leiter: Dr. Ulrich Tamm Vortragender: Stefan Raue Datum: 29.06.2004 Gliederung Was sind Sniffer? Einführung Ethernet Grundlagen

Mehr

CISCO-Router. Installation und Konfiguration Dr. Klaus Coufal

CISCO-Router. Installation und Konfiguration Dr. Klaus Coufal CISCO-Router Installation und Konfiguration Dr. Klaus Coufal Themenübersicht Grundlagen Router IOS Basiskonfiguration Administration Dr. Klaus Coufal 5.3.2001 Router Einführung 2 Grundlagen Routing Was

Mehr

Netzwerke 3 Praktikum

Netzwerke 3 Praktikum Netzwerke 3 Praktikum Aufgaben: Routing unter Linux Dozent: E-Mail: Prof. Dr. Ch. Reich rch@fh-furtwangen.de Semester: CN 4 Fach: Netzwerke 3 Datum: 24. September 2003 Einführung Routing wird als Prozess

Mehr

Aktive Komponenten. Betriebsarten

Aktive Komponenten. Betriebsarten Aktive Komponenten Betriebsarten Simplex: Ein Sender sendet Informationen an einen Empfänger. Der Empfänger kann selbst keine Informationen senden. Ein Beispiel dafür ist der Rundfunk. Die Rundfunkanstalten

Mehr

Prof. Dr.-Ing. Thomas Schwotzer FB 4 / AI / Mobile Anwendungen thomas.schwotzer@htw-berlin.de. Ad-hoc Networks. Routing

Prof. Dr.-Ing. Thomas Schwotzer FB 4 / AI / Mobile Anwendungen thomas.schwotzer@htw-berlin.de. Ad-hoc Networks. Routing Prof. Dr.-Ing. Thomas Schwotzer FB 4 / AI / Mobile Anwendungen thomas.schwotzer@htw-berlin.de Ad-hoc Networks Routing Eigenschaften keine feste Netzwerk-Infrastruktur kein Adressschema, das auf Rückschlüsse

Mehr

1.1 Wireshark Bedienung (Die neuste Wireshark-Version sieht leicht anders aus!) 1.2 Aufzeichnung starten. LAN-Komponenten in Betrieb nehmen Modul 129

1.1 Wireshark Bedienung (Die neuste Wireshark-Version sieht leicht anders aus!) 1.2 Aufzeichnung starten. LAN-Komponenten in Betrieb nehmen Modul 129 1 Wireshark für Protokolle (Verfasst von G. Schneider/TBZ-IT) 1.1 Wireshark Bedienung (Die neuste Wireshark-Version sieht leicht anders aus!) Wireshark ist ein sog. Sniffer. Diese Software dient dazu den

Mehr

Einführung in TCP/IP. das Internetprotokoll

Einführung in TCP/IP. das Internetprotokoll Schwarz Einführung in TCP/IP das Internetprotokoll Was ist ein Protokoll? Mensch A Mensch B Englisch Deutsch Spanisch Französisch Englisch Japanisch Was sind die Aufgaben eines Protokolls? Informationen

Mehr

Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz

Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz Ethernet Performance mit Fast Track Switch Laufzeit-Vergleich verschiedener Switching-Technologien im Automatisierungs-Netz In der Automatisierungstechnik können die Laufzeiten der Ethernet-Telegramme

Mehr

ABWEHR VON SICHERHEITSATTACKEN - EINE DEMO MIT PACKET TRACER. Academy Day, Esslingen, 26.9.2015

ABWEHR VON SICHERHEITSATTACKEN - EINE DEMO MIT PACKET TRACER. Academy Day, Esslingen, 26.9.2015 ABWEHR VON SICHERHEITSATTACKEN - EINE DEMO MIT PACKET TRACER Academy Day, Esslingen, 26.9.2015 Ziel Darstellung von Layer-2-Angriffsmöglichkeiten, die Gefahren, die dadurch entstehen und die Lösungen,

Mehr

Konfigurationsanleitung Access Control Lists (ACL) Funkwerk. Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0.

Konfigurationsanleitung Access Control Lists (ACL) Funkwerk. Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0. Konfigurationsanleitung Access Control Lists (ACL) Funkwerk Copyright Stefan Dahler - www.neo-one.de 13. Oktober 2008 Version 1.0 Seite - 1 - 1. Konfiguration der Access Listen 1.1 Einleitung Im Folgenden

Mehr

10BaseT 24, 65, 69, 87, 88, 91 5-4-3-Regel = Repeater-Regel 89

10BaseT 24, 65, 69, 87, 88, 91 5-4-3-Regel = Repeater-Regel 89 10BaseT 24, 65, 69, 87, 88, 91 5-4-3-Regel = Repeater-Regel 89 7-Schichtenmodell (ISO/OSI) 98, 100, 103f 802 - LAN 59 802.11(a,b,g,h) - WLAN-Standards 29, 31, 59 802.3 Ethernet 65ff 8-Bit-Code Parity check

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik I Security Rev.00 FB2, Grundlagen der Informatik I 2 Paketaufbau Application Host 1 Payload Hallo

Mehr

Whitepaper Einführung in Mesh Netzwerke www.airberry.com

Whitepaper Einführung in Mesh Netzwerke www.airberry.com Stand: 05.06.2012 Mesh Netzwerke existieren seit über 40 Jahren - angefangen als mobile Funklösung für militärische Anwendungen in den USA wurden sie insbesondere seit Anfang 2000 auch für die zivile Vernetzung

Mehr

Der Weg ins Internet von Jens Bretschneider, QSC AG, Geschäftsstelle Bremen, im Oktober 2004

Der Weg ins Internet von Jens Bretschneider, QSC AG, Geschäftsstelle Bremen, im Oktober 2004 Der Weg ins Internet 1 Übersicht Internetverbindung aus Sicht von QSC als ISP Struktur Technik Routing 2 Layer Access-Layer Distribution-Layer Core-Layer Kupfer- Doppelader (TAL) Glasfaser (STM-1) Glasfaser

Mehr

Manchester Codierung sowie Differenzielle Manchester Codierung

Manchester Codierung sowie Differenzielle Manchester Codierung Manchester Codierung sowie Differenzielle Manchester Codierung Nadine Sass 1 von 8 Inhaltsverzeichnis Inhaltsverzeichnis... 2 Abbildungsverzeichnis... 3 Das Ethernet... 4 Das IEEE 802.3 Ethernet Paketformat...

Mehr

Aufgaben zum ISO/OSI Referenzmodell

Aufgaben zum ISO/OSI Referenzmodell Übung 1 - Musterlösung 1 Aufgaben zum ISO/OSI Referenzmodell 1 ISO/OSI-Model Basics Aufgabe 1 Weisen Sie die folgenden Protokolle und Bezeichnungen den zugehörigen OSI- Schichten zu: IP, MAC-Adresse, HTTP,

Mehr

InfiniBand Low Level Protocol

InfiniBand Low Level Protocol InfiniBand Low Level Protocol Seminar Ausgewählte Themen in Hardwareentwurf und Optik HWS 08 17.12.2008 Andreas Walter Universität Mannheim Inhalt Motivation InfiniBand Basics Physical Layer IB Verbs IB

Mehr

CISCO Switching Lösungen für High-Speed-Netzwerke

CISCO Switching Lösungen für High-Speed-Netzwerke CISCO Switching Lösungen für High-Speed-Netzwerke Torsten Schädler Cisco Systems Berlin 1 Die Geschäftsbereiche der Firma Cisco Switched LANs Management Client/Server Deployment Networked Multimedia Workgroup

Mehr